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Abstract: In this paper, two simple and physically meaningful adjustments were made to a 
momentum-based clubhead-ball impact model to predict golf ball launch conditions with better 
accuracy. These adjustments were motivated by two shortcomings of the momentum-based impact 
model, namely the absence of shaft effects and golf ball deformation. Kinematic data from a golf 
impact motion capture experiment was used to empirically determine the parameter adjustments 
that minimized the ball speed and spin errors. It was found that the original model’s ball speed 
deficiency could be corrected by adding less than 3 g to the clubhead mass, and the amount of added 
mass correlated with the mass of the shaft. Additionally, the original model’s backspin and sidespin 
errors were significantly reduced by making a slight adjustment to the golf ball’s center of mass 
position relative to the impact location. Specifically, moving the golf ball center of mass 
approximately 0.5 mm downward and 0.07 mm towards the heel reduced the mean backspin and 
sidespin errors by approximately 85% each. 
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1. Introduction 

A golf clubhead-ball impact model can be a useful tool for investigating new clubhead designs. 
Finite-element and momentum-based impact models are among the most commonly used methods 
for predicting a golf ball’s initial linear and angular velocity [1–4]. Compared to finite-element 
methods, momentum-based impact models are far less taxing computationally and thus enable fast 
clubhead design optimization [2,3]. However, due to simplifying assumptions in deriving 
momentum-based models, there exist significant discrepancies between the predicted and 
experimental golf ball launch conditions, as demonstrated in this study. 

Two assumptions that affect the accuracy of the momentum-based impact models are neglecting 
the deformation of the golf ball during the impact and the influence of the golf shaft on the impact 
dynamics [5]. The purpose of this study was to account for the aforementioned factors by making 
two simple and physically meaningful adjustments to the conventional momentum-based impact 
model. The first involves making a slight adjustment to the center of mass of the golf ball to account 
for golf ball deformation, while the second involves adding mass to the clubhead in proportion to the 
shaft mass. Together, these two modifications were shown to greatly reduce the error between the 
predicted and measured golf ball launch conditions. Experimental data from golf impact motion 
capture experiments were used to characterize the modifications and provide general rules of thumb 
for improving the accuracy of momentum-based impact models used in golf research.  
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2. Materials and Methods 

2.1. Experimental Data 

All experimental data were collected by a golf equipment manufacturer and shared with the 
University of Waterloo to support the development of the impact model. A golf swing motion capture 
experiment was conducted using three drivers having the same clubhead but three different stiff-
rated shafts. The shafts had a length of 1.105 m, and masses 74.5, 60.3, 70.9 g for Shafts A, B, and C, 
respectively. Shafts B and C were of the same make and model, but a strip of lead tape was placed on 
Shaft C from 350 to 640 mm from the tip to increase its mass. Twenty golfers participated in the 
experiment and performed 10 swings using each driver. The clubhead kinematics just before the 
moment of impact was recorded and used in the impact model equations (see Section 2.2.1). A launch 
monitor (GCQuad, Foresight Sports, San Diego, CA, USA) was used to measure the golf ball’s launch 
conditions. The University of Waterloo gave ethics clearance to perform secondary analysis on the 
golf swing motion capture data.  

The physical properties of the clubhead and other parameters used for the impact model are 
provided in Table 1. Further details regarding the motion capture system (Nexus v2.5, Vicon Motion 
Systems, UK) and the measurement of the clubhead properties are available in [6]. The origin of the 
impact coordinate frame,  I , coincides with the point of contact, and its x-axis is perpendicular to 
the clubface at the contact point. 

Table 1. Nominal (measured) properties of the clubhead and golf ball. The reference frames used are 
provided in Figure 1. 

Parameter Value Description 

cm  204 Mass of the clubhead (g). 

/
CoF

C CoFr  [ 42.3 2.9 1]  
Position of the center of mass (C) of the clubhead 
with reference to Center of Face (CoF) expressed in 
CoF reference frame (mm). 

C
CI  

2843 733 530.2
733 5679 0.5

530.2 0.5 4085

 
  
  

 
Inertia tensor of the clubhead expressed in center of 
mass coordinate frame,  C  (g·cm2). 

bm  45.9 Mass of the golf ball (g). 

bI  83.63 3 31  Inertia matrix of the golf ball (g·cm2). 

I
br  [ 21.3 0 0]  The impact position relative to the center of mass of 

golf ball in { }I  coordinate frame (mm). 

e  0.83 Coefficient of restitution. 

Loft 9.8  Loft angle. 

Bulge 305 Bulge (mm). 
Roll 305 Roll (mm). 

2.2. Momentum-Based Clubhead-Ball Impact Model 

This section reviews the momentum-based clubhead-ball impact model presented in [1]. In 
contrast to the ellipsoidal clubface surface used in [1], this model uses a toroidal surface that allows 
constant bulge and roll curvatures.  
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2.2.1. Equations of Impulse and Momentum 

Figure 1 shows the free body diagram of the clubhead contacting the golf ball. It should be noted 
that the wrench (i.e., force and torque) applied from the driver shaft on the clubhead has not been 
considered in the free body diagram, which is one of the simplifying assumptions in this model. 

 
Figure 1. Free body diagram of the impact between the clubhead and the ball. 

Applying the principle of impulse and momentum to the clubhead yields, 

   1 2c c c cm t m t v P v  (1) 

   1 2c c imp c ct t  r I ωI Pω  (2) 

where P  is the impulse applied to the golf ball from the clubhead. Also, cv  and cω  are, 
respectively, the linear and angular velocity of the center of mass of the clubhead. Similarly, for the 
golf ball we have: 

   1 2b b b bm t m t v P v  (3) 

   1 2b b b b bt t  P I ωI rω  (4) 

where bv  and bω  are, respectively, the linear and angular velocity of the center of mass of the golf 
ball. Here and throughout this report, 1t  and 2t , respectively, refer to the time just before and after 
the impact. 

To take the energy loss into account, the relationship between the magnitude of the translational 
velocity of the contact point of the clubhead, and the ball in the direction perpendicular to the contact 
surface is written in terms of the coefficient of restitution, i.e., e , as: 

    
    

, 2 , 2

, 1 , 1

ˆ

ˆ
imp c imp b imp

imp c imp b imp

t t
e

t t

 
 

 

v v x

v v x
 (5) 

where ˆ im px  is the unit vector normal to the clubface, and ,im p cv  and ,im p bv  are, respectively, the 

translational velocity of the contact point of the clubhead and the ball, which are obtained as: 

,imp c c c imp  v rωv  (6) 

,imp b b b b  v v rω  (7) 

In this model, it has been assumed that the friction between the clubhead and ball is high enough 
that the ball does not slip onto the clubface. Therefore, the relative velocity of the clubhead and the 
ball are assumed to be zero in the plane tangent to the contact surface, which yields the following 
equations: 
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    , 2 , 2 ˆ 0imp c imp b impt t  v v y  (8) 

    , 2 , 2 ˆ 0imp c imp b impt t  v v z  (9) 

Equations (1)–(5), (8) and (9) constitute a set of 15 linear equations in terms of 15 unknowns, 
for which an analytical solution can be found for P, 2 )(c tv , 2( )c tω , 2 )(b tv , and 2( )b tω . 

2.2.2. Clubhead Face Geometry 

To calculate the impact coordinate frame, { }I , at different impact locations on the clubhead, its 
surface is modeled as that of a torus. Referring to Figure 2, the x-component of the impact location 
with respect to the reference frame of the torus can be obtained from the y and z components of the 
impact location as: 

2 2 2 2 2 22x R r y R r y z       (10) 

where R  and r  are, respectively, the bulge and roll values of the torus. It can be shown that the 
components of the three-unit vectors for the impact reference frame are: 

2 2 2 2

2

2 2

1 1
ˆ

2 1 1

T

imp

R Rx y z
x z x z

R

x z

    
              

 
    

X   

 
2 2

0ˆ
T

imp
z x

x z





Z   

ˆ ˆ ˆ
imp imp imp Y Z X   

 

Figure 2. Torus representing the clubface geometry. 

2.2.3. Prediction Errors for Nominal Parameters 

The accuracy of the presented impact model was evaluated by comparing the results of the 
simulation with the experimental results. For the nominal values of the clubhead and golf ball 
properties given in Table 1, the mean square errors and standard deviation of the errors are given in 
Table 2. As can be seen, the model predicts the launch condition of the golf ball with considerable 
error, especially for angular velocity, when nominal values of the properties are used. It is apparent 
that a more accurate model is needed. 
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Table 2. Golf ball launch condition errors (model-experiment) using nominal parameters. 

Velocity Type Component 
Shaft A Shaft B Shaft C 

Mean STD Mean STD Mean STD 

Linear velocity 
Speed (mph) −0.73 1.41 −0.49 1.35 −0.58 1.31 

Launch angle (deg) −1.18 0.88 −0.94 1.03 −0.85 0.85 
Azimuth angle (deg) −0.86 0.48 −0.94 0.54 −0.89 0.53 

Angular 
velocity 

Back-spin (rpm) 741 450 741 479 790 401 
Side-Spin (rpm) 187 178 187 210 187 166 

2.3. Impact Model Augmentation  

The momentum-based impact model was augmented using simple and physically meaningful 
modifications to the impact model parameters. An optimization-based approach was used to 
minimize the ball launch condition errors by tuning the parameters given in Table 1. The cost function 
J is written as: 

   2 2
, , , ,

1

n

Sim i Exp i Sim i Exp i
i

J W


       v ω ωv  (11) 

where ,Sim iv  and ,Exp iv  are the linear velocities of the ball from the model and experimental data for 

each impact i . Similarly, ,Sim iω  and ,Exp iω  denote the angular velocities of the ball from the 

model and experimental data. Furthermore, n  is the number of experimental data points, and W  
is the weight given to the error for linear velocity. When 0W , the optimizer minimizes the angular 
velocity error, and when W, the optimizer minimizes the linear velocity.  

As the first step, the effect of each parameter on the linear and angular velocity of the golf ball 
was evaluated by performing a sensitivity analysis. It was observed that the mass of the clubhead 
affected the linear velocity without considerably altering the angular velocity. On the other hand, the 
location of the center of mass of the ball with respect to the impact location, I br , had a great influence 
on the angular velocity, while having a small impact on linear velocity. 

By alternating between optimizing the parameters with high impact on linear velocity (W) 
and high impact on angular velocity ( 0W  ), a multi-stage gradient-descent-based optimization was 
performed to minimize both linear and angular velocity prediction errors.  

3. Results and Discussion 

The results of the launch condition errors after the optimization are shown in Table 3. 
Comparing Table 3 and Table 2, one can observe that the mean value of the prediction errors for both 
linear and angular velocity was considerably reduced. Table 4 shows the changes made to the 
selected parameters after optimization. It could be observed that the difference between the optimal 
values and the original values are very small. Furthermore, as shown in Figure 3, the added mass 
correlated with the mass of the corresponding shaft. It should also be noted that the change in the 
position of the center of mass of the golf ball created a moment arm for the impact impulse, which, 
as illustrated in Figure 4, helped to reduce the over-estimated predictions of the backspin and 
sidespin.  
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Figure 3. The relationship between the mass of the shafts and the added mass to the clubhead. 

 
Figure 4. Change of Center of Mass of the golf ball and the resulting moments from the normal force 
(the figure is not drawn to scale). 

Table 3. Golf ball launch condition prediction error value after optimization. 

Velocity Type Component 
Shaft A Shaft B Shaft C 

Mean STD Mean STD Mean STD 

Linear velocity 
Speed (mph) 0.027 1.35 0.018 1.29 0.02 1.25 

Launch angle (deg) −1.98 0.89 −1.73 1.03 −1.72 0.85 
Azimuth angle (deg) −1.07 0.49 −1.15 0.55 −1.1 0.53 

Angular velocity 
Bactablek-spin (rpm) 111 452 110 476 95 399 

Side-Spin (rpm) 34 173 30 209 24 163 

Table 4. Optimal values of required changes for cm  and I br . 

Parameter Shaft A Shaft B Shaft C 
 (g)cm  2.54 0.88 1.18 

 (m m )I
b r   0 0.48 0.07   0 0.48 0.07   0 0.52 0.076  

4. Conclusions 

It was observed that the predicted launch condition for a golf ball using an impulse-momentum 
model did not match the experimental results, especially for the angular velocity. By selecting the 
mass of the clubhead and the position of the center of mass of the golf ball with respect to the impact 
location as optimization variables, the prediction errors were considerably reduced with very small 
changes to the original parameters (less than 3 g for the clubhead mass and about 0.5 mm for the 
position of the center of mass of the golf ball). Furthermore, the added mass was shown to be directly 
related to the mass of the shaft. 
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