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Abstract: In this research, we propose a visual-feedback system and evaluate it based on motion-
sensing and computational technologies. This system will help amateur athletes imitate the motor 
skills of professionals. Using a self-organizing map (SOM) to visualize high-dimensional time-series 
motion data, we recorded the cyclic motion information, including the muscle activities, of a male 
subject as he pedaled a bicycle ergometer. To clarify the difference between the subject’s motor skill 
and the target motor skill in a cyclic movement, we used the modified SOM algorithm; a visual-
feedback system was developed, which displayed the target motion as a circular trajectory on a two-
dimensional motor skills map. The subject trained by observing only the displayed static target 
trajectory; the subject’s real-time trajectory was constructed from the subject’s real-time motion. We 
validated our proposed framework for the visual-feedback system by evaluating the motion 
performance of a subject using feedback training. 
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1. Introduction 

Advances in motion-sensing technologies have made it possible to obtain a detailed analysis of 
human movements; this has facilitated the quantification of motor functions in sports science. In the 
last few decades, sports training systems equipped with motion sensors are being widely used to 
improve the motor skills of amateurs. Amateurs can improve their performances by attempting to 
imitate the performances of professionals by using motion data collected from professionals [1,2]. In 
such training sessions, the recorded motion is usually presented by visualizing intuitive information 
using stop-motion images or videos or simply signal waveforms. Training using this simple 
information is valid when it comes to imitating limited human motion, such as a kinematic movement 
in body parts or part of a professional’s movement. However, in an overall complex movement, it is 
difficult to imitate motor skill, which includes the use of various muscles, because of the large data 
volume (e.g., signal waveforms of various joint angles and various muscle activations). For gaining a 
deeper understanding of complex movement, a learner must perceive this information 
simultaneously and develop an internal model, i.e., a correlation map between body part motion and 
muscle activity as motor command, through trial and error. Therefore, to imitate an expert’s motor 
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skills, it is extremely important to simultaneously integrate both kinematic movement in body parts 
and various muscle activities, and then provide feedback to the leaner during training sessions. 

In our previous research, we proposed a method for visualizing motor skills that included 
various motion data presented in a self-organizing map (SOM), which could integrate significant 
quantities of data describing human motion [3,4]. In this study, we use a modified SOM algorithm to 
visualize high-dimensional data for time-series motion [4]. The data were visualized as a trajectory 
on a two-dimensional (2D) map called the motor skills map (MSM) constructed by applying the SOM 
algorithm. The MSM shows the difference between the integrated target signals (e.g., expert 
information or ideal motion data for a learner, produced by optimization calculation) and the 
measured signals in the form of trajectories on the MSM that correspond to the given motion. Subjects 
can perceive differences with respect to the target motion by monitoring the trajectories; they can 
imitate the target motion through trial and error and confirm their trajectory on the MSM using the 
trajectory of the expert. 

In this study, we aim to evaluate a proposed framework for visual-feedback training by a 
verification experiment using motion information such as muscular activity. In this paper, we focus 
on the pedaling function as a cyclic motion. This motion was executed on a bicycle ergometer so that 
the subject could easily refine his motion based on the feedback received from a circular target 
trajectory displayed by the proposed algorithm on the MSM. To verify the validity of the framework 
for the visual-feedback system, we quantified the lower limb movements in the pedaling motion of a 
subject with electromyogram (EMG) sensors and inertial measurement units (IMUs) using the 
proposed feedback training. 

2. Materials and Methods 

2.1. Framework for Visual-Feedback Training 

To make it easier to understand the difference between the subject’s and target’s motor skills in 
a cyclic movement, we used the modified SOM algorithm and developed a visual-feedback system 
that displayed the target motion as a circular trajectory on the MSM (see Figure 1). For feedback 
training, the subject observed only the displayed static target circle and the subject’s real-time (i.e., 
varying) trajectory constructed from the subject’s real-time motion. The subject imitated the desired 
rhythmical motion through trial and error by observing cyclic trajectories even when the target 
cyclical motion included high-dimensional time-series information. Details of the original and 
modified SOM algorithms are described in our previous studies [3–6]. 

 

Figure 1. Proposed framework for visual-feedback training in cyclic motion using the modified self-
organizing map (SOM) algorithm. To apply the SOM algorithm, the target circle was projected prior 
to training, and the subject’s trajectories were projected successively by measuring and displaying his 
motion in real time. 
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2.2. Experimental Conditions 

In this study, we focused on the pedaling motion to evaluate the proposed training system. For 
training using visual feedback, a bicycle ergometer (Mirage-PRO, Fujimori Co., Ltd., Toyama, Japan) 
was used to imitate the target motor skills. The experiment involved one participant, who was an 
adult male (age: 23 years, height: 167 cm, weight: 50 kg). To detect the participant’s pedaling motion, 
we fixed wireless IMUs (SS-WS1103, Sports Sensing Co., Ltd., Fukuoka, Japan) at the following 
positions: the crank axis, the femur, a lower leg, and a pedal (see Figure 2). Furthermore, to quantify 
muscle activities, wireless surface EMG sensors (LP-IW2PADW, Logical Product Co., Fukuoka, 
Japan) were fixed to the following positions: the rectus femoris, the hamstrings, and the lateral head 
of the gastrocnemius muscle (see Figure 2). The angles of the crank and body parts were calculated 
in the world coordinates by using the acceleration detected by the inertial sensors. The recorded EMG 
signals were processed for the integrated EMG (IEMG) signals. All sensors recorded at the sampling 
rate of 100 Hz and were able to process/transfer motion data in real time. The seat position was 
adjusted for the subject to enable comfortable pedaling. All pedaling was performed at the same slow 
cadence (30 rpm) so that feedback training was performed with an awareness of one’s own motions. 

 

 
Figure 2. Position of wireless inertial measurement units (IMU) and electromyogram (EMG) sensors 
during training with visual feedback. Information was recorded for seven motions and processed by 
the personal computer in real time. 

To construct the MSM for feedback training, the subject wore sensors and performed pedaling 
motions in two ways before the training session: (i) spontaneous pedaling called “target” and (ii) 
heel-raised pedaling called “Poor”. The recorded data of the two motion patterns were inputted for 
the modified SOM algorithm, as described in Section 2.3. In the training session, the subject aimed to 
change his measured motion from Poor to target using only those trajectories for reference, which 
were capable of projecting the measured motion data successively on the MSM in real time. 

2.3. Constructing the Motor Skill Map 

To visualize the subject’s pedaling motion as trajectories on a two-dimensional map, the MSM 
was constructed using the modified SOM algorithm described in [3,4]. To build the MSM, we used 
6400 neurons arranged as an 80 × 80 grid. The input vector x from the subject motion contained the 
angle of the crank and the lower limbs, as well as the IEMG signals of the rectus femoris, hamstrings, 
and gastrocnemius muscle. The motor skill can be expressed as a function of the information about 
these seven motions as follows: 𝐱ሺ𝑡ሻ ൌ ൛𝑤ଵ𝜃௖௥௔௡௞ሺ𝑡ሻ, 𝑤ଶ𝜃௙௘௠௨௥ሺ𝑡ሻ, 𝑤ଷ𝜃௟௘௚ሺ𝑡ሻ, 𝑤ସ𝜃௣௘ௗ௔௟ሺ𝑡ሻ, 𝑤ହ𝐴ோிሺ𝑡ሻ, 𝑤଺𝐴ு஺ெሺ𝑡ሻ, 𝑤଻𝐴ீ஺ௌሺ𝑡ሻൟ, (1) 
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where θcrank is the crank angle; θfemur is the femoral angle; θleg is the angle of the lower leg; θfoot is the 
pedal angle; ARF is the IEMG value of the rectus femoris; AHAM is the IEMG value of the hamstrings; 
AGAS is the IEMG value of the gastrocnemius muscle; and wi are the weight parameters that serve to 
normalize the motion information from 0 to 1 using the minimum/maximum values in pre-training. 
Using the wi parameters, we can consider the priority of motor skills recorded using sensors as 
weighting parameters and simultaneously deal with various motion data even when the input vector 
included different quantities, such as the angle, velocity, force, and muscle activity. The learning 
sample data (set for the SOM algorithm) were collected from one cycle by the subject’s two pedaling 
motions, target and Poor, at the sampling frequency of 18 Hz. Thus, the learning samples from each 
motion filled 36 vectors. All 72 vectors were used in the learning process. The total number of 
iterations in the learning phase was set to 1 × 104. The learning rate and the neighborhood radius were 
set to 0.8 and 20, respectively. (The diameter of a neuron is defined as unity.) After the SOM learning, 
the input vectors of the target motion used in the SOM learning phase were projected as a circular 
trajectory before training, and the input vectors of the Poor motion were projected as outside the 
target circle according to the Euclidean distance. The two circles were divided into 36 sections of 10° 
each. Next, the subject wearing the sensors was trained with visual feedback using the proposed 
system, and we tried to make his Poor motion approach the target motion in real time by referring to 
the two cyclic trajectories on the MSM. 

3. Results and Discussion 

We evaluated the motor skills by varying the seven pedaling movements during visual-feedback 
training. Figure 3 shows the trajectories on the MSM of the feedback system during the training 
session. The obtained MSM background was colored by the vector component of each neuron. Figure 
3a shows the projection of the motion data. Initially, the subject consciously performed the Poor 
motion. Figure 3b shows the motion data obtained when the subject tried to bring his trajectory closer 
to the target circle in the final stage of training. We confirmed that the trajectory obtained for 
performing the Poor motion in the initial stage of training was projected outside the target circle. The 
trajectory in the final stage was similar to the target circle. Thus, the subject succeeded in making his 
trajectory approach the target circle on the MSM using feedback training. It is assumed that the cyclic 
movement makes it as easy as possible for the subject to align his trajectory with the target one 
because the subject can repeat his movement continually without intermission. Figure 4 shows two 
sets of motor skills information for the initial (see Figure 4a) and final stages (see Figure 4b) of the 
experiment corresponding to Figure 3a and Figure 3b, respectively. When the trajectory on the MSM 
was projected far from the target circle, the motion information was also recorded far from the target 
information (see Figure 4a). However, when the trajectory was close to the target circle, the motion 
information was closer to the target information (see Figure 4b). Therefore, we proved that 
approaching the subject’s trajectory toward the target circle on MSM meant that the subject’s motion 
mimicked the target motion, including the use of muscles. Specifically, the subject can learn hidden 
information (i.e., target motion comprising high-dimensional motion data) to refer to two-
dimensional information as trajectories on an MSM through trial and error. It is expected that the 
subject is successful in developing his internal model, i.e., a correlation map between body part 
motion and muscle activity. We concluded that the proposed framework for the visual-feedback 
training could help a subject imitate the desired motor skills even if the motion information was 
composed of high-dimensional time-series motion data. In future work, the target motion can 
comprise optimal motion produced by a numerical simulation of human movement. To adopt the 
optimized motion for the proposed system, subjects can perceive their optimal movement from the 
projected target trajectory on the MSM. Furthermore, the target motion can be adopted in the 
proposed framework, not only for expert motion but also for inefficient motion. To imitate the 
inefficient motion based on MSM trajectories, a subject can further exert his body and perform 
various muscular exercises. 
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(a)                                               (b) 

Figure 3. Projection for measuring motion data and target data as trajectories on MSM. (a) Motion 
data when the subject consciously performed Poor motion in the initial stage of the training 
experiment. (b) Motion data when the subject’s trajectory was close to the target circle in the final 
stage of training. 

(a) 

 
(b) 

Figure 4. Motor skills information recorded by seven wireless sensors during the proposed feedback 
training. (a) Motion data in the initial stage of the training experiment. (b) Motion data in the final 
stage of the training experiment. 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

RF

Initial
Target

1000
Time [%]

IE
M

G
 [m

V]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

HAM

Initial
Target

1000
Time [%]

IE
M

G
 [m

V]

0

0.5

1

1.5

2

GASInitial
Target

1000
Time [%]

IE
M

G
 [m

V]

0

10

20

30

40

50

60

70

80

PEDAL

Initial
Target

1000
Time [%]

An
gl

e 
[d

eg
re

e]

-20

-10

0

10

20

30

40

50

60

LEG

Initial
Target

1000
Time [%]

An
gl

e 
[d

eg
re

e]

-80

-70

-60

-50

-40

-30

-20

-10

0

FEMUR

Initial
Target

1000
Time [%]

An
gl

e 
[d

eg
re

e]

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

RF
Final
Target

1000
Time [%]

IE
M

G
 [m

V]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

HAM

Final
Target

1000
Time [%]

IE
M

G
 [m

V]

0

0.5

1

1.5

2

GAS

Final
Target

1000
Time [%]

IE
M

G
 [m

V]

0

10

20

30

40

50

60

70

80

PEDAL
Final
Target

1000
Time [%]

An
gl

e 
[d

eg
re

e]

-20

-10

0

10

20

30

40

50

60

LEG

Final
Target

1000
Time [%]

An
gl

e 
[d

eg
re

e]

-80

-70

-60

-50

-40

-30

-20

-10

0

FEMUR

Final
Target

1000
Time [%]

An
gl

e 
[d

eg
re

e]



Proceedings 2020, 49, 40 6 of 6 

 

4. Conclusions 

We evaluated the motion performance of a subject using the proposed feedback training. To 
make it easier for subjects to imitate target motor skills, our proposed system uses a modified SOM 
algorithm capable of reducing high-dimensional motion data. The difference between the target 
motion and subject motion was visualized in terms of a separation between the two motion 
trajectories displayed on the MSM. To facilitate reproduction of the complete cyclic motion, the target 
motion was displayed on the MSM as a circular trajectory. By including invisible information such 
as muscular activity, we confirmed that when the trajectory was close to the target circle on the MSM, 
the actual motion information was also close to the target motion. In our future work, this system 
will be further developed by measuring additional motion data and adapting the method to 
additional complex motions. 
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