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Abstract: We present a method to monitor methane at atmospheric concentrations with errors in
the order of tens of parts per billion. We use machine learning techniques and periodic calibrations
with reference equipment to quantify methane from the readings of an electronic nose. The results
obtained demonstrate versatile and robust solution that outputs adequate concentrations in a variety
of different cases studied, including indoor and outdoor environments with emissions arising from
natural or anthropogenic sources. Our strategy opens the path to a wide-spread use of low-cost
sensor system networks for greenhouse gas monitoring.
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1. Introduction

Atmospheric methane (CH4) has a 100-year global warming potential 28–34 times
greater than carbon dioxide by mass [1]. Its concentration is rapidly and irregularly in-
creasing for partly unclear reasons because CH4 emission sources and sinks are poorly
constrained [2]. Hence, better ways to monitor CH4 are crucial to reveal source-sink dy-
namics and determine the mitigation efforts needed. Cost efficient sensors are an appealing
solution to offer the needed complementarity to other broader and more expensive meth-
ods such as satellite surveillance, aircraft sampling, or ground-based micrometeorological
measurements [3]. However, versatile systematic calibration and cross-interference compen-
sation for cost efficient sensors are issues that remain elusive. While laboratory calibrations
can produce accurate calibration curves, field use suffers from large interferences from wa-
ter vapor (H2O), ambient temperature, and barometric pressure. Thus, multi-dimensional
reliable and versatile outdoor calibration is needed. Here, we approach this challenge by
analyzing the readings of an electronic nose (e-nose), equipped with multiple cost efficient
sensors, with multivariate statistics to successfully monitor CH4 concentrations in outdoor
environments.

2. Materials and Methods

Our e-noses consist of a tailor-made printed circuit board that accommodates three
metal-oxide gas sensors to measure CH4, one sensor to measure relative humidity, temper-
ature, and barometric pressure, an Arduino MKR WAN 1310, an Arduino MKR SD Proto
Shield, and an Arduino MKR GPS Shield to monitor, log, geotag, and timestamp the data
from the sensors.

Proceedings 2024, 97, 79. https://doi.org/10.3390/proceedings2024097079 https://www.mdpi.com/journal/proceedings

https://doi.org/10.3390/proceedings2024097079
https://doi.org/10.3390/proceedings2024097079
https://doi.org/10.3390/proceedings2024097079
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/proceedings
https://www.mdpi.com
https://orcid.org/0000-0002-9036-0856
https://orcid.org/0000-0003-0646-5266
https://doi.org/10.3390/proceedings2024097079
https://www.mdpi.com/journal/proceedings
https://www.mdpi.com/article/10.3390/proceedings2024097079?type=check_update&version=1


Proceedings 2024, 97, 79 2 of 3

The data obtained from different field sites was used to train partial least squares
regression (PLSR) models and the results were benchmarked against CH4 concentrations
monitored with reference equipment.

3. Discussion

Figure 1 shows the results of the PLSR model prepared for one of our field mea-
surements, where H2O varied between 9.6 and 12.1 g·m−3 (31 to 78% relative humidity),
ambient temperatures from 18 to 31 ◦C, and pressures from 1005 to 1009 hPa. The coefficient
of determination, R2, is 0.62 and the root mean squared error (RMSE) is 41 ppb (Figure 1a).
When testing the model (Figure 1b), we obtained trends that fit the reference (UGGA). The
R2 values obtained for other field sites are up to 0.90, and RMSE values are always below
7% of the concentration range studied.
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Figure 1. (a) Results from partial least squares regression model trained and tested with data ac-
quired outdoors in a private garden in a suburban area close to a forest during autumn in Sweden, 
and (b) temporal evolution of the test data compared to data reported by means of reference equip-
ment. 
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