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Abstract: A nanofibrous layer of polyvinylpyrrolidone (PVP) was designed to house, both in the
fiber core and onto its outer surface, nanoparticles of mesoporous graphene (MGC), which are able
to selectively adsorb acetic acid vapors. When grown on interdigital fingers microelectrodes (IDEs),
upon UV-light irradiation taking place in air, the layer proved conductive and stable. Electrical
and sensing features were significatively modulated by decorating the fiber surface with MGC
(a sandwich-like structure) and polyethyleneimine (PEI). MGC, used both as a conductive filler
and to decorate the fiber surface, strengthened the PVP scaffold and acted as a nucleation center
for entrapping molecules of acetic acid. PEI improved the adhesion of MGC onto the surface. A
preliminary study reported fast responses, high sensitivity with good linearity, selectivity, reversibility,
and repeatability towards the acetic acid in ranges of up to hundreds of ppm at room temperature.
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1. Introduction

Polyvinylpyrrolidone (PVP) is an eco-friendly and cost-effective polymer, which makes
it a common choice for engineering nanoscale fine polymer fibers using electrospinning
technology. However, due to its solubility in water and the most common organic solvents,
it is too fragile to be considered a suitable matrix for gas-VOC chemical sensors. Never-
theless, UV-light irradiation can manipulate the PVP chain length, affecting the polymer
modulus, tensile strength, and swelling, as well as providing it with new chemical-physical
properties and a greater stability. In this project, electrospun and UV-treated PVP nanofibers
(NFs) were functionalized with mesoporous graphitized carbon (MGC) nanopowder (with
the dual function of the filler and surface binding site) and polyethyleneimine (PEI). This
functionalization process aimed to develop a sensitive and selective sensor for acetic acid
vapour [1], crucial in industrial settings where exposure to such vapours poses health
risks to workers, potentially leadings to diseases contracted through prolonged contact
with these materials (e.g., plastics, pharmaceuticals, dyes, insecticides and photographic
chemicals industries). A sensor front-end circuit and a microcontroller unit (Arduino) were
used for our experiments.

2. Materials and Methods

MGC (<500 nm), hexadecyltrimethylammonium bromide (CTAB), PVP (Mw: 1,300,000),
PEI linear (Mw: 10,000), ethanol absolute (>98%), acetic acid (AcOH), formic acid, methanol
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(MeOH), dimethylformamide (DMF), acetone, cyclohexane (CyHex), triethylamine (TEA),
and butylamine (ButA) were purchased from Merck and used without further purification.
Interdigitated Electrodes (IDEs), provided by Micrux Technologies (Spain), were fabricated
using borosilicate substrate (IDE sizes: 10 mm long, 6 mm wide, 0.75 mm thick, Pt/Ti
electrodes, 120 pairs, 10 µm wide with 10 µm gap) and were subject to the electrospinning
deposition of a PVP:MGC:CTAB homogeneous suspension in EtOH (1:0.003:0.01, wt),
which occurred for two minutes (E: 4,6 kV, feed rate: 400 mL/h, d: 9 cm). Following
UV-irradiation, sensors were dipped into an MGC-PEI-EtOH solution (0.0003:0.001:1, wt)
and dried. Vapor measurements were carried out according to a dynamic mode at room
temperature and a relative humidity percentage ranging between 40–50%.

3. Discussion

PVP fibers, following UV treatment, looked homogeneous and regular in both shape
and size (d: ~350 nm). These fibers also present a rough surface (Figure 1A), which is likely
due to the surfactant used for the stabilization of the MGC. After dipping, the fibrous net-
work, as well as the substrate, appeared to be covered by a thin, very porous coating, which
confirmed the PEI-MGC adhesion to the surface (Figure 1B). The mesoporous structure of
MGC, used both as a conductive filler and to decorate the fiber surface, was expected to
strengthen the PVP scaffold, which also acts as a nucleation center for entrapping molecules
of acetic acid (AcOH) [1]. A thin film of polyethyleneimine (PEI) should provide a greater
resistance of the fibers to humidity, as well as to increase adsorption sites for AcOH and
improve the adhesion of MGC on the fibrous surface under the carrier gas flow. The number
of dipping significantly modulates the electrical and sensing features. The selected sensor
(R: 34 kΩ) was exposed to known concentrations of VOCs belonging to different chemical
classes (Figure 1C). The shape curves of the transient responses indicated that the sensor re-
sponded quickly and selectively to acetic acid (Figure 1C). Thus, known amounts of vapors
flowed through the measuring chamber and the resulting current changes are depicted in
Figure 1C. The linear-like kinetics of the response to formic acid could be related to the
participation of multiple sites of interactions. This includes possible lateral interactions
between adsorbed molecules and multilayer formations, highlighting the different affinity
of the sensor to the two organic acids. Thus, the sensor sensitivity to acetic acid was the
highest response (Figure 1D) within the range investigated.
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Figure 1. SEM images of (A) PVP nanofibers housing MGC powder dispersion; (B) following 
decoration with PEI-MGC thin film; (C) transient sensor responses to common VOCs in dynamic 
modes, where DI is the current change and I0 the current baseline before VOC exposure; (D) bar plot 
depicting a comparison between the sensor responses to the same concentration of VOCs; (E) 
sensors and circuit sides of the sensing device. 

Figure 1. SEM images of (A) PVP nanofibers housing MGC powder dispersion; (B) following
decoration with PEI-MGC thin film; (C) transient sensor responses to common VOCs in dynamic
modes, where DI is the current change and I0 the current baseline before VOC exposure; (D) bar plot
depicting a comparison between the sensor responses to the same concentration of VOCs; (E) sensors
and circuit sides of the sensing device.
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