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Abstract: There are currently no evidence-based practical automated injury risk factor estimation 
tools to monitor low back compressive force in ambulatory or sporting environments. For this 
purpose, inertial sensors may potentially replace laboratory-based systems with comparable results. 
The objective was to investigate inertial sensor validity to monitor low back compression force. 
Thirty participants completed a series of lifting tasks from the floor. Back compression force was 
estimated using a hand calculated method, an inertial sensor method and a three-dimensional 
motion capture method. Results demonstrated that semi-automation with a sensor had a higher 
agreement with motion capture compared to the hand calculated method, with angle errors of less 
than six degrees and back compression force errors of less than 200 Newtons. It was concluded that 
inertial sensors are valid to implement for static low back compression force estimations. 
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1. Introduction 

Low back disorders (LBDs) refer to musculoskeletal health, pain and injuries of the low back 
region. In the 2010 global burden of disease study, LBDs were ranked sixth for overall burden and 
first in years lost due to disability [1]. In Australia, over 30% of reported low back injuries are due to 
avoidable bodily stressing, related to any lifting, pushing, pulling and bending tasks [2]. Comparable 
statistics span the globe, thus LBD primary prevention initiatives are a large area of research and 
investment [1]. Back compressive force (BCF) is a known risk factor for sustaining LBDs, which can 
cause a disruption to the mechanical environment of the spine [3]. Risk factors of LBD that contribute 
toward unsafe compressive loads include tissue overload, prolonged exposure to postures with large 
spine flexion and inadequate rest between tasks [4,5]. Gold standard methods of monitoring BCF are 
expensive, have high expertise requirements and are bound to laboratory environments [5–7]. 
Therefore, hand calculated methods are commonly used to model static postures and estimate risk 
factors of injury based on the biomechanics in these postures. The University of Utah hand calculated 
BCF equation (HCBCF) estimates compressive force in the erector spinae muscle (L5-S1) during static 
postures [7]. Inertial sensors have demonstrated validity for human movement monitoring including 
temporal features, acceleration and angles of body segments [8,9]. Hand calculated lifting equations 
have been previously validated against 3D motion capture and Microsoft Kinect [10–12]. However, 
these systems may not be practical for large scale interventions. Inertial sensors may modernise the 
static HCBCF equation, by dynamically measuring the variables at each instance in time, when fused 
with software. 



Proceedings 2020, 49, 37 2 of 6 

 

The aim of this research was to investigate this concept, by analysing the validity of 
implementing a single inertial sensor to measure BCF during lifting tasks. The HCBCF equation was 
chosen to estimate compressive force in the low back during static postures [7]. The purpose was to 
compare the agreement of the HCBCF equation output and variables between an entirely hand 
calculated method, a semi-automated inertial sensor method and a 3D motion capture method.  

2. Materials and Methods 

Thirty healthy adults from the general population volunteered (16 males, 14 females, weight 71.3 
± 15.1 kg, height 173.0 ± 9.9 cm, age 29.5 ± 9.7 years). Informed consent was obtained prior to 
participation and ethical clearance was granted by the Charles Darwin University Human Research 
Ethics Committee. The device used was a Sports and Biomedical Engineering Laboratory (SABEL) 
SABEL Sense, which includes a tri-axial accelerometer, rate gyroscope and a digital magnetometer 
[13,14]. One SABEL Sense device was attached with rigid strapping tape just above the S1 spinous 
process landmark with an attached rigid body of reflective markers. The sensor was set at 100 Hz and 
calibrated following procedures previously reported [15]. Motion capture markers (rigid body) were 
tracked with Optitrak software (NaturalPoint, Inc. Corvallis, OR, USA).  

The HCBCF method estimates the compressive muscle force in Newtons (N) at L5-S1 at two 
static points in time, the origin (beginning of movement) and destination (end of movement). The 
HCBCF equation was measured and calculated following procedures previously reported [7]. 
Equation variables were manually measured prior to data collection, and at the origin and destination 
static location for each lifting task. The horizontal distance from the hands to L5-S1 was measured 
with a tape measure and torso flexion angle at L5-S1 from the vertical was measured with a standard 
universal goniometer. Participants lifted a crate (1 kg) from the floor and placed it on a table (70 cm 
high) positioned directly anterior at a self-selected distance for five repetitions and with no 
instruction on how to lift. This set of five repetitions was repeated with an extra 5 kg (6 kg total). Feet 
were fixed during trials. Origin (picking crate up from floor) and destination (placing crate on table) 
locations were self-selected and marked for each participant to control for horizontal distance 
variations between repetitions. Manually measured results were recorded and used in MATLAB 
(R2017, The MathWorks, Inc., Natick, MS, USA), for validation comparisons.  

Manually measured body weight, height, object load and horizontal distance from hands to L5-
S1 were used in MATLAB. Therefore, these variables were not automatically measured or calculated 
with inertial sensor or motion capture data. Lift detection and the torso flexion angle (at L5-S1) were 
automatically measured. Raw data were extracted by downloading directly from the inertial sensor 
and the trajectories function was used in Motive Optitrak software to track the rigid body. 
Acceleration data were filtered using a fourth-order Butterworth filter with a 5 Hz cut off and used 
for lift detection. Origin and destination were automatically identified per repetition based on the 
change in orientation from the longitudinal axis (spine acceleration around the transverse axis, due 
to flexion or extension). An open-source attitude and heading reference system algorithm previously 
reported was implemented for orientation estimation [14,16].  

A standing flexion zeroed concept was applied. A zero-joint position (0°) was set when 
participants were asked to stand in the anatomical position (standing straight and upright) prior to 
each task. Absolute flexion angle at L5-S1 was measured automatically for each repetition by the 
difference in absolute angle between this zeroed point and each origin and destination static location 
identified via automatic lift detection. Using MATLAB, incorporating the automated lift detection 
and flexion angle with remaining manually measured variables to calculate BCF with the HCBCF 
equation created a semi-automated method.  

The participants (30), Repetitions (five), sets (two), origin and destination (two locations) results 
were grouped, resulting in 600 static locations per method for analysis. Two separate validations 
were calculated using 3D motion capture as the criterion and the inertial sensor method as the 
practical, for variables absolute flexion and for BCF. This was repeated with the entirely hand 
calculated method as the practical. A Will Hopkins Typical Error of the Estimate validation was used 
to determine statistical agreement [17]. A practical method is deemed valid if the measure is 
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significantly similar (agreement) to the same output measured with the criterion [18]. The 
standardised error represents agreement and is interpreted using the modified Will Hopkins Cohen 
scale: <0.10, trivial; 0.1–0.3, small; 0.3–0.6, moderate; 0.6–1.0, large; 1.0–2.0, very large; >2.0, extremely 
large [17]. Results are reported in Table 1.  

In addition, one simple method (linear interpolation) of converting the BCF model from static to 
dynamic with a single inertial sensor was presented to discuss practical implications. Presented 
methodology was applied and manual measurements were linearly interpolated between origin and 
destination, which were used with automated angle measures from the sensor to calculate BCF 
dynamically for each instance in time. The group mean was plotted for visual conceptualisation. 

Table 1. Typical error of the estimate. 

Output Practical Standardised Error Raw Error Pearson Correlation Mean Bias in Raw Units 
Angle 

(°) 
Inertial 
sensor 

0.90, large 
(95% CL 0.76–1.10) 

5.90° 
(95% CL 5.39–6.53) 

r = 0.74 
(95% CL 0.67–0.80) 

−2.29° 
(95% CL −3.09–−1.48) 

Angle 
(°) 

Hand 
calculated 

2.51, extremely large 
(95% CL 1.82–3.92) 

8.18° 
(95% CL 7.46–9.04) 

r = 0.37 
(95% CL 0.25–0.48) 

13.38° 
(95% CL 11.24–15.51) 

BCF (N) Inertial 
sensor 

0.52, moderate 
(95% CL 0.45–0.61) 

191.61 N 
(95% CL 174.83–211.97) 

r = 0.89 
(95% CL 0.85–0.91) 

−73.34 N 
(95% CL −100.03–−46.64) 

BCF (N) 
Hand 

calculated 
1.68, very large 

(95% CL 1.31–2.26) 
355.73 N 

(95% CL 324.59–393.55) 
r = 0.51 

(95% CL 0.40–0.61) 
399.99 N 

(95% CL 335.21–464.77) 

Legend: ° = Representing absolute torso flexion angle at L5-S1; BCF = Back compressive force; CL = 
Confidence limits; N = Newtons; r = Pearson correlation coefficient. 

3. Discussion 

Standardised agreement results are considered more valid the closer the agreement is to zero 
(the criterion), interpreted with the modified Cohen scale [17,19]. Table 1 demonstrates a large Cohen 
scale (standardised error) result for the inertial sensor angle measurement validation and a moderate 
Cohen scale result for semi-automated BCF measurement with an inertial sensor. The hand calculated 
method in comparison resulted in an extremely large Cohen scale (standardised error) result for the 
angle measurement validation and a very large Cohen scale result for hand calculating BCF. 
Similarly, raw error demonstrated fewer absolute angle errors and fewer BCF errors when utilising 
the inertial sensor compared to entirely hand calculated (5.9° sensor vs. 8.18° hand and 191.61N 
sensor vs. 355.73N hand). Both methods were considered practical; however, utilising inertial sensors 
to semi-automate the HCBCF equation was more accurate than traditional hand calculation. 
Therefore, a single inertial sensor mounted at L5-S1 can be used with greater confidence to monitor 
flexion and semi-automate BCF estimations compared to the hand calculated method. 

Universal standard goniometers have shown good validity and reliability but are prone to errors 
involving method standardisation and tester expertise [20]. There is currently no standard method of 
using a universal goniometer to measure the angles of the L5-S1 joints. In comparison, inertial sensors 
are not prone to method standardisation or tester errors. Furthermore, variables were manually 
measured per set, thus hand calculation does not account for technique differences between 
repetitions. In comparison sensors and motion capture collect data for each instance in time per 
repetition. These limitations of HCBCF and strengths of inertial sensors may have contributed to the 
larger errors reported in hand calculated agreements (Table 1). After initial manually measured 
variables are calculated and an inertial sensor is mounted to the low back, BCF may be monitored for 
each repetition, each instance in time and over a much longer timeframe than traditional static hand 
calculation. Therefore, semi-automation with a sensor may be more practical.  

Reported results are consistent with similar literature demonstrating inertial sensors have been 
successfully implemented to monitor posture and torso angle with small absolute angle errors [6,8]. 
Motion capture was chosen as the criterion in this study, though 3DSSPP software may have also 
been appropriate to implement as a gold standard criterion and should be considered for future 
research. However, 3D motion capture is typically considered a criterion for accuracy of monitoring 
human movement patterns, therefore, was a valid method to implement in this research [8].  
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Lift detection and torso flexion angle were chosen for automation due to the reviewed success 
of past inertial sensor literature validations and applications [21,22]. Complete automation with a 
single inertial sensor would be ideal, however may not be achievable with a single device. Semi-
automation was completed by automating lift detection and flexion angle measurements and 
incorporating the remaining manually measured variables to calculate the BCF equation. Load 
weight and participant characteristics (sex, height and weight) may always need to be manually 
measured or self-reported. However, an expert is typically not required to measure these parameters 
and they may be entered into software by anyone. The primary barrier of automation is measuring 
the distance variable. In this methodology, distance remained constant between repetitions due to 
the origin and destination locations being marked. However, in gym, sport or working environments 
the horizontal distance varies between repetitions. There are currently no known methods to 
automate horizontal distance parameters with a single sensor, thus it was outside the scope of this 
research. This is the primary limitation for future practicality and adoption. Reported results provide 
a foundation to expand research designs aimed toward overcoming this limitation in the future.  

The major limitation of the current HCBCF model is that it is static. This research takes the first 
step in attempting to create a dynamic and practical injury risk factor estimation tool, by first 
validating a single inertial sensor method. Using the semi-automated approach presented for each 
point in time may be a simple means to monitor BCF dynamically for future research. However, 
linear interpolation (or other methods of converting static measures into dynamic) of manually 
measured variables is needed for this purpose (Figure 1). Flexion at L5-S1 may be monitored with a 
sensor for each point in time (Figure 2) and used with remaining linearly interpolated variables 
(Figure 1) to estimate dynamic BCF (Figure 3). This is one example of how semi-automation may be 
implemented to practically monitor BCF dynamically in the future, and is displayed to conceptualise 
this idea. The number of angle samples (X-axis) relates to each instance in time during a repetition 
and magnitude is on the Y-axis. Horizontal distance must still be measured manually at the origin 
and destination for each task to use this method. It is assumed that distance parameters may similarly 
vary (compared to flexion and BCF) during each repetition of a lifting task (Figures 1–3). However, 
until more accurate (whilst remaining practical) methods are designed and validated, this linear 
interpolation method for the horizontal distance variable may be a simple means to semi-automate 
dynamic monitoring of BCF in the future.  

 
Figure 1. Linear interpolation of horizontal distance (group mean) between origin and destination. 
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Figure 2. Absolute L5-S1 flexion angle (group mean) from the sensor method between origin and 
destination. 

 

Figure 3. BCF (group mean) from inertial sensor semi-automation method between origin and 
destination. 

4. Conclusions 

Validation is the first step in applying new methodologies, and inertial sensors were shown to 
semi-automate BCF monitoring in a laboratory environment. This highlights the potential for a new 
series of research designs aimed at improving methodologies for practicality or using sensors for 
wide-scale lifting interventions. 
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