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Abstract: Previous work has shown that the impacts induced by human sport activities are one
of the most relevant features to operating a cantilevered piezoelectric harvester. In addition, the
optimal orientations of the simulated harvester according to body parts were investigated. In this
contribution, we study the influence of the harvester dimensions on the simulated harvested energy.
The results show that for a defined mass of active material and the optimal harvester orientation, a
low-frequency harvester is preferred. Thus, the harvester operating frequencies, orientation, and
location on the human body are explored.
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1. Introduction

Harvesting energy on the human body can limit the use of batteries that are cum-
bersome, uncomfortable, and polluting. Applications and architectures of piezoelectric
harvesters are presented in the literature [1]. Nevertheless, many parameters such as the
harvester structure or location and orientation on the human body must be considered. A
previous study has proposed a method to determine the optimal position and orientation
of a cantilevered piezoelectric harvester on the human body [2]. To go further, the present
contribution explores the influences of harvester dimension.

2. Materials and Methods

Based on a distributed parameter electromechanical model [3], the simulated energy
was obtained by using real acceleration data extracted from performed sport activities on
the whole human body. In total, 17 sensor locations were evaluated, and acceleration data
were sampled at 240 Hz. Variations of ±95% of a preselected harvester length (L) and width
(b) were performed with the following constraint:

L ≥ 20
√

b.h (1)

L.b.h = K (2)

where h is the harvester thickness and K the volume of active material which is considered
constant. The constraint from (1) ensured the validity of the used beam model. In this study,
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the volume of active material was constant. According to a defined dimension, the optimal
orientation for harvesting energy on different body locations was performed by a particular
swarm optimization (PSO). The first and second vibrational mode of the harvester were
used for simulations, and higher modes were not considered as they are superior to the
Nyquist frequency of the acceleration signals (120 Hz).

3. Results and Discussion

During the performed sport activities, the body parts were moving in different way,
and, thus, the measured accelerations are different. Figure 1 presents the simulated normal-
ized energy of a cantilevered harvester on different parts of the human body with the best
orientation (obtained with PSO) with respect to its first vibrational mode.
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Figure 1. Normalized harvested energy on different body locations for a constant active material 
volume. Longer lengths and narrower widths correspond to lower resonance frequencies. 

Changing the length or width of a cantilevered piezoelectric harvester directly im-
pacts its resonant frequency. The results show that the right leg is the most suitable to 
harvest energy when the harvester operates at a low frequency (<15 Hz). In addition, de-
pending on the feasibility of a low-frequency harvester, the energy optimum can be de-
termined accordingly to the body location. 

Author Contributions: Conceptualization, D.H. and G.J.; methodology, D.H., G.J. and F.R.; soft-
ware, D.H.; validation, G.J., J.P. and F.R.; formal analysis, D.H.; investigation, D.H.; resources, D.H.; 
data curation, D.H.; writing—original draft preparation, D.H.; writing—review and editing, D.H., 
G.J., J.P., F.R. and A.-R.A.L.; visualization, D.H.; supervision, G.J. and F.R.; project administration, 
F.R.; funding acquisition, F.R. All authors have read and agreed to the published version of the 
manuscript. 

Funding: This research was funded by CNRS (GDR-SPORT-AP2020), with the support of ANR, in 
the framework of the PIA EUR DIGISPORT project (ANR-18-EURE-0022). 

Figure 1. Normalized harvested energy on different body locations for a constant active material
volume. Longer lengths and narrower widths correspond to lower resonance frequencies.

Changing the length or width of a cantilevered piezoelectric harvester directly impacts
its resonant frequency. The results show that the right leg is the most suitable to harvest
energy when the harvester operates at a low frequency (<15 Hz). In addition, depending
on the feasibility of a low-frequency harvester, the energy optimum can be determined
accordingly to the body location.
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