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Abstract: The theory of the pseudo-analysis is based on a special real semiring (called also tropical
semiring). This theory enables a unified approach to three important problems as nonlinearity,
uncertainty and optimization, with many applications. There are presented applications in fuzzy
logics and fuzzy sets, utility theory, Cumulative Prospect theory of partial differential equations.
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1. Introduction

The first traces of the pseudo-analysis goes to Grossman and Katz [1] and Burgin [2]
(what today is called g-calculus, see [3]), then Maslov [4] (what today is called idempotent
analysis). These previous results were a starting point to develope a complete unified
theory under the name pseudo-analysis [5–11], and as a special case the g-calculus [3]. This
theory enables a unified approach to three important problems as nonlinearity, uncertainty
and optimization, with many applications. Then corresponding pseudo additive measures
and corresponding integrals were introduced. The usefulness of the pseudo-analysis is
shown with some important applications in the theory of nonlinear equations, decision
theory, fuzzy logics and fuzzy sets, information theory, option pricing, large deviation
principle, cumulative prospect theory, physics of the universe, see [4,7–21].

2. Pseudo-Analysis

The theory of the pseudo-analysis is based on the idea to introduce a special real
semiring instead of the usual field of real numbers, with new operations so-called pseudo-
addition and pseudo-multiplication, see [5–9]. These operations are related to aggregation
functions (operators), see [17–19]. Aggregation of the information in an intelligent system
is the basic problem, and its use is increasing in more complex systems, e.g., applied
mathematics with probability, statistics, decision theory, computer sciences with artificial
intelligence, operations research, as well as many applied fields as economy and finance,
pattern recognition and image processing, data fusion, multi-criteria decision aid, auto-
mated reasoning, robotics, a fusion of images, integration of different kinds of knowledge,
see [17–19].

It is considered an ordered semiring ([a, b], ⊕,⊗) on an interval [a, b] in [−∞,+∞], the
operation ⊕ is called pseudo-addition and ⊗ is called pseudo-multiplication. Important
special cases are: (i) ⊕ = max, ⊗ = +; (ii) ⊕ and ⊗ are generated with a monotone function
g; (iii) ⊕ = max, ⊗ = min, see [7–9,11]. Special important pseudo-operations on the unit
interval are triangular norms T, triangular conorms S, and uninorms, see [18]. Basic
continuous t-norms are

TL(x, y) = max(0, x + y − 1), TP(x, y) = xy, TM(x, y) = min(x, y),

and corresponding dual t-conorms

SL(x, y) = min(1, x + y), SP(x, y) = x + y − xy, SM(x; y) = max(x, y).
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3. Application: Fuzzy Logics and Fuzzy Sets

In the classical set theory, a subset A of the basic set X is completely given with its
characteristic function χA : X → {0, 1} , which is zero if the element does not belong to A,
and has a value of one if the element belongs to the set A. In order to handle uncertain
situations, when it is not quit clear whether an element belongs to the set, it is introduced the
notion of fuzzy sets. Fuzzy subset A of X is given by membership function µA : X → [0, 1] ,
where µA(x) has the meaning of a degree that the element x ∈ X belongs to fuzzy set A,
see [18]. For a t-norm T, the strong negation c given by c(x) = 1 − x, and with the t-conorm
S dual to T given by

S(x, y) = c(T(c(x), c(y)),

We obtain the basic logic connectives in a [0, 1]-valued logic, see [8,18]:

conjunction: x ˆT y = T(x, y);

disjunction: x vs. y = S(x, y).

The arithmetical operations with fuzzy numbers is based on Zadeh extension principle.
Let T be an arbitrary but fixed t-norm and � a binary operation on R. An operation � is
defined for fuzzy numbers A and B by the extension

A �T B(z) = sup {T(A(x), B(y))| x�y = z} for z∈R.

Further, we have introduced in [20] a theory of linear fuzzy vector space, where the
main point is the assumption that the distance between two imprecise points is a fuzzy set.
We give only the basic definition. We call a fuzzy set fuzzy point P̃ at P ∈ Rn, given by its
membership function µP̃ ∈ F

n, where Fn denotes all fuzzy points.

Definition 1. A subsetHn ⊆ Fn is called linear fuzzy space if its elements satisfies the following:
Symmetric against the coreC ∈ Rn, i.e.,

(µ(C) = 1 ), µ(U) = µ(V) ∧ µ(V) 6= 0 ⇒ d(C, U) = d(C, V),

where d(C, V) is the distance inRn. Linearly decreasing with respect to the points’ distance from
the core given by

For r 6= 0, we have

µ(U) =

{
1− d(C,U)

r i f d(C, U) < c
0 i f d(C, U) ≥ c ,

for c = 0, we have

µ(U) =

{
1 i f C = U
0 i f C 6= U ,

where d(C, U) is the distance between a point U and core C (U, C ∈ Rn) and c ∈ R+ is a constant.

For many impotant applications see [20].

4. Application: Utility Theory

Another example of application is in the utility theory, which was earlier based on the
notion of mathematical expectation in the axiomatic foundations by von Neumann and
Morgenstern as probabilistic mixtures. The aim of the paper [12] was to extend maximally
in a natural way the utility theory. The solution obtained in [12] is based on a result
from [18] (Th. 5.21), on the restricted distributivity of a t-norm over a t-conorm:

Triangular norm T is conditionally distributive over triangular norm S if for every x,y,z ∈ [0, 1] holds

T(x,S(y, z)) = S(T(x, y),T(x, z)),
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for S(y,z) < 1 (see Figure 1).
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Theorem 1. A continuous t-norm T is restricted distributive over a continuous t-conorm S if
and only if there exists a ∈ [0, 1], a strict t-norm T* and a nilpotent t-conorm S* such that the
additive generator s* of S* satisying s*(1) = 1 is also a multiplicative generator of T* such that T is
represented by the ordinal sum T = (<0, a, T1>, <a, 1, T*>), where T1 is an arbitrary continuous
t-norm and S = (<a, 1, S*>).

For a t-conorm S and a σ–algebra A of subsets of X a mapping m: A→[0, 1] is called a
pseudo-additive measure, if m(∅) = 0, m(X) = 1 and if for all M,N∈A with M∩N = ∅, holds

m(M ∪ N) = S(m(M),m(N))

Using also some kind of necessary independence property the only possible pseudo-
additive measures, requires conditionally distributive pairs (S, T) of conorms and t-norms.
Therefore there are three possible cases:

i. probality measures (and T = product);
ii. possibility measures (and T is any t-norm);
iii. normalized hybrid measure m such that there exists a∈[0, 1] such that for M and

N disjoint

m(M∪N) = m(M) + m(N) − a for m(M) > a, m(N) > a and

m(M∪N) = max(m(M),m(N)) otherwise.

Therefore, there are only three reasonable mixtures: possibilistic, probabilistic, and a
hybridization such that the mixture is possibilistic under a certain threshold, and proba-
bilistic above (Figure), see [12].

We have developed an axiomatic system for hybrid probabilistic-possibilistic utility
theory. Let X = {x1, x2, . . . , xn} be the set of outcomes, and ∆(X) is the collection of S-
measures given on X. The hybrid mixture combines two S-measures m and m′ in a new
H(m,m′;c,d), where

(c,d)∈ΦS,a = {(c,d)|c,d∈[0, 1], c + d = 1 + a or min(c,d) ≤ a, max(c,d) = 1}, for a∈[0, 1]
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given by
H(m,m′;c,d) = S(T(c,m), T(d,m′))

for the pair (S, T) which satisfies restricted distributivity equation. The behavior of the
decision maker can be easily interpreted using Figure. Now we give axioms for the
preference relation ≤ h given on ∆(X) which gives the optimistic utility function:

H1. ∆(X) is with complete pre-ordering ≤ h, i.e., ≤ h is reflexive, transitive and complete.

H2 (Continuity). If m < h m ′ < h m′′, then ∃c∈[a,1]: m′ ~ h H(m,m′′;1 + a− c,c), for m,m′,m′′ > a;
otherwise ∃c∈[0,a]: m′ ~ h H(m,m′′;1,c).

H3 (Independency). For ∀m,m′,m′′∈∆(X) and all c,d∈ΦS,a it holds m′ ≤ h m′′⇔ H(m′,m;c,d)
≤ h H(m′′,m;c,d).

H4 (Uncertainty). m ≤ h m′ ⇒ m ≤ h H (m,m′;α,1 + a − c) ≤ h m′, c∈[a,1], for m,m′ > a;
m < m′ ⇒ m < h m′, otherwise.

We introduce the so-called optimistic utility function for m∈∆(X) in the following way

U+(m) = Sxi∈X(T(m(xi), u(xi))),

for a preference function u:X→U which corresponds to each consequence of X a preference
level of U, with u−1(1) 6= ∅ 6= u−1(0). We remark that U+ preserves hybrid mixture. The
following theorem gives complete characterization of the optimistic hybrid utility.

Theorem 1 (on representation). Let ≤ h be a binary preference relation on ∆(X). Then the
relation ≤ h satisfies axioms {H1,H2,H3,H4} if and only if there exists linearly ordered scale of
utility U, with inf(U) = 0 and sup(U) = 1, and a preference function u:X→[0, 1], such that m ≤ hm′

if and only m�um′, where �u is an ordering in ∆(X) induced by optimistic utility function given
by U+(m) = Sxi∈X(T(m(xi), u(xi)), for (S,T) a conditionaly distributive pair of continuous t-conorm
and t-norm.

5. Application: Cumulative Prospecct Theory

Modeling decision procedures with aggregation functions special place deserve non-
additive integrals based on fuzzy measures, since they take in the account the interaction
between entrances. Therefore, they have many important applications in mathematics,
engineering and economics, optimization. Among them are the Choquet integral and
Sugeno integral, see [7]. We highlight these two types of integrals for finite set. Let µ be
a monotone measure on ᾿Ω and f a function defined on ᾿Ω and with values in the set of
nonegative real numbers and with finite set of values {a1, a2, . . . , an}, whit a1< a2< . . . < an.
Choquet integral (C)

∫
f (x)dµ(x) is given by.

(C)
∫

f dµ =
n

∑
i=1

(ai − ai−1) · µ({x| f (x) ≥ ai }).

For µ a normalized monotone measure on ᾿Ω and f is a function on ᾿Ω with values
{a1, . . . , an}, where 0 ≤ a1 ≤ . . . ≤ an ≤ 1, Sugeno integral

∫
f (x) ◦ µ(x) is given by (finite

case)
∫

f ◦ µ =
n
∨

i=1
[ai ∧ µ({x| f (x) ≥ ai })].

For the purpose for comparing two decisions amounts regarding two pairs of sets,
the positive and negative features of the alternatives it was introduced a generalization of
Expected Utility and Choquet Expected Utility, under the bipolar perspective, Cumulative
Prospect Theory (CPT) was introduced. We have introduced CPT-like integral-based
premium principle related to the concept of symmetric operations is introduced in [21],
and we have shown by an example that in some decision problems the previous monotone
integral-based functionals are not appropriate decision-making tools, but our CPT-like
integral works. Let Mb be the class of all monotone measures m such that m(Ω) = b.
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Let Fa be the class of all insurance risks f : Ω→ [−a, a] . The integral-based premium
principle is some rule Π : F ×M×M→ R which corresponds premium Π( f , m1, m2) to
the insurance risks f : Ω→ R . Some well-known examples are: The net premium principle,
is defined for f ∈ F and probability m = p ∈ M1 as

E( f ) = ∏N ( f , p, p) = I( f+, p)− I( f−, p).

The distortion premium principle, is defined for f ∈ F and p ∈ M1 as

∏DPP ( f , m, m) = I( f+, m)− I( f−, m),

for m = g ◦ p and nondecreasing distorsion function g : [0, 1]→ [0, 1] , g(0) = 0,g(1) = 1.
The mean premium principle, for f ∈ F , probability p ∈ M1 and increasing function φ,

φ(0) = 0, is given by
∏M ( f ) = φ−1(I(φ( f ), p))

The exponential premium principle for f ∈ F , probability p ∈ M1 and α > 0 is given by

∏exp ( f ) =
1
α

ln(I(eα f , p))

Now we give the general definition from [21].

Definition 2. The generalized CPT-like integral-based premium principle

ΠCPTφ
: Fa ×Mb ×Mb → R

for an insurance risk f ∈ Fa and m1, m2 ∈ Mb is defined by

ΠCPTφ
( f , m1, m2) = φ−1(I(φ( f+), m1)− I(φ( f−), m2)),

for odd, increasing, continuous function φ : [−a, a]→ [−∞, ∞] , φ(0) = 0, φ(a) = ∞

Specialy, for φ(x) = x, and m1 = m2 = P probability we obtain ΠCPTφ
= ΠN . If

φ is an odd function and m1 = m2 = P probability we obtain ΠCPTφ
= ΠM. We have

given in [21] a complete characterization for the CPT-like integral-based premium principle
and we have investigated its main properties. Further development of integrals based on
pseudo-analysis is obtained in [22,23].

Recent approach [24] is based on important operation copula, see [25].

6. Application: Partial Differential Equations

Pseudo-analysis is very useful in the theory of nonlinear equations (ODE, PDE, differ-
ence equations, etc.). The basic tool is the pseudo-superposition principle [8,12,14], i.e., for
solutions of a nonlinear equation u1 and u2, then also a1 ⊗ u1 ⊕ a2 ⊗ u2 is a solution of the
considered equation for any constants a1 and a2 from [a, b].

Important contribution of the pseudo-analysis is the fact that it enables an exact
solution of the Burgers equation. It is very important in treating the general Hamilton–
Jacobi equation. We remark that the nonlinear Hamiltonian was non-smooth, what is
important in control theory. For Hamilton-Jacobi equation, where H is a convex function,
then pseudo linear combination a1 ⊗ u1 ⊕ a2 ⊗ u2 is also a solution of the preceding
Hamilton-Jacobi equation, with respect to pseudo-operations ⊕ = min and ⊗ = +.

Funding: Supported by Science Fund of the Republic of Serbia, #Grant No. 6524105.
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20. Obradović, D.; Konjović, Z.; Pap, E.; Rudas, I.J. Linear Fuzzy Space Based Road Lane Detection. Knowl. Based Syst. 2013, 38, 37–47.
[CrossRef]
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