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Abstract: Displacement sensors play a key role in the control of dynamic processes. Such sensors can
be endowed with self-diagnostic capabilities to identify both the degradation of their conditions and
the possible process anomalies that caused them, thus allowing researchers to monitor the process
efficiency and therefore its sustainability. Within this scope, a self-diagnostic method is proposed
to infer the conditions of a resistive displacement sensor by estimating its model parameters online
during operation. Experimental results confirm the effectiveness of the presented method.
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1. Introduction

The industrial world is constantly seeking sensors with increasing intelligence and
robust measurement methods. In particular, a crucial demand regards the development
of sensors with self-diagnostic capabilities to provide information on the sensor health
status besides data on the measurand. Such diagnostic information can be exploited
by suitable predictive maintenance techniques in order to improve service scheduling
and minimize plant downtime [1]. Monitoring sensor conditions also allows researchers
to derive information on process efficiency, which is useful in controlling and reducing
material waste toward sustainable manufacturing. In this context, this work proposes a self-
diagnostic method to infer the conditions of a resistive displacement sensor online during
operation, i.e., without requiring the sensor disconnection from the ongoing dynamic
process or specific test procedures. The method has been designed in order to meet the
computational performances of typical microprocessors so that it can advantageously lead
to implementation embedded in the sensor.

2. Materials and Methods

The sensitive element of a generic resistive displacement sensor is typically composed
of a resistive track and a sliding cursor, and their failures are the primary fault modes of
resistive displacement sensors [2]. The sensor of linear displacement x is modeled by the
resistive circuit of Figure 1a, which comprises two parameters. Namely, Rc represents the
contact resistance between the sliding cursor and the resistive track while ξ represents the
resistive track resistance per unit length. The sensor conditions can be inferred from such
parameters, since, for example, an excessive contact force between the sliding cursor and
the resistive track causes the reduction of its thickness, implying ξ to increase. Furthermore,
the sliding cursor wear is reflected into a variation of Rc. The proposed self-diagnostic
method estimates online the model parameters vector p = [Rc, ξ] by solving the matrix
system R = Ap reported in Figure 1a. The term R comprises the resistances between sensor
terminal pairs (1;2), (2;3) and (1;3), which are named R12, R23 and R13, respectively. The
square matrix A depends on the sensor’s useful electrical stroke length FS for x.
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The experimental setup adopted to test the self-diagnostic method consists of a thick 

film, linear resistive displacement sensor with FS = 100 mm (Gefran PK, Provaglio d’Iseo, 

Italy), a 6.5-digit digital multimeter (Keithley DAQ6510, Solon, USA) and a precision lin-

ear positioning stage (Physik Instruments LS-270, Eschbach, Germany) used to move the 

sensor sliding cursor in n = 500 different random positions. Assuming a constant temper-

ature, firstly, the resistances R12k, R23k, and R13k have been measured at each position k from 

1 to n. Thus, the initial sensor parameters p0 = [Rc0; ξ0] have been estimated by solving the 

system R0 = Ap0. Subsequently, the sensor has been operated by moving the sliding cursor 

throughout the whole stroke back and forth 106 times, causing wear. Figure 1b,c illustrate 

the undamaged and worn resistive track, respectively. Then, the worn sensor parameters 

pw = [Rcw; ξw] have been estimated by following the same procedure adopted for p0. The n 

values of the parameters p0 and pw versus the corresponding cursor positions are reported 

in Figure 2a. 

 

Figure 1. Circuit model of a generic resistive displacement sensor (a). Images obtained with digital 

microscopy system (Leica DMS300, Wetzlar, Germany) of the sensor resistive track in undamaged 

(b) and worn (c) conditions. 
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Figure 2. Estimated values of the parameters p0 = [Rc0; ξ0] and pw = [Rcw; ξw] obtained from resistances 

R12k, R23k and R13k measured at n = 500 different random positions in the initial and worn conditions 

(a). Position errors epos of the worn sensor versus cursor position derived with reference to both P0 

and Pw (b). 

3. Discussion 

The mean value P0 of p0 over the n estimations is taken as the reference for an un-

damaged sensor. The proposed method detects the sensor conditions alteration by evalu-

ating the difference vector ∆ = [∆Rc, ∆ξ] = pw − P0. A fault condition is detected whenever 

∆Rc or ∆ξ are larger than specific alarm thresholds. Thresholds can be set by considering 

the impact of the individual parameters Rc and ξ on the sensor metrological performances 

compared with the requirements of the process under monitoring. From the sensor model, 

an updated estimation of the cursor position x′ can be obtained as x′ = (R12 − Rc)/ξ. The 

mean value Pw of pw over the n cursor positions is calculated. The components of Pw are 

then used to estimate x′, realizing a self-calibration of the sensor characteristic. Figure 2b 

plots the position error epos = x′ − x measured on the worn sensor obtained by using both 

Pw and P0 to estimate x′. The reference cursor position x is obtained through the linear 

positioning stage. Consistently with the expectations, a larger error is successfully 

Figure 1. Circuit model of a generic resistive displacement sensor (a). Images obtained with digital
microscopy system (Leica DMS300, Wetzlar, Germany) of the sensor resistive track in undamaged
(b) and worn (c) conditions.

The experimental setup adopted to test the self-diagnostic method consists of a thick
film, linear resistive displacement sensor with FS = 100 mm (Gefran PK, Provaglio d’Iseo,
Italy), a 6.5-digit digital multimeter (Keithley DAQ6510, Solon, USA) and a precision linear
positioning stage (Physik Instruments LS-270, Eschbach, Germany) used to move the sensor
sliding cursor in n = 500 different random positions. Assuming a constant temperature,
firstly, the resistances R12k, R23k, and R13k have been measured at each position k from 1 to
n. Thus, the initial sensor parameters p0 = [Rc0; ξ0] have been estimated by solving the
system R0 = Ap0. Subsequently, the sensor has been operated by moving the sliding cursor
throughout the whole stroke back and forth 106 times, causing wear. Figure 1b,c illustrate
the undamaged and worn resistive track, respectively. Then, the worn sensor parameters
pw = [Rcw; ξw] have been estimated by following the same procedure adopted for p0. The n
values of the parameters p0 and pw versus the corresponding cursor positions are reported
in Figure 2a.
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Figure 2. Estimated values of the parameters p0 = [Rc0; ξ0] and pw = [Rcw; ξw] obtained from
resistances R12k, R23k and R13k measured at n = 500 different random positions in the initial and worn
conditions (a). Position errors epos of the worn sensor versus cursor position derived with reference
to both P0 and Pw (b).

3. Discussion

The mean value P0 of p0 over the n estimations is taken as the reference for an undam-
aged sensor. The proposed method detects the sensor conditions alteration by evaluating the
difference vector ∆ = [∆Rc, ∆ξ] = pw − P0. A fault condition is detected whenever ∆Rc or ∆ξ
are larger than specific alarm thresholds. Thresholds can be set by considering the impact
of the individual parameters Rc and ξ on the sensor metrological performances compared
with the requirements of the process under monitoring. From the sensor model, an updated
estimation of the cursor position x′ can be obtained as x′ = (R12 − Rc)/ξ. The mean value
Pw of pw over the n cursor positions is calculated. The components of Pw are then used
to estimate x′, realizing a self-calibration of the sensor characteristic. Figure 2b plots the
position error epos = x′ − x measured on the worn sensor obtained by using both Pw and P0
to estimate x′. The reference cursor position x is obtained through the linear positioning stage.
Consistently with the expectations, a larger error is successfully detected in the latter case.
As an ongoing work, it is expected that fault typologies can be classified by using a machine
learning algorithm trained on vectors ∆ obtained from different sensor wear conditions.
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