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Abstract: This work proposes an electronic nose (e-nose) system based on resistive gas sensors
to predict the cooking evolution of different types of bread. The e-nose includes six metal-oxide
semiconductor (MOS) gas sensors, a low-noise electronic system for signal conditioning and data
acquisition, and a classification algorithm for real-time detection of the cooking stage. Baking tests
with five different recipes were carried out, and the system performances were evaluated by a panel
of tasters, obtaining a -88% accuracy for the automatic detection of cooking time.
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1. Introduction

E-nose application in the food industry represents a low-cost solution for quality
assessment, process monitoring, and optimization of energy resources [1]. During bread
baking, different groups of volatile organic compounds (VOCs) are released in each stage
of the fermentation and cooking process, but few studies in the literature have shown
that e-noses can be used to monitor this process [2]. For example, Gancarz et al. and
Ponzoni et al. [3,4] demonstrate the applicability of e-noses for the detection of key aromas
of different bread cooking stages, but do not show the real-time operation of the system
in the harsh environment of in-oven operation. In this context, this work presents a new
e-nose system for the real-time detection of the cooking stages of bread, applied to a set of
five different recipes.

2. Materials and Methods

The experimental setup included a commercial oven, where six gas sensors of different
types (Figaro TGS26-00/10/20) were installed, along with temperature and relative humid-
ity sensors. A low-noise electronic system was used for modulated signal conditioning
and acquisition to track the sensor resistance and the environmental sensor signals. A
data acquisition board logged the data on a computer where a classification algorithm
implemented in Matlab was used to predict the bread cooking status. The bare captured
resistance traces were affected by the (i) electronic noise of the system, dominated by 1/f
contributions from thin-film resistors (Figure 1a) and amplifiers [5] and (ii) huge oscillations
due to the humidity changes inside the oven, where a heating element was periodically
activated. The acquired signals were thus filtered to remove the oscillations, while 1-kHz
signal modulation mitigated 1/f noise. Five bread recipes, with different ingredients and
baking procedures, were considered: bread roll (BR), semola (SE), ciabatta (CB), multigrain
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(MG), and Val Venosta (VV). To account for the different lengths of different bread analyses,
an algorithm based on principal component analysis (PCA) was used to select the best
down-sampling frequency to apply to the acquired data. After this frequency was selected,
a set of two features was extracted from the down-sampled version of the analysis and used
as input for the Support Vector Machine (SVM) classifier, which had been trained consider-
ing 84 analyses, whose features (area under the curve and resistance ratio) were extracted
at 3 different times, representative of the “Medium”, “Cooked”, and “Burnt” stages.
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Figure 1. (a) Measured noise density of a TGS2620. (b) Temperature, humidity and resistance values
of three of the gas sensors during the bread baking process.

3. Discussion

The real-time operation of the system was then tested. The classification algorithm
uses the features extracted from the real-time acquired signals (Figure 1b) to predict the
cooking stage (Figure 2a). After the fifth “Cooked” prediction, the oven was stopped, and
the bread was evaluated by a panel of tasters on a scale from 1 to 5. The correct cooking
stage of 3–4 was obtained for ~88% of the analyses (Figure 2b). These performances will be
further improved by expanding the training dataset, leading to a reliable e-nose system for
smart ovens.
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