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Abstract: The use of laser cutter machines to produce porous graphene films is an innovative method
for a low-cost production of flexible electrodes for electronics and sensing applications. Here, laser-
induced graphene (LIG) is used to produce the gate electrodes of EGFET sensors. LIG electrodes and
LIG electrodes functionalized with ZnO and metalloporphyrin-coated ZnO are used as elements of
the electronic tongue. The array is tested in a classical experiment aimed at identifying complex food
matrices, such as fruit juices. The results demonstrate the feasibility of the approach and provide a
solid basis for further array developments.
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1. Introduction

The use of field effect transistors as sensors for chemicals in solution is a staple of cur-
rent chemical sensor technology. After the first introduction of the ISFET by Piet Bergveld
in 1970, several variations on the theme have been proposed. Among them, the extended
gate FET (EGFET) is particularly attractive because it makes use of standard commercial
MOSFET devices which do not require the manufacture of the transducer itself. Thus,
the sensor development can only be focused on the sensitive material. Recent implemen-
tations of the EGFET concept include the use of nanostructured inorganic materials for
the non-enzymatic detection of glucose [1]. In this paper, we investigated the sensing
properties of laser-induced graphene (LIG) electrodes as an extended gate. LIG was further
functionalized by ZnO nanoparticles and metalloporphyrin-coated ZnO nanoparticles. A
minimal array of four sensors was prepared and applied for the identification of fruit juices.
The results show that EGFET devices and LSG electrodes provide a valid technological
combination for the development of electronic tongues.

2. Materials and Methods

LIG electrodes were prepared on Kapton using a computer-controlled CO2 laser
cutter [2]. ZnO nanoparticles and metalloporphyrin-ZnO-capped nanoparticles were
prepared by a hydrothermal method [3]. LSG electrodes and functionalized LIG electrodes
were used as the gate electrodes of MOSFET devices. The common gate voltage was applied
to a saturated calomel electrode. Figure 1 shows the electrical connections and the sensor
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bias circuits. Juices bought over the counter were used to test the identification capability
of complex samples. Of the juices, 30 µL was added in 10 mL of a 1X PBS buffer solution.
Each juice was measured four times in a random sequence.
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Figure 1. Experimental setup and electronic circuits. 

3. Results and Discussion 
Figure 2 shows a typical sensor signal. The time evolution of the signal depends on 

both the individual sensor response time and the diffusion time of the molecules from 
the drop of juice. To limit the discrepancies due to diffusion, the sensors were placed sym-
metrically in the container. 

 
Figure 2. Example of normalized sensor signals during exposure to orange juice. Vertical lines indi-
cate the times at which the features are calculated. 

The response of each sensor was evaluated considering the steady signal and the sig-
nal evaluated at 30% and 60% of the total exposure time. Signals were normalized by 
subtracting the sensor signal immediately before the juice drop spiking. Eventually, three 
features per sensor were extracted. 

Figure 3 shows the results of the principal component analysis (PCA) of the responses 
of sensors to four replicas of each sample. The score plot shows that despite a residual 
sparsity of the repeated measurements, the juices were correctly discriminated. The cor-
respondent loading plot shows the implementation of the sensor array principles where 
each sensor points toward different directions. It is interesting to observe that the largest 

Figure 1. Experimental setup and electronic circuits.

3. Results and Discussion

Figure 2 shows a typical sensor signal. The time evolution of the signal depends on
both the individual sensor response time and the diffusion time of the molecules from
the drop of juice. To limit the discrepancies due to diffusion, the sensors were placed
symmetrically in the container.
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Figure 2. Example of normalized sensor signals during exposure to orange juice. Vertical lines
indicate the times at which the features are calculated.

The response of each sensor was evaluated considering the steady signal and the
signal evaluated at 30% and 60% of the total exposure time. Signals were normalized by
subtracting the sensor signal immediately before the juice drop spiking. Eventually, three
features per sensor were extracted.

Figure 3 shows the results of the principal component analysis (PCA) of the responses
of sensors to four replicas of each sample. The score plot shows that despite a residual
sparsity of the repeated measurements, the juices were correctly discriminated. The cor-
respondent loading plot shows the implementation of the sensor array principles where
each sensor points toward different directions. It is interesting to observe that the largest
difference occurs between the bare LIG and ZnO, while the two metalloporphyrins provide
a similar contribution to the first two principal components.



Proceedings 2024, 97, 116 3 of 3

Proceedings 2024, 97, 116 3 of 3 
 

 

difference occurs between the bare LIG and ZnO, while the two metalloporphyrins pro-
vide a similar contribution to the first two principal components. 

 
Figure 3. PCA of the sensor signals is represented by the first and the second principal components 
that account for about 85% of the total variance. Left side: score plot; right side: loading plot; each sen-
sor is represented by three features. 
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