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Abstract: This work proposes and experimentally characterizes a low-power circuit to track the
maximum power point (MPP) of submilliwatt photovoltaic (PV) cells intended for indoor applications.
The circuit relies on a low-power conventional indirect tracking technique: the fractional open circuit
voltage (FOCV). The experimental results presented herein show that power losses due to the tracking
inaccuracy of the FOCV technique are much lower (at least a factor of 10) than those due to the
ensuing micropower DC/DC converter. Accordingly, the application of more accurate yet more
power-demanding tracking techniques seems unnecessary in such scenarios, since they could incur
even higher power losses.
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1. Introduction

Using energy harvesters to power autonomous sensors offers advantages in terms
of sustainability and maintenance costs [1]. In order to extract the maximum power, the
energy transducers have to operate around the MPP, which depends on the environmental
conditions. For example, in a PV cell, the MPP depends on both the irradiance and temper-
ature. For this reason, energy transducers are usually connected to a power management
unit (PMU) that, among other tasks, tracks the MPP. Many MPP tracking (MPPT) tech-
niques have been proposed in the literature [2,3], especially for PV cells. These techniques
are mainly classified into two groups [2]: conventional and novel (e.g., based on artificial
neural networks), the latter being smarter but also more power-demanding than the former.
Within the conventional group, there are two subgroups [2]: indirect (e.g., FOCV) and
direct (e.g., perturb and observe) methods, the latter being more accurate but also more
power-demanding than the former. Indirect conventional methods do not track the MPP
the best, but they do offer the lowest power consumption, which is crucial indoors since the
output power of the cells is in the submilliwatt range. In such a context, this work proposes
and experimentally characterizes a FOCV-based PMU for a low-power indoor PV cell.

2. Materials and Method

The considered energy transducer is a low-cost amorphous PV cell (Panasonic AM1454)
intended for indoors, with an active area of around 11 cm?2. The cell is tested at different
levels of illuminance (from 100 to 1500 lux) coming from a cold white LED at a constant
temperature of 25 °C. The cell output is then connected to a commercial PMU (bq25570
from Texas Instruments), as shown in Figure 1a, which applies the FOCV-MPPT technique
with a K factor of 0.75; K corresponds to the ratio of the operating voltage with respect to
the open circuit voltage (Vo) of the cell. The internal micropower boost DC/DC converter
regulates the operating point of the cell around K-V, and also transfers the energy to a
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rechargeable battery. The power at the output of both the cell and the PMU were measured
using a source and measurement unit (Agilent B2901A).
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Figure 1. (a) Proposed PMU for a low-power PV cell applying the FOCV-MPPT method. (b) Experi-
mental results obtained when characterizing the circuit in Figure 1a.

3. Experimental Results and Discussion

Figure 1b shows the main results obtained during the experimental characterization.
First, it shows (in black) the power at the output of the cell for different levels of illuminance
assuming that it operates at the MPP. The higher the illuminance, the higher the output
power, as expected. The power ranges from tens to hundreds of microwatts since this is a
low-power cell under low indoor lighting conditions. Second, Figure 1b shows (in blue)
the power at the output of the cell considering that the FOCV is applied and, hence, the cell
operates at a voltage of K-V,.. Although a simple MPPT technique is applied, the power
losses due to the tracking inaccuracy are less than 1%. Third, Figure 1b shows (in green)
the power at the PMU output. Comparing the results in blue and green, the power losses
due to the PMU are equal to 21%, 12%, 10%, 9%, and 9% at 100, 250, 500, 1000, and 1500 lux,
respectively. Finally, Figure 1b also shows (in red) the overall efficiency (i.e., data in green
over data in black), which ranges from 78% to 91%. Such a calculation of efficiency includes
the effects of (i) operating at a point not exactly equal to the MPP, (ii) disconnecting the
cell (for 256 ms every 16 s by means of switches S1 and S2 in Figure 1a) so as to determine
K-V, and (iii) using a non-ideal DC/DC converter. The effects of the latter have been
determined to be the most predominant. So, in such scenarios, it seems unnecessary to
apply more accurate yet more power-demanding tracking methods.
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