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Abstract: The optimization of sport equipment parts requires considerable time and high costs due 
to the high complexity of the development process. For this reason, we have developed a novel 
approach to decrease the cost and time for the optimization of the design, which consists of 
producing a first prototype by 3D printing, applying the forces that normally acts during the sport 
activity using a test bench, and then measuring the local deformations using 3D digital image 
correlation (DIC). The design parameters are then modified by topological optimization and then 
DIC is performed again on the new 3D-printed modified part. The DIC analysis of 3D-printed parts 
has shown a good agreement with that of the injection-molded ones. The deformation measured 
with DIC are also well correlated with those provided by finite element method (FEM) analysis, and 
therefore DIC analysis proves to be a powerful tool to validate FEM models.  
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1. Introduction 

The optimization of the design of sport equipment made from thermoplastic materials is a 
difficult task that requires a considerable amount of time and high costs since it is performed with a 
trial and error approach that necessitates the modification of molds used to produce the parts. This 
approach increases the time to market of a new product and significantly affect the final costs. This 
aspect has become even more crucial in the last few years due to the ever-growing request from the 
market to reduce the weight of sport equipment [1]. An efficient reduction of plastic thickness is very 
challenging due to the intrinsic difficulty to determine the zones in which the maximum stress is 
applied. Finite element method (FEM) analysis can be used to predict the deformation and avoid 
eventual breakages. However, in FEM analysis, it is necessary to know the loads that are applied 
during the use of the part and this is very difficult to be determined directly. Test benches that 
measure the flexural stiffness of the parts have been used to determine the flexural behavior of winter 
sport equipment made of rigid plastic parts [2]. These test benches permit the application of forces 
that are similar to those applied in real use and are widely employed for lab testing to predict the 
performances, for example, of ski boots [1,2]. However, the sport equipment is generally constituted 
of several parts made from different materials and thicknesses, and for this reason, it is very difficult 
to correlate the overall flexural behavior with that of the single parts. Digital image correlation (DIC) 
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allows for the measurement of local deformations on a part on which forces are applied. DIC is a 
technique based on 3D image-tracking of a stochastic pattern of small dots created on the surface that 
allows one to measure local deformations on 3-axis.  

3D printing is widely used in R&D since it allows one to obtain prototypes with a significant 
time reduction and cost saving when compared with traditional processes [3]. For example, 3D 
printing has been used to develop and produce snowboard bindings [4,5]. 

The aim of the present work is to use DIC and 3D printing to perform a more efficient process 
for the optimization of the design of sport equipment. In particular, we developed a new prototype 
of a snowboard binding baseplate that was designed using FEM analysis and topological 
optimization, taking into account the loads applied that were indirectly determined by analyzing the 
deformation measured using DIC. A comparison of the deformation patterns of 3D-printed and 
injection-molded parts was also been conducted. 

2. Materials and Methods 

A snowboard binding model “Falcor”, manufactured by Union Bindings (Figure 1), was used as 
a reference binding. The baseplate of the binding is produced by injection molding using Akulon 
K224 (Nylon 6 with 30% of glass fibers). A test bench was built to measure the flexural behavior of 
the binding. The binding was attached with screws to a metallic base and a boot containing a 
prosthesis was inserted in the binding. The top part of the prosthesis was connected with a metallic 
cable to a dynamometer with a 500 N load cell. A speed of 200 mm/min was used in the tests and the 
test was stopped when a 250 N force was reached both in plantarflexion and in dorsiflexion.  

Bindings and test specimens were manufactured by 3D printing using an HP4200 MJF using HP 
3D high reusability polyamide 12 as a base material.  

 

Figure 1. Falcor snowboard binding (a), flexural test bench used and digital image correlation (DIC) 
equipment (b) and stochastic pattern used to perform DIC analysis (c). 

DIC measurements were performed with a Dantec Dynamics Q-400 3D with Xenoplan 1.4/17 
Schneider Kreuznach optics using Istra4D Software. The sample was first sprayed with a white color 
base and then with a black color to create the stochastic pattern on the surface. The values of the 
strains measured by DIC of different bindings were compared by taking into account the values of 
the spots in which maximum strain was observed. FEM analysis and topological optimization were 
conducted using the software Fusion 360 from Autodesk. The boundary conditions were partially 
determined by analyzing the deformation of the straps using DIC and partially with a trial and error 

b 
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approach to minimize the differences between DIC and FEM results. In particular, in plantarflexion, 
a force of 700 N applied by the ankle strap, a force of 150 N induced by the toe strap and a remote 
force of 700 N that simulate the effect of the force applied by the high back on the heel cup were used; 
while in dorsiflexion, a force of 400 N from the ankle strap and of 100 N from the toe strap were used 
in the FEM model. 

3. Results and Discussion  

The analysis of the binding was concentrated on its lower part, known as the baseplate. This part 
is the more rigid one and its purpose is to transmit the forces from the rider to the snowboard. 
Flexural tests were performed to determine the forces that are applied during dorsiflexion and 
plantarflexion, using a system that has been previously used to measure the flexural stiffness of ski 
boots [1]. According to the literature [2] all the test parameters were kept constant (temperature, 
buckles closure, type of prosthesis, movement speed, etc.) during all tests. 

Multi jet fusion was the chosen 3D-printing technique since it permits the use of polyamides— 
the materials employed in the traditional injection-molding process. Moreover, this technique is 
known for the very low anisotropy of the printed parts. The choice of polyamides is related also to 
the fact that they have good impact resistance at low temperature and have been used in a previous 
scientific work on 3D printing of snowboard bindings [3]. However, the polyamide used for 3D 
printing possesses a significantly lower elastic modulus (0.90 GPa vs. 5.50 GPa) compared to that 
used for the injection molding of the commercial Falcor baseplate used as a reference, which contains 
30% of glass fibers. This difference is responsible for the different deformation curves of the two 
bindings, as shown in Figure 2. The value of strain measured by DIC in the point of maximum 
horizontal deformation (0.0127 for the 3D-printed one versus 0.0077 for the injection-molded one 
during dorsiflexion, reported in Figure 3) is not linearly correlated with the modulus difference 
between the 3D-printed material and the injection-molded one. The reason can be ascribed to the fact 
that the values of modulus for the injection-molded material are measured on a specimen in which 
the fibers are all aligned, and this is not generally the case in an object with a complex shape like the 
snowboard bindings that we are analyzing. Nevertheless, the comparison of the DIC analysis 
performed during the flexural tests show a very similar pattern of deformation for the injection-
molded and 3D-printed parts (as an example, horizontal deformation in dorsiflexion is shown in 
Figure 3) indicating that the measure of deformation by DIC of 3D-printed parts can give important 
information that can be used to predict the behavior of injection-molded parts. 

 
Figure 2. Comparison of dorsiflexion and plantarflexion flex curves of Falcor binding made by 
injection molding and 3D printing. 
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The FEM analysis was conducted on the basis of the results of DIC and of the forces applied in 
the test bench as reported in the method section. The comparison of the FEM analysis (Figure 4) with 
DIC results (Figure 3) show a good agreement on the deformation patterns. Moreover, the values of 
the strain measured in the zone of the maximum horizontal deformation in dorsiflexion for the FEM 
analysis are very similar to those observed by DIC (0.0078 vs. 0.0077). Similar results are obtained 
considering other deformation axis also in plantarflexion. These facts indicate that DIC is a powerful 
tool to validate FEM simulations. 

 

Figure 3. Comparison of deformations (horizontal axis) of a commercial baseplate made by injection 
molding (b) and a baseplate 3D printed (a) at 250 N, applied on the upper part of the prosthesis in 
dorsiflexion. 

 
Figure 4. Finite element method (FEM) simulation in dorsiflexion (horizontal axis deformation). 

Based on the results of the FEM analysis, a topological optimization was conducted using 
Autodesk Fusion 360 software. The inputs and constraints given by the topological optimization 
(Figure 5) were used to complete the design of a new prototype with a reduced weight. FEM analysis 
showed that the prototype has improved mechanical properties when compared with the commercial 
baseplate (Figure 6, for example), as shown in the deformation in the plantarflexion. 
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Figure 5. Autodesk Fusion 360 output for the topological optimization of the binding. 

 

Figure 6. FEM simulation of the deformation in plantarflexion (horizontal axis) of the commercial 
binding (a) and of the prototype (b). 

The prototype baseplate was then produced by 3D printing (Figure 7), showing a 29% reduction 
of weight when compared to the commercial baseplate, which was also made by 3D printing. 

 
Figure 7. 3D-printed prototype. 

The 3D-printed baseplate was assembled with the same heel cup, high back and straps of the 
commercial model and tested in the test bench to measure the flexural stiffness and the deformations 
caused by DIC.  

The results reported in Figure 8 show that the prototype binding has a higher flexural stiffness 
both in dorsiflexion and plantarflexion when compared to the commercial one, despite its weight 
being significantly lower. Moreover, the comparison of the DIC analysis (as an example, Figure 9 
shows the deformation of the horizontal axis in plantarflexion) shows less pronounced deformation 
and less localized stress on the prototype. Again, a good agreement can be observed comparing DIC 
(Figure 6) and FEM analysis deformation patterns (Figure 9). 
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Figure 8. Comparison of the flexural behavior of the prototype and of the commercial binding. 

 
Figure 9. DIC comparison of deformations (horizonal axis) in plantarflexion of the commercial 
binding (a) and of the prototype (b). 

4. Conclusions 

The test conducted using the new procedure based on DIC and 3D printing shows that it is 
possible to develop rigid parts for sport equipment with reduced weight and improved 
performances. In particular, the DIC analysis of 3D-printed parts shows the same deformation 
patterns of injection-molded ones and allows one to determine the loads applied during the use, 
which can then be used for FEM simulation and topological optimization. Nevertheless, even without 
the use of FEM analysis, this approach allows one to determine the eventual points of stress 
concentration and the use of 3D printing, significantly reducing the time of every iteration necessary 
to obtain to the optimal weight/performance ratio. A statistical approach to precisely define the 
differences in all parts of different bindings will be performed in a following study. This approach 
can be also applied to other parts made of thermoplastic and elastomeric materials used in sport 
equipment (e.g., ski boots, rollerblades, etc.).  
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