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Abstract: The aim of this paper is to analyze the philosophical implications of the techno-scientific
promises and discourses that generally surround big data, but also to nuance their content with
respect to the concrete uses of these technologies in the natural sciences. To achieve this, I will rely
on a case study focusing on the hopes, as well as the effective practical and theoretical issues, that
accompany the development of big data and numerical models within the ecological sciences.
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1. Introduction

The concept of big data was initially coined in the fields of digital industry and
commerce at the turn of the 2000s [1,2]. It commonly refers to a set of massive accumulation
technologies and powerful tools for the visualization and automated analysis of digital
data. Due to these characteristics, big data are regularly called upon to revolutionize the
practices and theoretical frameworks of scientific research. They are even called on to
impose themselves as a new unique model for the production of scientific knowledge
led by data sciences and data mining technologies [3]. The aim of this short paper is to
analyze the philosophical implications of the techno-scientific promises that structure these
types of discourse (as they are formulated, for instance, in: [4,5]), but also to nuance their
content through a case study of the actual practical and theoretical issues that accompany
the development of big data and numerical models in ecology.

2. Ecological Big Data Promises and Discourses

The discourses which commonly surround big data belong to what sociologists of sci-
ence have called “technoscientific promises” [6]. The idea of techno-scientific promise refers
to a set of discourses and coordination regimes of actors oriented towards the promotion of
a technical innovation. The aim of this promotion is to justify substantial economic and
human investments, given the supposed capacity of this innovation to respond to major
societal problems [6]. In ecology, this economy of techno-scientific promises translates into
the hope of developing a global and exhaustive knowledge of the biosphere and global
biodiversity [1,7] and a more predictive science able to support sustainable natural resource
management strategies and to respond to the challenges of ecological crises [8]. For the
rest of this paper, I will call these techno-scientific discourses surrounding big data “the
big data discourses” (BDD). Here, I will discuss one of the epistemological components
that underlie these BDD: namely, the idea that big data technologies would lead to the
advent of a single purely inductive and empirical scientific model, within which the work
of theoretical reflection, modelling, or hypothesis formulation would become useless. The
automated statistical processing of data, made possible by machine learning, for example,
would make it possible to extract patterns and correlations inaccessible to the human brain
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and sufficiently robust to accurately predict the evolution of the systems under study—or
so it is claimed. Thus, big data analytics and the predictions they produce could effectively
guide action, without having to identify the causes of the observed dynamics.

To discuss this epistemological dimension of BDD, I will focus on some issues related
to the status of predictions in ecology.

3. Big Data for Better Prediction, but without the Need for Better Understanding?

One of the main features of BDD is the focus on the capacity of artificial intelligence
and machine learning tools to provide strong and reliable prediction about the phenomenon
under study, thanks to the available computing power and the alleged completeness as-
sociated with the amount of data handled [8]. With this confidence in technological tools
comes a corelative decrease in the attention paid to the theoretical dimension of scientific
work. It was even said that, in the context of big data technologies, the “scientific method”
(it must be understood as a hypothetico-deductive method) could become “obsolete” [4].
In ecology, the operationalization of these kinds of techno-scientific claims and promises
is illustrated by several examples. It leads, for example, to the collection of big databases
aiming at quantifying global biodiversity, as exemplified by the GBIF program [7]. Ad-
ditionally, this kind of initiative comes with the underlying idea that this big amount of
global biodiversity data could allow us to predict, and therefore to manage, the global
responses of ecosystems to global change. Examples of the use of these big databases in
ecology was the so-called “species distribution models” (SDM), which aim at forecasting
the evolution of species distribution at a global scale, according to the evolution of climatic
conditions linked to global changes [9,10]. These BDD about prediction in ecology also find
an illustration in the growing works on the forecasting of “catastrophic shifts” [11] through
the search, thanks to the complex systems mathematical and numerical modeling tools,
of possible “early warning signals” [12]. Finally, one can also mention here the debates
about “non-parametric models”, which aims at predicting the evolution of an ecological
dynamic (e.g., a fish population variation caused by fisheries) with machine learning tools
that parametrize the predictive models automatically from the data. One common feature
of these expressions of BDD in ecology is their focus on temporal prediction in order to
improve action, with comparatively little attention paid to improving knowledge about the
phenomenon under study [7,8]. As a result, these three examples of epistemological big
data standard narratives have generated big debates. Big biodiversity databases, such as
GBIF, generated epistemological debates about the quality and usability of the data consid-
ered for improving ecological knowledge goals, but also about the ontological, political,
and axiological reliability of the predictions produced from this data, in the case of SDM,
for instance (see, e.g., [7,9,10]). Furthermore, early warning signals generated epistemo-
logical debates about the specificity of the patterns extracted from the data on endangered
ecosystems in relation to ecosystems that are not threatened by collapse because of “the
frequency of false positives” [8]. The application of this type of model, generated from
controlled conditions or relatively simple systems, to real and/or more complex systems,
is also questioned. More generally, authors discuss the explanatory power of these early
warning signals. Indeed, they are only based on correlations, although generated from big
amounts of data, and so “they say nothing about underlying mechanisms” [8] that could
explain the observed dynamics. Finally, predictions produced by non-parametric models
have also generated debates, but I will analyze this example in more detail below because I
think it is one of the most exemplary cases of BDD expression in ecological sciences.

As mentioned above, on the issue of modelling and data analysis, central topics for the
BDD, the development of tools for the automated analysis of big ecological data have raised
hopes and debates. These debates particularly focused on the place of theory in ecology
according to the possibility to develop more predictive models of ecosystem dynamics.
An exemplary illustration of these debates is provided by the literature on the use of
non-parametric models to produce predictions in ecology. The promoters of this type of
approach defend the idea that the use of relatively simple non-parametric models, whose
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parameters are determined automatically by algorithms “learning” from the data, offer
better results for predicting the behavior of a data set than large simulation models with
manual parametrization [13]. Therefore, in the mind of their advocates, this kind of scientific
approach is built on the explicit idea that according to the temporal constraints that weigh
on certain management decisions (e.g., fisheries management), it could be more relevant
to rely on the computing power of the machine for guiding action than on improving
ecological scientific understanding [13]. This approach thus reflects, in the field of ecology,
one central idea of BDD mentioned above: that, with a lot of data and sufficient computing
power, it would be possible to produce useful information for action without the need to
understand and analyze the processes involved theoretically. Against this argument, it is
argued, first, that the quantitative assessment of the reliability of these models is difficult
due to the lack of available mathematical tools [14]. As in the case of EWS mentioned above,
their qualitative evaluation of non-parametric models is not easy either, since this type of
strategy does not allow for the identification of possible mechanisms, which would in turn
allow for the assessment of the reliability and relevance of the modelled predictions. The
hopes for improving the predictive power of the models generated by big data have also
been analyzed more specifically from the perspective of the philosophy of science. Several
authors have shown the importance of theoretical reflection to determine the expectations
and confidence that can be placed in this type of tool, (1) whether it is used to improve
knowledge or (2) to assist in decision making [8,15,16]. The necessity of this theoretical
reflection endeavor is analyzed at two levels by the authors quoted above. Firstly, it is
necessary to clarify what is meant by prediction. It is an ambiguous concept that is used
alternatively in ecology, on the one hand, to refer to a method of corroborating hypotheses
(according to a Popperian falsificationist’s framework) or, on the other hand, to refer to the
anticipation of possible scenarios of the evolution of the target system. Among other things,
the authors highlight that the importance of this clarification to temporal prediction, in the
case of decision-making support, is possible or not, according to the properties of the system
under study [8,16]. Secondly, the improvement of an ecological theoretical framework and
reasoning is necessary to clarify the limits of the numerical tools, the methodologies used,
and what is known about the properties of ecosystems in order to specify what can be
expected from big data and predictive models. Among the limits imposed by ecological
processes on prediction, Maris et al. note, in particular, their contingent and evolutionary
nature, their stochasticity, and also their complexity, which generates emergent phenomena
that are difficult to predict. If these limitations are not considered from a theoretical point
of view, decision makers and their scientific advisors take the risk of applying a predictive
model to an ecological system which is fundamentally unpredictable, and thus of being
misguided entirely on the actions required for the preservation of this system [8].

4. Are We Replaying the Classical 1950’s Debate Surrounding the Demarcation
Criterion and the Place of Theory in the Knowledge Production Process?

The previous section has shown that the development of big data in ecology is far
from making theory useless, and that it is also far from leading to a purely inductive
way of performing research. The authors quoted above show, on the contrary, that the
improvement of an ecological theoretical framework and hypothesis-testing methods
are even more necessary to take proper advantage of the amount of data accumulated
and of the tools available to analyze it [7,8,17]. Thus, the debates generated by BDD,
especially about the possibility of a purely inductive science, seem to renew some of the
features of philosophy of science debates of the middle of the twentieth century, although
in a significantly different way. Despite significant historical, contextual, technological,
scientific, and theoretical (etc.) differences, it is interesting to note that authors who
highlight the importance of theory, even more so in the context of big data in ecology, against
the idea of a possible purely inductive science refer to a Popperian framework to frame their
analysis [8,15,16,18,19]. Indeed, Popperian falsificationism was initially formulated against
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logical empiricists’ inductivism [20]; thus, it seems interesting to consider this controversy
to think about the current forms of inductivism raised by the development of big data.

However, the Popperian framing of the scientific method has been widely criticized
since the end of the 20th century. Many authors put forward the fact that there is not a
universal scientific method (e.g., hypothetico-deductive in the case of Popper) or demarca-
tion criterion between science and pseudo-science [21], and that the objectivity criterion
and evidence value could change across scientific cultures or styles [22,23]. Interestingly,
philosophical works developing in the wake of the pluralist movement in the philosophy of
science have also led to a questioning of the representational conception of data, which has
run through the philosophy of science since Hempel and Popper, and which makes data
stable, objective, and realistic representations of the phenomena under study [17]. Even
more in the context of data-intensive science, it was shown that data features change over
the time and during their circulation across several situations [1,17].

Therefore, in the case under study, the Popperian framework could be helpfully convo-
cated, especially to express more precisely what one means by prediction (anticipation but
also corroboration), but one must not erase all of the work conducted about the pluralist and
perspectivist nature of science [22–24], especially in ecology and the life sciences [25–27],
which have typically exemplified the diversity of scientific methods and objectivity criteria
against the unique and evolutive view of science conveyed by Popper. Moreover, in the
case of big data “neo-inductivism”, what is at stake is not, as in Popper’s time inductivism
debates, discussing the right place of theory and experience in knowledge production
process, but the legitimacy and usefulness of scientific theoretical reasoning itself.

5. Conclusions

Finally, these analyses of the topic of ecological prediction permitted me to show the
relevance of theoretical work in scientific practices [7,8,15–19] against the BDD that tend
to leave out knowledge improvement goals or even to conceive scientific theorization as
obsolete. Theoretical work is essential to precisely express what we mean by prediction
(a key issue for environmental sciences), which can refer, not only to an anticipation, but
also to a corroboration activity. Scientific theoretical work allows us, then, to precisely
express what could actually be expected from big data analysis when one talks about
the improvement of models’ predictive power, according, for example, to the available
scientific knowledge about the predictability of the system under study. Indeed, without
this philosophical and theoretical work, the risk is that we make big data “black boxes” [17]
of which it could be hard to distinguish the potential fallacy, because of the complexity
of the tools and the amount of various data involved, possibly produced from numerous
methods and scientific cultures, making it hard for non-specialists of the field to assess or
see the method considered [17]. Under the question of big data and scientific promises,
it seems then that we find some features of the old Popperian question of demarcation
between scientific and non-scientific knowledge [20]. However, this will be revisited under
the following pragmatic form: that of understanding how scientific practices geared toward
knowledge improvement goals distinguish and articulate themselves from/with action
improvement goals, in connection with economic and political fields, for instance [7,8,17].
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