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Abstract: Herein, we compare the drag area estimated using unsteady Reynolds-averaged Navier-
Stokes (URANS), using the γ−ReΘ transitional shear stress transport (SST) k−ω (SSTLM) turbulence 
model with published experimental measurements of a static full-scale cyclist mannequin in an 
open test section wind tunnel, with the left leg fully extended. The turbulence model employs a local 
empirical correlation based upon a classical Blasius boundary layer behavior to predict flow 
transition. For a given mesh density, we aim to improve drag area estimation by modifying the 
empirical correlation coefficient to better capture actual boundary layer transition location around 
the arms and legs, to facilitate computationally economical cyclist simulations. Large Eddy 
Simulation (LES), in conjunction with experimental wake data in the vicinity of the arms and legs, 
is used to assess boundary layer shape factors, which are related to the empirical coefficient. Overall, 
the drag area predicted by LES is within 3.7% of the measured results, while the original SSTLM is 
within 7.8%. By tuning the correlation coefficient, the drag area error is improved to 6.0% at no 
additional computational cost. The tuning was relatively coarse, and was only considered for the 
appendages. In other regions, the original SSTLM coefficient seems to perform better, suggesting 
that local coefficient selection may lead to further improvements in results over the currently 
employed global value. 
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1. Introduction 

Highly resolved computational fluid dynamics (CFD) has gained popularity as a tool for 
aerodynamic assessment in sport over the past decade or so, with considerable effort focused on 
cycling [1–3]. CFD affords practitioners insights into the detailed flow features involved in producing 
observed bulk effects, such as drag. Simulating flow around a full cyclist is challenging, however, 
owing to issues such as geometric complexity, flow separations and critical flow regions susceptible 
to laminar-to-turbulent transition. Furthermore, a wide range of small scale surface roughness 
characteristics and non-linear textile response compound the issues numerically. To this end, 
considerable effort has been devoted to assessing the performance of various turbulence modeling 
strategies for cyclist aerodynamics [3–5]. Defraeye et al. [5] studied various cyclist postures using 
Reynolds Averaged Navier-Stokes (RANS) with a low Reynolds number k-ε turbulence model and 
Large Eddy Simulation (LES), and found that RANS under-predicted drag area (CdA) by 11%, 
whereas LES under-predicted by 7% in comparison with wind tunnel experiments. Fintelman et al. 
[6] studied a cyclist in crosswinds using RANS, Detached Eddy Simulation (DES) and LES, and found 
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that a SST k-ω turbulence model can capture the development of large flow separation around the 
bicycle with increasing yaw angles. Blocken et al. [Error! Reference source not found.], as part of a 
broader effort to study cycling pelotons, modeled flow around a single cyclist using the γ−ReΘ 
transitional SST k−ω (SSTLM) turbulence model proposed for transitional flows [7]. By ensuring small 
wall-adjacent cell sizes in the cyclist mesh, their estimated drag area was within 0.8% of analogous 
wind tunnel measurements. This exceptional result required a very highly resolved grid, with 
approximately 40 elements in the boundary layer around each cyclist, and consequently was 
extremely computationally expensive; the simulations employed about 14,000 CPUs in a Cray XC-40 
supercomputer to generate the results. 

In this paper, we aim to improve the drag area estimate around a single cyclist using unsteady 
RANS (URANS) by tuning the SSTLM turbulence model to better predict flow transition and 
separation around the rider appendages with relatively coarse grid density and modest 
computational expense. LES is used to evaluate boundary layer characteristics in these regions, which 
drives the local behavior of the turbulence model. 

2. Materials and Methods 

The cyclist mannequin and bike model employed in the experimental study by Terra et al. [Error! 
Reference source not found.] were numerically replicated herein, and the flow around the model 
was evaluated using both URANS and LES. The Reynolds number of the experiments and 
simulations based on rider length, L = 1.7 m, is 5 × 105 , with a free stream velocity of U∞ = 12.95 m/s. 
Error! Reference source not found. shows the cyclist model, along with mesh details on the lower 
wall and in the vicinity of the rider for a representative case. The domain dimensions are Lx × Ly × Lz 
= 7.5 L × 3.5 L × 3.5 L, where x is the streamwise direction and y is the wall-normal direction. The 
appropriate wall spacing for the very first cell close the body for the considered Reynolds number is 
20 µm to achieve y+~1. The wall spacing should be reduced to one tenth of this value in stagnation 
zones, such as the frontal area of the helmet, arms and legs to achieve y+ ~ 1. The wall spacing herein 
is yave+ ~ 4, placing the first few cells in the viscous sublayer. The boundary layer contains 18 cells, and 
the total number of elements for URANS and LES are 43 million and 56 million, respectively. The 
inlet flow is of uniform velocity, the rear boundary is stress free, and the top and side walls are free 
slip. To faithfully replicate the experimental study, the ground plane and wheels are stationary. 

 
Figure 1. Isometric view of the cyclist model and mesh density on the ground plane. The inset shows 
a representative example of the mesh details in the immediate vicinity of the rider’s arms and head. 

Two turbulence modelling approaches were used herein; the dynamic k-equation model was 
used in LES, and the SSTLM turbulence model was used in URANS. The latter model uses a local 
empirical correlation-based approach to estimate transition location. The empirical coefficient, C = 
2.193, relating momentum thickness Reynolds number, Reθ, and vorticity Reynolds number, ReΩ, 
holds for boundary layer shape factors, H, between 2.3 and 2.9. The Reynolds numbers of the upper 
arm and thigh, based on mean diameter, are 1.3 × 105 and 2.85 × 105, respectively, suggesting that flow 
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around these regions is susceptible to transition, particularly since the incoming turbulence intensity 
may be elevated due to flow disruptions upstream by other rider and bike elements. 

Computations were performed using OpenFOAM-1906, a finite volume open source CFD code. 
Central differencing was used for the diffusion terms, whereas a limited linear total variation 
diminishing scheme with a conformance coefficient was used for convective terms. Two approaches 
were employed to treat the flow close to the wall; two-layer wall modeling (TLM) and Spalding’s 
law. The simulations were performed using 2.4 GHz Intel cores with 200 GB RAM. Results were 
averaged over approximately 2.5 s of physical time. 

3. Results and Discussion 

Table 1 compares the drag area, CdA, of the experiment with the predicted values from the 
numerical simulations using both wall treatment approaches. The experimental value was reduced 
by 1%, to account for the contribution to the drag of the fixed bars between the force plate and the 
wheel hub to support the mannequin and bike in the experiments, which is not included in the 
numerical simulations. Furthermore, the rear wheel gear, the chain and the front wheel spokes were 
simplified in the numerical simulations, which additionally reduced the simulated drag. The 
uncertainty in the experimental results was also estimated from details reported in Terra et al. [Error! 
Reference source not found.] and included in Table 1. The LES results under-predicted CdA by 3.7% 
using TLM, which was the lowest of the models considered; URANS with SSTLM under-predicted 
CdA by 7.8%. For LES, TLM produces better results in comparison with Spalding’s law, whereas the 
trend is reversed for URANS, with Spalding’s law yielding slightly better results than TLM. Table 1 
also highlights the relative expense of LES versus URANS with SSTLM, with the latter affording 
roughly 10% savings in terms of CPU hours. 

Table 1. Estimated drag area and computational cost. 

Model 
CdA (m2) 

Error CPU·hr Time Step (s) 
TLM Spalding‘s Law 

Experiment 0.217 - 1.5% a - - 
LES 0.209 0.207 3.7% b 17,200 5 × 10−5 

SSTLM 0.198 0.200 7.8% b 15,500 1 × 10−4 
Tuned SSTLMc - 0.204 6.0% 15,500 - 

a uncertainty of experimental measurements; b best from TLM or Spalding’s law; c C = 1.6. 

Along the vertical appendages of the model, detailed comparison of the results shows that LES 
predicts flow transition further upstream than does URANS with SSTLM. The LES results indicate 
that the boundary layer shape factor decreases from H = 2.1 in the vicinity of stagnation to a minimum 
of around 1.2, and then increases to approximately 4 at separation. As previously stated, the 
correlation coefficient C = 2.193 relating Reθ and ReΩ is valid for 2.3 < H < 2.9 [7], but is too high for 
shape factors out of this range, leading to transition being predicted too far downstream. In an effort 
to improve the estimate of the transition location in the SSTLM model, three correlation constants are 
considered, C = 1.8, 1.6 and 1.4, and compared with the original SSTLM results. 

Error! Reference source not found. compares the results of the original and the tuned SSTLM 
model with experimental velocity measurements in the wake of upper arm and the extended leg. The 
measurement for the arm is at y = 1.1 m, and for the thigh is at y = 0.95 m. Both are extracted x/d = 0.8 
downstream of the cross-section center, where d is the width of the cross-section. The root mean 
square errors between the predictions and experimental data are 1.1%, 0.5%, 1.1% and 0.9% for C = 
1.4, 1.6, 1.8 and 2.193 (original), respectively, for the arm (Figure 2a), and 1.9%, 1.3%, 1.4% and 1.5% 
for the thigh (Figure 2b). A value of C = 1.6 shows the best agreement for both appendages, with the 
most significant improvement for the flow around the upper arm. For the remainder of the 
manuscript, C = 1.6 will be employed as the ‘Tuned SSTLM’ model. Table 1 shows that, with tuning, 
the estimate of CdA improves from 7.8% error to 6.0%. 
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(a) (b) 

Figure 2. Tuned SSTLM model, Reθ = ReΩ/C, compared with experimental measurements in the wake 
of (a) the upper arm and (b) the thigh of the extended leg. The measurement for the arm is at y = 1.1 
m, and for the thigh is at y = 0.95 m, and x/d = 0.8 downstream of the cross-section center. d is the 
width of the cross-section. 

Error! Reference source not found. compares the contour of 0.90U∞ for the different turbulence 
modeling approaches, using TLM in a yz-plane 0.8 m behind the rear wheel, with the experimental 
data of Terra et al. [8]. In general, the wake width is reasonably captured for both the LES and URANS 
methods, though URANS predicts the separation over the hip further downstream than does LES. 
The tuned SSTLM improves the prediction of the separation on the raised leg side of the hip (positive 
z); see Error! Reference source not found.b. Stagnation regions with their strong pressure gradients, 
three-dimensional flow transition after stagnation, and separation over the hip are challenging to 
predict. LES predicts the torso wake well (z > 100), while it under-predicts the coherent structures 
generated from the feet (z ~ 40 and 60 for the left and right foot, respectively). 

Overall, URANS with SSTLM predicts the large scale wake structures well; see Error! Reference 
source not found.a. The intermittency equation in SSTLM needs very fine resolution close to the wall, 
with a zero normal flux boundary condition. It is only sensitive to streamwise velocity over the 
surface. The tuned model increases the intermittency, which increases the production of turbulent 
kinetic energy further upstream. The SST k−ω model limits the eddy viscosity to improve the 
performance of the model for adverse pressure gradients and in the wake regions. Nevertheless, 
SSTLM, which was developed for attached transitional flows, predicts a slightly more diffusive wake 
compared with the LES results; see Error! Reference source not found.a. 

 
(a) (b) 

Figure 3. Contour of 0.9U∞ for different meshes and turbulence modeling approaches in a yz-plane at 
0.8m behind the rear wheel, compared with the experimental data from Terra et al. [8]: (a) LES vs. 
SSTLM; (b) SSTLM vs. Tuned SSTLM. 
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Error! Reference source not found. shows the pressure coefficient, Cp = (p-p∞)/0.5ρU∞2, in the 
same plane as Error! Reference source not found.Error! Reference source not found. for the 
experimental and simulation data. Error! Reference source not found.a shows that there is a high 
pressure region in 100 < z < 140, which is downstream of the rider’s torso. This pressure rise 
corresponds to the Bernoulli effect associated with the decrease in mean velocity in the wake of the 
cyclist. It also shows three low pressure regions in 80 < z < 100. These regions correspond with three 
main coherent structures in the wake of the cyclist. The strongest one, which is on the z-axis, is 
generated from the hip; the left one (negative z) is generated from the outer part of extended leg; and 
the right one (positive z) is generated from the outer part of raised leg. The low pressure region on 
the extended leg side is spatially larger than that of the raised leg. There are three other low pressure 
regions in z < 60, two of which are due to the coherent structures generated by the feet, and the 
remaining one is from the knee of the extended leg. The pressure coefficients from LES and SSTLM 
correspond well with the experimental measurements, with LES showing the best agreement; see 
Error! Reference source not found.b. The low pressure regions predicted by SSTLM are smaller than 
those of the experimental measurement (see Error! Reference source not found.c, indicating that 
SSTLM predicts smaller coherent structures than LES. 

 

Figure 4. Contour of the pressure coefficient, Cp = (p-p∞)/0.5ρU∞2, at 0.8 m downstream of the rear 
wheel: (a) experimental measurements; (b) LES; (c) Tuned SSTLM. 

4. Conclusions 

The flow around a cyclist was studied using two methods, URANS and LES, and two near wall 
treatments: two-layer wall modeling and Spalding’s law. The SSTLM turbulence model was used for 
the URANS simulations, as the flow was expected to be transitional around portions of the body. LES 
better predicts the drag area when using two-layer wall modelling, while Spalding’s law performs 
better for URANS. The LES drag area estimation is within 3.6% of the measured value, albeit at higher 
computational expense than URANS. URANS with SSTLM under-predicts the drag area by 7.8%. 
Examining the transition location around the appendages predicted by LES and SSTLM revealed that 
LES predicts transition further upstream. To rectify this, the SSTLM model was tuned, which resulted 
in an improvement in drag area estimation of 23%, in comparison with the original model, at no 
additional computational expense. Further revision of the SSTLM turbulence model, perhaps with 
the local values of the correlation coefficient, may provide additional improvements. 
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