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Abstract: Indirect photoacoustic sensing (PAS) offers accurate low-ppm gas measurements, with
an inverse relation of the obtained signal to the measured gas concentration. The gas is sealed in
transistor outline (TO) housing using a new method. This provides a relatively a very small volume
for the reference gas signal. The gas sensing system features a black body source, highly reflective
measurement volumes and TO housing sealed with gas and multiple sensors. CO2 is used for testing
and characterizing the sensor sealing and working concepts in the measurement range 0–2000 ppm,
with other gases, such as CO, methane, etc., planned to be tested. A PAS signal corresponding to a
4 ppm minimum gas concentration is measured. Allan Deviation measurements provide a theoretical
limit of detection of 3.14 ppm, with the integration time of 5.2 × 103 s.

Keywords: photoacoustics; indirect PAS; gas sensor; low-ppm gas measurements; transistor outline
(TO) housing; infrared absorption

1. Introduction

Indirect photoacoustic gas sensors offer the possibility of self-calibrating, ultra-sensitive
and miniaturized sensing systems. They are at least two-chamber systems with reference
and measurement chambers. To avoid cross sensitivities to a large number of gas species,
the target gas itself is used as the filter medium since it features near-identical spectral char-
acteristics [1]. The generated photoacoustic signal for a non-resonance mode of operation
for a small volume is inversely proportional to the volume of the chamber [2]. Keeping
this in mind, a new method was employed to hermetically seal the gas accurately in a
small chamber with a pressure transducer, which offers an improvement to preliminary
indirect PAS prototypes [3]. The attenuation of light due to radiation absorption between
the optical source and the reference chamber was used to infer the gas concentration. The
performance of this device is compared to similar state-of-the art concepts [4,5].

2. Methodology

CO2 is sealed in TO housing, along with a MEMS microphone, a photodiode and an
NTC. Along with a novel gas sealing strategy, the sensor system features a custom-built
lock-in amplifier PCB. The reference signal is provided by 100% CO2 sealed in the reference
chamber, and mass flow controllers (MFCs) are used to vary the gas concentration in the
measurement chamber from 0 ppm to 2000 ppm. Figure 1a shows a TO housing variant
with tubes for gas flushing. While flushing, the ends of the tube are firmly closed by
applying mechanical pressure. The ends are subsequently soldered, sealing the 100% gas
concentration with all the sensor components inside a TO package.
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Figure 1. (a) Sealed TO package in a sensor setup, (b) placement of detector elements on a TO housing 
base, (c) Allan Deviation plot with an integration time of 5.2 × 103 s, and (d) PAS signal output be-
tween 0 and 2000 ppm fits the negative exponential trend with an R2 score of 0.9992. 

3. Discussion 
Allan Deviation measurements provided a theoretical limit of detection of 3.14 ppm, 

with an integration time of 5.2 × 103 s. Gas concentrations of up to 4 ppm were measured. In 
previous work [4], the resistance welding approach was used to seal the gas in TO housing 
and long measurement times were used to measure the minimum gas concentration of 
250 ppm. In a related work [5], up to 100 ppm CO2 was detected. In this work, the meas-
urement time was limited by the settling time of the lock-in amplifier. It subsequently took 
nearly 2 min for the standard deviation to decrease < 1 µV. 
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Figure 1. (a) Sealed TO package in a sensor setup, (b) placement of detector elements on a TO housing
base, (c) Allan Deviation plot with an integration time of 5.2 × 103 s, and (d) PAS signal output
between 0 and 2000 ppm fits the negative exponential trend with an R2 score of 0.9992.

3. Discussion

Allan Deviation measurements provided a theoretical limit of detection of 3.14 ppm,
with an integration time of 5.2 × 103 s. Gas concentrations of up to 4 ppm were measured. In
previous work [4], the resistance welding approach was used to seal the gas in TO housing
and long measurement times were used to measure the minimum gas concentration of
250 ppm. In a related work [5], up to 100 ppm CO2 was detected. In this work, the
measurement time was limited by the settling time of the lock-in amplifier. It subsequently
took nearly 2 min for the standard deviation to decrease <1 µV.
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