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Abstract: The Arxan–Chaihe volcanic field (ACVF) is a Pliocene to recent intracontinental mono-
genetic volcanic field. Within the ACVF, at least 47 vents are preserved in a ~2000 km2 area, forming
two major NE-SW trending structural elements. The youngest eruptions took place about 2000 B.P.,
forming two distinct complex scoriaceous and lava spatter cone systems emitting low-viscosity lava
that invaded the paleo-Halaha River tributary, forming pahoehoe flow fields. This lava field forms the
backbone of the geoheritage values of the Arxan UNESCO Global Geopark. The lava flow fields were
believed to be almost exclusively sourced from a single vent complex around the Yanshan–Gaoshan
region. However, a recent study revealed that the flow field is a result of complex eruptions with
an early phase from the nearby Dahei Gou vent complex. Here, we provide evidence, based on
Sentinel satellite imagery, ALOS-PALSAR-derived digital terrain model analysis, and direct field
observations, that an even earlier fissure-fed eruption created another complex. This can be seen
as a smaller lava flow field on the western side of the main flow field. The Dichi Lake is an iconic
geosite of the geopark. It is a maar crater formed by a single explosion through an earlier lava field
that erupted from a network of fissures ~2.5 km long following an NE-SW trend. The Dichi Lake
geosite provides an ideal example demonstrating the effect of fissures opening in water-saturated
lowlands resulting in phreatomagmatic eruptions. Moreover, our findings suggest that the youngest
eruption in this region had at least three phases, probably not more than a few decades apart, along a
15 km long fissure network propagated from the SW to NE. We propose Dichi Lake as the centre of a
geoheritage precinct, providing a hub of knowledge dissemination, highlighting fissure eruptions as
a key type of volcanic hazard to be taken seriously in the management of the geopark.

Keywords: geodiversity; volcanic geoheritage; volcanic hazard; monogenetic; scoria; lava

1. Introduction

The Arxan–Chaihe volcanic field is in Inner Mongolia, in NE China and considered
to be an active monogenetic [1] volcanic field that has evolved since the Pleistocene [2–5].
The latest eruption of the field took place about 2000 years ago, emitting over 20 km
long complex lava flows that filled the low-lying fault-bonded fluvial network of the
region [2,6,7]. The volcanic field hosts two geoparks, one of which is the Arxan UNESCO
Global Geopark, which enjoys international recognition [4]. Volcanism and the eruptive
products of monogenetic volcanism play a key role in geopark geoeducation, geotourism,
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and geoconservation ventures [4]. The main attractions of the geopark mostly consist of
lava surface features, exhibiting various pāhoehoe lava, tumuli, and inflation/deflation
features [4,7,8]. In addition, the geopark also highlights the power of young lava flows
capable of blocking the entire fluvial network and creating a new lacustrine environment.
While these are undoubtedly important geological and morphological features, the young
volcanism offers far more to be explored and utilized in the geoeducation and geotourism
programme of the geopark. Here, we provide geological insight into the importance of
fissure-fed volcanic eruptions that shaped the region’s volcanic landscape that can be
incorporated far more in future programmes of the geopark.

2. Materials and Methods
2.1. Study Area

The study area is part of the Arxan–Chaihe volcanic field (Figure 1). It is a middle
mountain area where Mesozoic basement rocks form fault-bound ridges [9] (Figures 1 and 2).
Between the ranges, broad flat-floored valleys are commonly filled with basaltic lava flows
(Figure 3). The modern fluvial network gradually cut into the older lava surfaces forming
canyons and broad alluvial fans in convulsions of major valley networks (Figures 1–3).
The region has recognizable volcanic geoforms of scoria cones and maar craters filled with
lakes [3]. Scoria cones commonly host shallow lakes that are also part of the main landscape
elements of the region, such as the Arxan Tianchi near Tianchi township. Preserved
volcanoes clearly form vent alignments following the main NE-SW trending structural
elements of the region (Figures 1 and 2).
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Figure 1. Contour map of the study area (10 m intervals) based on ALOS-PALSAR 12.5 m resolution
digital elevation model (DEM). Lines representing cross-section lines. Note the aligned volcanoes
following the main morphological escarpments of the region.

The region has a mountainous appearance, despite the fact that the general trends of
the relief are clearly simple and distinguishable to flat-floored lava flow-filled valleys, main
fault-bounded basement blocks, and a few elevated high landforms (Figure 2).
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floors along phreatomagmatic volcanoes such, as Wusulangzi and Dichi Lake. Cross-section lines 
(a–d) are shown in Figures 1 and 2. Note the gentle sloping landscape apparent on the roughly NW-
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Figure 2. A relief map generated from the ALOS-PALSAR 12.5 m resolution digital elevation model
demonstrates a simple morphological appearance of the study area.
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shown in Figures 1 and 2. Note the gentle sloping landscape apparent on the roughly NW-SE trending
cross sections (a–c) and a more or less EW trending cross section (d).

2.2. Satellite Imagery and Terrain Analysis

To locate young volcanic geoforms, such as scoria cones, maars, and lava fields, satellite
imagery from the Sentinel Hub (https://apps.sentinel-hub.com/eo-browser/ accessed on
15 September 2022) was used. For basic terrain analysis, the free ALOS-PALSAR 12.5 m
digital elevation model (DEM) (https://search.asf.alaska.edu accessed on 9 August 2022)
was utilized.

In this study, we utilized four Sentinel satellite datasets, such as the True Colour Com-
posite, False Colour composite, and the Geology 8, 11, and 12, and 12, 11, and 2 composite
images were used. Each of these images is sensitive to showing young volcanic landforms,
unvegetated young lava flows, and a certain extent of volcanic ash-dominated regions.

For basic terrain analysis, the Q-GIS software and its accompanying software modules
(e.g., Grass GIS) (https://qgis.org accessed on 18 April 2022) were used on the available
ALOS-PALSAR elevation data. We generated slope, geomorphon, and topographic position-
based landform classification maps.

3. Results

Sentinel satellite imagery revealed that the young volcanic geoforms show up as
distinct features on the images. Based on these maps, vents were identified (Figure 4a–d).
It is evident that the lowermost elevation region, the main fluvial system within the Halaha
River, hosts the youngest lava flow fields that erupted about 2000 years ago from the central
part of the ACVF and inundated the region with lava flows. The identified vents aligned
in two separate lineaments, each following valley networks visible on the landscape. The
two NE-SW-aligned parallel volcano rows composed of volcanic geoforms exhibit similar
satellite image texture; hence, they cannot be confidently assigned to specific time order. It
seems active volcanism was apparent at various times within both lineaments. The only
exception from this trend is the central part of the study area, where a short (<2.5 km)
fissure-oriented volcano chain forms a slightly offset lineament (about 10 degrees offset
from the main trends). Along this short fissure-aligned chain, scoria and lava spatter cones
formed in the elevated part of the region, while a single explosion crater generated a maar
that is currently one of the main geotouristic attractions of the area, the Dichi Lake. Dichi
Lake is about 200 m in its diameter. Along its crater wall, lava flows exposed, while on
its rim, large blocks of lava form some sort of ejecta ring. It is clear that the entire fissure
system here predates the youngest lava flow emplacement of the Halaha River valley as
it is associated with a relatively small lava field (about 4 km across) that functioned as a
barrier against the youngest lava flows to move (Figure 4a–d).

A slope angle map generated from the 12.5 m resolution digital elevation data clearly
shows the rugged but flat surface of the Halaha River Valley. The steepest slopes are in the
SE-facing escarpment of basement rocks just on the true right side of the Halaha River, NW
from Tianchi Township (Figures 1 and 5). This escarpment is inferred to be a fault scarp,
and the vents follow the same orientation in this region (Figure 5). The Dichi Lake area
(Figure 1) and its lava flow field are marked by a morphological step in the SE edge of the
Halaha River valley. This slightly elevated lava field diverted the main Halaha River lava
flow. On the slope map, fissure-aligned vents are clearly visible, such as the Arxan Tianchi
scoria cone adjacent vents to the NE and SW (Figure 5). Similar trend of vent alignment
is apparent at the Dahei Go (Figure 1), where three distinct volcanos formed within 2 km
fissure length. The closely spaced but small volcanic edifices built a volcano chain just
NE from the Dichi Lake (Figure 5), where each small volcanic edifice amalgamated into
a near-continuous crater row. This geomorphological aspect indicates that Dichi Lake
volcanoes must have erupted simultaneously due to a rapidly opening fissure. Such an
eruption scenario is a likely cause of the formation of the crater chains just NE from Arxan

https://apps.sentinel-hub.com/eo-browser/
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Tianchi. However, this region is more vegetated and likely to represent slightly older
eruptions than those forming the Dichi Lake system.
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Figure 4. Sentinel satellite images of the study area, such as true light (a), false colour (b), geology 8,
11, 12 band composite (c), and geology 12, 8, 2 composite images (d). Note, especially on the (c) and
(d) images, the young lava flow that fills the Halaha River valley. The volcanic landforms are clearly
recognizable, especially their NE-SW-elongated fissure-oriented map view that is parallel with the
main structural elements of the region.
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4. Discussion

Based on direct field observations and satellite imagery, it is evident that the young
volcanic landforms are aligned. Their alignment is in good agreement with the recognized
morphostructural elements of the region, indicating a strong structural control of the
magma ascent that fed the dispersed volcanism in the region. In addition to the field-wide
vent alignments, the individual vents, as well as shorter groups, such as the Dichi Lake
system, follow the same NE-SW trends of elongation and alignments. The Dichi Lake
is a particularly great example that fissures likely opened rapidly, and simultaneously
erupting vents produced mild explosive Hawaiian lava fountaining or Strombolian-style
explosive eruptions. Once the feeder dike reached the low-lying and potentially water-
saturated valley floors, a single explosive eruption took place to generate the Dichi Lake
maar volcano. This eruptive mechanism that was revealed from the satellite imagery and
morphological data accompanied by direct field documentation highlights the importance
of the fissure-fed eruptions in the formation of this volcanic field. This information should
play a more significant role in the geoeducation and geotouristic aspects of the Arxan
UNESCO Global Geopark.

While the geopark has well-selected geosite “hotspots” (we use this term to define
regions that are key geosites within the conservation area), and further analysis of the
landscape by applying the geomorphon [10] (Figure 6) and the topographic position index-
based landform classification [11] methods (Figure 7), we can state that the area has far
more to offer. On both maps (Figures 6 and 7), the fissure-aligned vents are clearly visible.
Similarly, these landform classification methods captured the general structural elements
of the region. This information could be used to develop geoeducation materials for
visitors to help them to understand the landscape elements of the region. As the region
has no characteristic landmarks other than some volcanic cones (that can be seen from
distance only), generating landform classification maps could offer visitors a view to better
understand the landforms and the potential geological and geomorphological processes
standing behind their formations.
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form classes within other landforms that are seemingly evenly distributed. Landform classes are
(1) flat, (2) summit, (3) ridge, (4) shoulder, (5) spur, (6) slope, (7) hollow, (8) foot slope, (9) valley,
(10) depression.
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Figure 7. Topographic position index-based landform classification of the study area. Note the
similar trends of the landforms captured by applying the geomorphon theory. (1) Canyons, deeply
incised streams, (2) mid-slope drainage and shallow valleys, (3) upland drainage, headwaters, (4) u-
shaped valleys, (5) plains, (6) open slopes, (7) upper slopes/mesas, (8) local ridges/hills in valleys,
(9) mid-slope ridges, small hills in plains, (10) mountain tops and high ridges.

5. Conclusions

In this report, we provided clear evidence for fissure-dominated volcanic eruptions
in volcano-to-volcanic field scales as one of the key characteristics of the volcanic geology
of the Arxan–Chaihe Volcanic Field. In addition to the direct field observations, the
basic terrain and satellite image analysis demonstrated that the volcanism in the region
is restricted to narrow bands that are parallel with the main structural elements of the
region. This is interpreted to be strong evidence that the volcanism in the region had
strong structural control, and this will likely define future eruption locations and eruption
styles. This information, alongside the advanced landform analysis of the region, could
form a strong core of geoeducation within the geotourism aspects of the Arxan UNESCO
Global Geopark, highlighting the firm link between volcanism and structural geology of
the continental lithosphere of this monogenetic volcanic field.
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