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Abstract: Long-term ecological research (LTER) sites need a periodic assessment of the state of their
ecosystems and services in order to monitor trends and prevent irreversible changes. The ecological
integrity (EI) framework opens the door to evaluate any ecosystem in a comparable way, by measuring
indicators on ecosystem structure and processes. Such an approach also allows to gauge the
sustainability of conservation management actions in the case of protected areas. Remote sensing
(RS), provided by satellite, airborne, or drone-borne sensors becomes a very synoptic and valuable
tool to quickly map isolated and inaccessible areas such as wetlands. However, few RS practical
indicators have been proposed to relate to EI indicators for wetlands. In this work, we suggest several
RS wetlands indicators to be used for EI assessment in wetlands and specially to be applied with
unmanned aerial vehicles (UAVs). We also assess the applicability of multispectral images captured
by UAVs over two long-term socio-ecological research (LTSER) wetland sites to provide detailed
mapping of inundation levels, water turbidity and depth as well as aquatic plant cover. We followed
an empirical approach to find linear relationships between UAVs spectral reflectance and the RS
indicators over the Doñana LTSER platform in SW Spain. The method assessment was carried out
using ground-truth data collected in transects. The resulting empirical models were implemented for
Doñana marshes and can be applied for the Braila LTSER platform in Romania. The resulting maps
are a very valuable input to assess habitat diversity, wetlands dynamics, and ecosystem productivity
as frequently as desired by managers or scientists. Finally, we also examined the feasibility to upscale
the information obtained from the collected ground-truth data to satellite images from Sentinel-2 MSI
using segments from the UAV multispectral orthomosaic. We found a close multispectral relationship
between Parrot Sequoia and Sentinel-2 bands which made it possible to extend ground-truth to map
inundation in satellite images.

Keywords: UAVs; ecological integrity; LTER; LTSER; multispectral mapping; ground-truth; Parrot
Sequoia; Sentinel-2

1. Introduction

Rapid assessment of ecosystem status, both functioning and structure, has become a major
requirement for managers and conservationists in choosing response to disturbances or understanding
global change effects at local scale [1]. Humanity is failing to make sufficient progress in confronting
grand environmental challenges, and alarmingly, most of them are getting far worse [2]. One of the
most informative ways to retrieve a quick conservation status picture of either habitats or species
is based on survey and long-term monitoring programs [3,4]. Long-term ecological research (LTER)
networks are informing about the factors driving changes in biodiversity, the self-organizing capacity
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of ecosystems, the effects of rare events and disturbances, the impacts of stressors on ecosystem
function, and the interactions between short- and long-term trends [5]. These LTER networks rely
on site-based monitoring and research by providing data and detecting trends identifying drivers
and pressures. However, there is a need for methods and parameters harmonization in order to
enhance sites comparisons and identify global patterns. The regional European LTER network, named
LTER-Europe (www.lter-europe.net), has developed and adopted a new framework to easily derive
ecosystems state from selected indicators: the ecological integrity (EI) framework. The idea of EI
is based on the principle for precaution against ecological risks in the framework of sustainable
development. The EI framework combines biotic and abiotic aspects of ecosystems with ecosystem
structures and processes [6,7]. Its aim is to safeguard relevant ecosystem services and preserve
the capability to continue self-organized development of systems and services, by becoming more
complex systems or adapting to change. The ecological integrity framework has enabled indicator
selection and enhanced data integration and upscaling for individual LTER sites. In addition, in 2007,
the LTER-Europe network introduced the concept of long-term socio-ecological research (LTSER).
This approach extends LTER concept to coupled socio-ecological (or human-environment) systems.
LTSER aims to provide a knowledge base that helps to reorient socioeconomic trajectories towards more
sustainable pathways [8]. LTSER platforms, inside LTER-Europe network (Figure 1a), are extensive
landscapes characterized by manifold interactions between society and nature, ranging from strict
conservation areas to intensively used ones [9].

While seeking fast assessment of large and inaccessible areas such as LTSER wetlands, synoptic
tools become essential to provide the required integrative view. For this purpose, managers turn
usually either to the use of in situ measurements or estimates from automatic or handheld sensors and
probes or to ad-hoc sampling procedures [10]. In such cases, data collected by these means can point
out local changes or trends but it will seldom inform on spatial gradients or reveal under-sampled
locations. At this point, remote sensing imagery becomes the major contributor to spatially visualize
and locate any kind of environmental threat or disturbance such as wildfires, eutrophication processes,
flooding, etc. Optical images captured from Earth observation mid-resolution satellites (tens of meters)
are widely available for free, such as the ones captured by Landsat or Sentinel missions. However,
high- and very-high-resolution images (from centimeters to few meters) are costly and have to be
pre-ordered and programmed to be acquired over the study area. In the former case, scenes are
periodically acquired enabling to build a time series of images to address temporal changes and
trends at the landscape scale. In the latter, finer resolution allows for detailed habitat mapping for
instance, while dramatically increasing costs. The same is also true for airborne photogrammetric
campaigns either with photogrammetrical, multispectral, or hyperspectral sensors on board of planes.
Conversely, UAVs can be flown over the same area as frequently as required, only constrained by
weather conditions or legislation, becoming a suitable monitoring tool for any target. As a major trait,
UAVs provide the opportunity to define spatial resolution as detailed as requested according to the
mission objectives [11] constraining the total area covered per unit of time. Yet it is not the only role
played by UAVs as they can play the role of ground-truth for other sensors either airborne or onboard
of satellites, while overflying large and remote or inaccessible areas. Rapid growth of commercial UAVs
and affordable prices together with the increase on the innovative offer of miniaturized multispectral
sensors and cameras is widely spreading their use across the globe. Just a few years ago, dealing with
mission planning and post-processing was also a challenge. Nowadays, integrated solutions such as
the one provided by SenseFly© are offering accurate and endurable platforms such as the Sensefly eBee
able to carry different airborne cameras. Thermal, visible or multispectral cameras can be mounted
alone in its single pod. The company also provides a very integrative post-processing solution with
Pix4D© software, enabling to carry out complete missions in very short time for many applications
on protected areas. Actually, UAVs are mainly used to monitor crop health and status by upscaling
physiological variables applying model inversion methods [12]. Very few studies have addressed
similar topic for other environments such as rangelands but none for natural wetlands [13,14].

www.lter-europe.net
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In this paper, we assess the applicability of UAV borne multispectral cameras for fast mapping of
the ecological state of two LTER wetlands following the ecological integrity framework. We evaluate
several indices proposed to retrieve the necessary information to assess the inundation level, the plant
and open water cover, plant height, and water turbidity and depth. We confirm that the derived
maps can contribute to enhance and enlarge the area to be used as ground-truth data for satellite
remote sensing images (in this case, we used Sentinel-2 images). The easiness and high performance of
multispectral cameras on board of fixed wing UAV is demonstrated while offering fast EI assessment
and ground-truth for satellite remote sensing images.

2. Study Sites and Conservation Issues

2.1. The Doñana LTSER Platform

The Doñana LTSER Platform is located SW of Spain (Figure 1c). It is a UNESCO Biosphere Reserve,
a Ramsar Site, and a Natural World Heritage Site. It includes the largest wetland in Western Europe and
a large dune ecosystem with its respective shoreline and representative terrestrial plant communities.
The area is home to many species, including the Iberian lynx and the imperial eagle. The Doñana
marshes play a critical role as a stopover, breeding and wintering point for thousands of European,
Iberian and African birds. The long-term ecological monitoring program focuses on threatened species
and habitats and uses a multi-scale approach [15]. Conservation objectives include the preservation
of critically endangered species, the abundance of waterfowl, and the protection of Mediterranean
wetlands and terrestrial ecosystems. Data are systematically collected on vegetation, threatened flora,
limnology, mammals, birds, amphibians, and reptiles in an integrative way [4]. Doñana marshes,
which cover an extent of 260 km2, provide important ecosystem services such as aesthetic, spiritual,
scientific, and eco-tourism provided by waterbirds under the cultural domain or grazing for cattle
under the provisioning domain and nutrient cycling and water purification as regulating or supporting
services. [16,17]. So, mapping inundation levels, hydroperiod, water turbidity and depth, together
with aquatic plant cover becomes essential to characterize ‘within-habitat structure’, ‘habitat cover’,
or ‘water quality’.

2.2. The Braila Island LTSER Platform

The Braila Island LTSER platform is located in the small island of Braila in the Danube River,
southeast Romania (Figure 1b). The Small Island of Braila is especially rich in bird species. Together
with the coastal Danube Delta, the wetland system is an important stepping stone for bird migration
routes in southeastern Europe. This socio-ecological system is inhabited by near 300,000 people and
comprises heavily modified ecosystems (e.g., Big Island of Braila) but also systems under a natural
functional regime (e.g., Small Island of Braila), being of a crucial natural and socio-economical value.
Most of the area has been drained for agricultural purposes. As a consequence, connectivity between
the Danube and the floodplains is very limited [18]. The Danube river in the Braila Islands section has
been ranked as a heavily modified water body according to criteria 2.1 (embankment works) due to
the hydro-technical works on 79% of the river stretch sector and a candidate to “heavily modified”
according with the WFD criteria 2.2 (regulation works) as a result of dredging of 21% of the river bed
for intensive navigation. The main remnant of the natural floodplains consists in the wetlands from
the Small Island of Braila Natural Park with a total surface of 210 km2 and the floodplains between
the riverbanks and dikes of almost 93 km2 [19]. Water quality in this stretch of the Danube River is
also rated as moderate. The main pollution sources are agriculture, industry, navigation, and domestic
households. Also in Braila Island, periodic mapping of inundation levels, water turbidity and aquatic
plant cover as well as floodplain tree cover are crucial to identify sudden changes in management
affecting flooding.
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Figure 1. (a) Location of the 28 LTSER platforms in Europe on top of biogeographical regions 
(modified from Mirtl et al. [9]). Many more have been created in other LTER regional networks [20]. 
(b) Zoom in at Braila Island LTSER platform limits (yellow line) and the study area where we carried 
out the UAV flight (green square). (c) Zoom in at Doñana LTSER platform limits (yellow line) and the 
study area (red line) 
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components of processes (input, output, storage) are related to energy, matter and water balances. 
Structural and process components are interrelated and may be used to reflect states, changes and 
pressures enabling fast assessment of the protected area. However, although the recent work by 
Haase et al. [5] conveys the links between EI indicators and the essential biodiversity variables (EBV) 
[21], there is still much work to do in order to retrieve such valuable information using remote 
sensing tools [22,23]. 

In our case, we are dealing with rapid assessment of wetlands sharing similar pressures and 
drivers. As water is the main agent defining states, the most significant indicator is water presence or 
inundation level. Water presence or absence in the wetlands is essentially informative to water input 
at the water budget component of processes in the EI framework (Table 1). While revisiting the same 
place, hydroperiod can be easily retrieved as a function of inundation residence through time, 
informing on water storage for the wetland. Table 1 shows some examples of remote sensing 

Figure 1. (a) Location of the 28 LTSER platforms in Europe on top of biogeographical regions (modified
from Mirtl et al. [9]). Many more have been created in other LTER regional networks [20]. (b) Zoom in
at Braila Island LTSER platform limits (yellow line) and the study area where we carried out the UAV
flight (green square). (c) Zoom in at Doñana LTSER platform limits (yellow line) and the study area
(red line).

3. Materials and Methods

3.1. Practical Remote Sensing Indicators for Rapid Ecological Integrity (EI) Assessment of Wetlands

Structural EI components are based on biotic diversity and abiotic heterogeneity. The components
of processes (input, output, storage) are related to energy, matter and water balances. Structural and
process components are interrelated and may be used to reflect states, changes and pressures enabling
fast assessment of the protected area. However, although the recent work by Haase et al. [5] conveys
the links between EI indicators and the essential biodiversity variables (EBV) [21], there is still much
work to do in order to retrieve such valuable information using remote sensing tools [22,23].

In our case, we are dealing with rapid assessment of wetlands sharing similar pressures and
drivers. As water is the main agent defining states, the most significant indicator is water presence
or inundation level. Water presence or absence in the wetlands is essentially informative to water
input at the water budget component of processes in the EI framework (Table 1). While revisiting
the same place, hydroperiod can be easily retrieved as a function of inundation residence through
time, informing on water storage for the wetland. Table 1 shows some examples of remote sensing
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indicators, which can be easily mapped and directly related to EI indicators in wetlands (rivers, lakes
or coastal shallow wetlands). Some references are also provided, although mostly based on satellite
remote sensing we include many of them using UAVs borne sensors. Many more references on every
indicator are available in the literature.

Table 1. Examples and references of remote sensing applications related to EI indicators in wetlands.
Those in red were used in this study. Modified from Haase et al. [5].

Elements of
Ecological
Integrity

Indicators of
Ecological integrity Examples for Remote Sensing Indicators References

Aquatic plant cover mapping (emergent, floating, submerged) [24–26]

Floodplain forest species mapping [27,28]Flora Diversity

Alien species mapping [29–32]

Productivity estimates in birds colonies [33,34]

Animals abundance estimates with thermal mapping [35–37]Fauna Diversity

Input for Species Distribution [38–40]

Aquatic plant height [41,42]

Land use mapping in catchment [43]

Biotic Diversity

Within Habitat
Structure

Landscape indicators (connectivity, fragmentation) [44]

Water turbidity [45,46]

Water delineation, water depth [45,47,48]Water
Water temperature [49]

Water vapour content [50]Atmosphere
Net radiation [51]

St
ru

ct
ur

es

Abiotic
Heterogeneity

Habitat Digital terrain models [52,53]

Input Fraction absorbed of Photoshynthetic Active Radiation
(FaPAR) [54,55]

Chlorophyll concentration in open water bodies [56,57]

Net Primary Production [58,59]Storage

Phenology [60]

Albedo [61]

Energy Budget

Output
Heat Flux (SEB models) [62]

Water colour as a proxy for nutrients availability [63]

Algal blooms [64]Input
Sedimentation processes

Storage Aquatic plants biomass [16,65]
Matter Budget

Output Mapping of Grazing intensity

Input Inundation mapping [66]

Hydroperiod [67]
Storage

Water level estimated from water depth

Pr
oc

es
se

s

Water Budget

Output Evapotranspiration [68]

3.2. Multispectral Camera, UAV Mission Planning, and Image Processing

Among the wide offer of drones and cameras, we selected the eBee solution consisting of a Parrot
Sequoia multispectral camera integrated in the eBee fixed wing UAV [69]. The choice was based both
on the spectral bands (b1 green -550@40nm-, b2 red -660@40nm-, b3 red edge -735@10nm- and b4 near
infrared -790@40nm-) provided by Parrot Sequoia and the large flying extent provided by the eBee
plane (up to 40 ha in one single flight of 25′, with flight height 120 m and pixel size 11 cm). Additionally,
sequoia camera brings a sensor of irradiance in the upper side of the sensor which is concurrently
capturing irradiance while taking pictures [70] and a RGB sensor of higher resolution. A calibration
panel is provided with every unit to be pictured before flight allowing for bands reflectance calculation
after flight [71].
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Missions over Doñana marshes in Doñana LTSER platform and Braila LTSER platform were
designed to cover an inundation gradient (Figure 2). Both sites were flown with clear sky conditions
around 12 UTC at the maximum legal altitude (120 m above the terrain), perpendicular to the dominant
wind direction and beyond-visual-line-of-sight (BVLOS). In the case of Doñana marshes, the flight
covered the ecotone area between the sandy substrates and the marsh with variable inundation levels
and aquatic plant cover (Figure 2a). In order to guarantee safe and dry operation we took-off and
landed on the sandy substrates of the surrounding area. As the Small Island of Braila can only be
accessed by boat and is covered by dense floodplain forests, flight mission was designed according to
such constraints. Therefore, take-off and landing operations were carried out from the opposite river
bank (Figure 2b). Doñana flight was accomplished on 22 April 2017 and lasted for 25 minutes. Braila
flight took 27 minutes and was acquired on 1 August 2017.
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Figure 2. UAV flight missions at (a) Doñana marshes and (b) Small Island of Braila. Image courtesy of
2018 Google©.

Radiometric calibration was simply achieved by reflectance calculation according to radiance
coefficients and irradiance measured at every picture center [72]. Pictures are geotagged with the
SenseFly eMotion software using the UAV flight logs and the set of pictures were introduced into
Pix4D© software to be stitched and generate a multispectral orthomosaic together with digital surface
model [73]. Figure 3 shows the general workflow of the study. Ground control points (GCP) for
geometric correction could not be established because inside the marshes we could not find any valid
lineal or conspicuous element to be used as reference in the flight area and we realized that the use of
artificial targets (made of canvas fabric) once placed over water were easily displaced by wind. Visual
geometric validation was carried out with the available high resolution images for every site (Google
satellite or Bing satellite) with recognizable features such as tree/shrub canopies, paths and fences at
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the edge of the marsh. Absolute root-mean-square error (RMSE) was calculated using seven visually
recognizable points in both layers.Drones 2018, 2, x FOR PEER REVIEW  7 of 20 
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3.3. Ground-Truth Sampling, Accuracy Assessment, and Remote Sensing Wetland Indicators Mapping

In order to assess UAV mapping accuracy we carried out field sampling over the Doñana marsh
study area immediately after the flight and Sentinel-2 image acquisition of the day. Ground-truth
was collected by walking the marshes following predesigned regular transects to maximize the total
area sampled across different inundated areas (Figure 4). Sampling points were located every 60 m in
visually homogeneous sites at least for a radius of 15 m. Different wetland indicators were collected at
every sampling point being originally representative of the 30 × 30 m Landsat TM and ETM+ pixel
size according to Díaz-Delgado et al. [67] methodology being also valid for Sentinel-2 10 × 10 m pixel
size. We recorded data contributing to EI indicators such as water turbidity, water depth, percentage
of bare ground, aquatic plant and open water cover, and plant species abundance and dominance
(Table 2). Geolocation of every point was recorded by means of PDA-GPS units with less than 3.3 m
horizontal position error on average.
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Table 2. RS wetland indicators collected as ground-truth with their categories and the spectral bands
and indices used in this study.

RS Wetland Indicator Categories/Range Spectral Bands/Indices

Water turbidity Continuous (1.41–471) Water turbidity index (WTI [46])
Normalized difference water index (NDWI [47])

Water depth Continuous (0–57) Normalized difference red edge (NDRE [74])

Plant cover per plant type
(emergent) 0%, 1–5%, 5–25%, 25–75%, >75% Normalized difference vegetation index (NDVI [75])

Normalized difference red edge (NDRE)

Plant height Continuous (3-150) Green band, vegetation height model (VHM)

Percentage of open water 0%, 1–5%, 5–25%, 25–75%, >75% NIR band

Inundation Non-inundated and Inundated NIR band

Dry bare-ground cover 0%, 1–5%, 5–25%, 25–75%, >75% Not tested

Plant type Emergent, floating, submerged, algae Not tested

Field data was used to analyze statistical relationships between Sequoia spectral bands and
different spectral indices (Table 2) applicable to retrieve wetlands EI indicators.

A random selection of 70% of ground data were used to explore linear modeling and a set of 30%
to independently test accuracy of every model. The assessment was based on the values of coefficient
of determination, R2 and RMSE. Accordingly, we used the best lineal fit to map the tested wetland
indicators. For inundation mapping we applied regression tree technique to discriminate between
inundated and non-inundated classes based on Sequoia NIR band reflectance values [67]. In this case,
classification accuracy was assessed with overall agreement (OA) and Kappa index. For plant height
we also explored the relationship with vegetation height model (VHM) obtained from the subtraction
of digital surface model (DSM) and digital terrain model (DTM) as applied by Bendig et al. [76]. DSM
and DTM are generated from the point cloud by Pix4D software using the photograms of the RGB
camera [77].

Finally, we assessed the discriminative ability of Sequoia multispectral bands to separate spectral
signatures of the most common dominant aquatic vegetation species including emergent, floating,
and submerged plants. We performed a separability analysis to assess the best band to discriminate
among the different pairs of aquatic plant species. For this purpose, we used the normalized distance
Z [78] which provides high values for the most different compared species.

3.4. Reflectance Comparison with Satellite Images

Both drone missions were set to be coincident with Sentinel-2 (S2) MSI acquisitions over the study
sites. Thus, S2 images were available for the same dates such as 22 April for Doñana and 1 August for
Small Island of Braila. S2 images were downloaded by using the semi-automatic classification (SAC)
plug-in implemented in QGIS [79]. An atmospheric correction is carried out in the pre-processing
of the S2 images based on the basic dark-object-subtract (DOS) technique, inspired in Chavez [80]
and Moran et al. [81]. DOS method approximates the path radiance value of a given band from the
minimum value of the histogram (dark object), assuming an intrinsic reflectance of the darkest object
(1%). The rest of the radiance received by the satellite sensor proceeds from the atmospheric path,
and must be then subtracted from every pixel before dividing the at-sensor spectral radiance by the
irradiance. The model assumes that the transmittance is 1. The SAC-QGIS method is quick and simple,
fully image-based, avoiding the need for atmospheric auxiliary data to perform the correction. It does
not account for topographic effects, a characteristic that is not relevant in the present study due to the
flat morphology of the study area.
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Ground-truth points were used to compare Doñana Sequoia and S2 multispectral bands (Figure 3).
The S2 bands selected for comparison with Sequoia bands were the most similar in terms of spectral
resolution: B3 (560@45 nm), B4 (665@38 nm), B6 (740@18 nm), and B7 (783@28 nm). Bands 6 and 7 with
original pixel size of 20 m were resampled to the B3 and B4 spatial resolution (10 m). Assessment was
carried out by comparing R2 and RMSE values for band reflectance relationships (Figure 3). Reflectance
for Sequoia bands was obtained calculating the average of the pixels contained in one S2 pixel.

3.5. Upscaling of Ground-Truth Data

An upscaling essay was carried out to extend the information collected from ground-truth data
to the whole S2 image. We applied a segmentation on Sequoia multispectral orthomosaic. Sequoia
multispectral image was segmented using the four spectral bands using ‘segment mean shift’ available
in ArcGIS with the following specs: spectral detail 15.5, spatial detail 15, minimum segment size 20
pixels (2.60 m). Then we made a spatial assignation of ground point data to the whole extension of the
resulting spatially and spectrally homogeneous segments. Therefore, we used the labeled segments
to build regression tree for inundation mapping but this time using S2 spectral data from the pixels
inside the segments. The optimal threshold value was used to map inundation for the full S2 scene.
Overall agreement and kappa index were used as indicators for accuracy assessment.

4. Results

4.1. Geometric Accuracy of UAV Multispectral Orthomosaics

Table 3 shows the geometric characteristics of every mission. Despite the fact we could not
set up GCPs, the absolute root-mean-square errors (RMSE) of the orthomosaics were below 40 cm.
Such values are still useful to assess the RS wetlands indicators as a function of ground-truth data
collected to be homogeneous in 15 m around the point [67].

Figure 5 shows a visual assessment of geometric accuracy for the Doñana flight. Several distance
measurements between both layers in recognizable objects revealed geometric matching below 0.40 m.
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Table 3. Geometric characteristics of the UAV missions carried out over Doñana and Braila.

Flight Characteristics Doñana Braila

Ground sampling distance (cm) 12.85 14.03
Area covered (ha) 88.75 91.71
Number of images 1712 1380
Lateral overlap (%) 60 60

Longitudinal overlap (%) 80 80
Absolute RMS error (cm) 34 35.5
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Figure 5. Overlay showing the edge of Sequoia multispectral orthomosaic on top of Bing Satellite in an
area where two tracks and plant canopies were used to visually check geometric accuracy.

The eBee plane travelled a total distance of 15.5 km over the Doñana study area and 12.5 km
across the Small Island of Braila.

4.2. Spectral Modeling of Remote Sensing Wetlands Indicators

A total of 73 ground-truth points out of 75 collected in the field, were finally used to analyze
linear relationships between Parrot Sequoia bands and different spectral indices with the wetlands
RS indicators. Figure 6 shows some of the resulting maps by implementing the most significant
relationships found for several RS indicators.

While Sequoia NDRE (Table 2) showed a significant and positive linear relationship with percent
cover of emergent aquatic plants (R2 = 0.67; Figure 6a), plant height of these helophytes showed a
significant but very low negative correlation with the Sequoia green band. Vegetation height from
the subtraction of digital surface and terrain models did not show a significant relationship (R2 = 0.01,
p > 0.1). The best predictor for percentage of open water was found to be the NIR band (Sequoia band 4)
showing a significant linear relationship (R2 = 0.46, Figure 6b) as expected according to the extinction of
this wavelength in water bodies (Figure 6). However, water depth variation was significantly explained
by NDRE but in a very weak manner (R2 = 0.36; RMSE = 13 cm) so we did not applied it.

Water turbidity variability was explored with visible bands and indices showing a significant and
positive relationship only for open water areas (>50% open water) with NDWI better than the one
with WTI. Accordingly, we applied the mapping model by using the classes >50% with percentage of
open water (Figure 6c).
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overflown area in Doñana marshes.

Regression tree optimally converged to 0.23 as the optimal NIR (Sequoia band 4) reflectance
threshold to discriminate inundated from non-inundated areas (Figure 6).

While assessing spectral signatures of the most common aquatic plant species, most of them
may easily be separated (Figure 7), specifically emergent aquatic plants such as grasses or saltmarsh
bulrush (Bolboschoenus maritimus) versus floating aquatic species as Ranunculus peltatus. However,
the less abundant species such as Eleocharis palustris and Damasonium alisma show spectral confusion
with saltmarsh bulrush. The presence of the alien species Azolla filiculoides under saltmarsh bulrush
canopy did not change the average reflectance of the helophyte alone.

According to separability analysis the best bands to discriminate among all the different pairs
of species comparisons were the red edge band (Average Z = 3.03) and NIR band (Average Z = 2.27).
The best discrimination was found between Ranunculus and grasses and between Ranunculus and the
bulrush (average Z = 3.99 and average Z = 3.16). The less informative band was found to be the red
band (average Z = 1.06) and the most difficult pair of species to be discriminated among each other
were bulrush and bulrush with Azolla, and bulrush with Azolla and Ranunculus.
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Figure 7. Mean spectral signatures of the different aquatic plant species found in the Doñana study area.

4.3. Reflectance Comparison with S2 Images

Visual assessment of overlay between S2 images and Sequoia spectral orthomosaics showed
good color agreement both for Doñana and Braila study areas (Figure 4). Some linear elements, such
as fences and buildings, were used to assess geometric matching which was always below one S2
pixel size.

Table 4 shows the values of the coefficient of determination (R2) calculated band to band between
Sequoia and the corresponding S2 spectral bands. RMSE are also provided for comparisons purposes.

Table 4. Overall band-by-band R2 and RMSE values (% reflectance units) between the spectrally similar
Sequoia and S2 bands.

GREEN RED RED EDGE NIR

R2 0.68 0.61 0.65 0.70
RMSE 0.06 0.04 0.03 0.05

Although most of the bands show very high and positive correlation, there are still some
discrepancies between both sensors. Consistently RMSE values are low, so that reflectances from both
sensors can be compared despite having different spectral resolution.

4.4. Upscaling of Ground-Truth Information from Inundation to S2 Images

After the application of segmentation to the multispectral Sequoia orthomosaic we extended the
ground-truth point information to the segments containing such points. This procedure enlarged the
sampling area from 0.51 ha (51 points assigned by location to 51 S2 pixels used for modeling) up to
14.47 ha. We tested the classification of inundated areas by estimating the optimal threshold using the
regression tree method, this time with the equivalent NIR band for S2, i.e., band 7. Reflectance values
lower than 0.1964 were classified as inundated for the Doñana marsh area in the S2 scene (Figure 8).
Overall agreement was 74% and kappa index value was 0.48.



Drones 2019, 3, 3 13 of 20

Drones 2018, 2, x FOR PEER REVIEW  13 of 20 

 
Figure 8. Upscaling process followed for the inundation mapping in Doñana LTSER wetlands. (a) 
Segments map resulting from multispectral Sequoia image showing those intercepted by 
ground-truth points (yellow polygons). (b) Location of selected segments (red extrapolated as 
inundated and green as non-inundated from ground-truth points) on top of RGB composite from S2 
bands 7, 6, and 4. (c) Resulting inundation map for Doñana marshes in the S2 scene. eBee picture 
courtesy of Sensefly from Parrot Group®. Sentinel-2 image downloaded from Wikimedia Commons. 

4. Discussion 

Our work has demonstrated the applicability of multispectral mapping by UAVs in retrieving 
interesting remote sensing (RS) indicators relevant to assess ecological integrity (EI) in wetlands. 
Although a detailed set of EI indicators have been proposed to be used in LTER sites, here we 
suggest a set of practical remote sensing indicators and variables that can be used to evaluate 
wetlands condition by means of UAVs. The two studied wetlands are subject to similar drivers and 
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variables, percent plant cover of aquatic plants or floodplain trees is also a good EI indicator 
informing on both biotic diversity and within habitat diversity. In our case, the rapid assessment of 
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Figure 8. Upscaling process followed for the inundation mapping in Doñana LTSER wetlands.
(a) Segments map resulting from multispectral Sequoia image showing those intercepted by
ground-truth points (yellow polygons). (b) Location of selected segments (red extrapolated as
inundated and green as non-inundated from ground-truth points) on top of RGB composite from S2
bands 7, 6, and 4. (c) Resulting inundation map for Doñana marshes in the S2 scene. eBee picture
courtesy of Sensefly from Parrot Group®. Sentinel-2 image downloaded from Wikimedia Commons.

5. Discussion

Our work has demonstrated the applicability of multispectral mapping by UAVs in retrieving
interesting remote sensing (RS) indicators relevant to assess ecological integrity (EI) in wetlands.
Although a detailed set of EI indicators have been proposed to be used in LTER sites, here we suggest a
set of practical remote sensing indicators and variables that can be used to evaluate wetlands condition
by means of UAVs. The two studied wetlands are subject to similar drivers and pressures leading
to changes in inundation level, hydroperiod or water quality [82]. Linked to these variables, percent
plant cover of aquatic plants or floodplain trees is also a good EI indicator informing on both biotic
diversity and within habitat diversity. In our case, the rapid assessment of inundation, water turbidity,
percent plant cover and percentage of open water was very useful for managers in decision making in
relation to Azolla filiculoides distribution which needs to be periodically assessed [29,83].

Aside from the good performance of UAV mapping, the study also demonstrates the rapid
operation provided by this type of integrated solutions such as SenseFly eBee equipped with Parrot
Sequoia multispectral camera. Mission planning can be designed just the same day of the flight and
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modified according to weather conditions, specifically wind direction and speed. The only constraint
being the necessity of open and clear areas for landing which became evident while flying in the
Small Island of Braila. Its low weight and manageability make of it very easy equipment to be
transported even from one country to another. In addition, geometric correction can be satisfactory
in the cases where no ground control points can be set, such as wetlands. The use of ground control
points representative of large homogeneous areas reduces the effect of geometric error on thematic
accuracy [67].

Through the many empirical modeling we found significant linear relationships between Sequoia
spectral bands and indices and several RS wetlands indicators. The most informative band was band
4 in the NIR region. In general, Red and Green Sequoia bands were not informative for any of the
analyses what might be linked to the saturation issues found for these bands by González-Piqueras et
al. [84]. NIR was successfully related to percent open water and water depth while the spectral index
NDRE was highly correlated with percentage of aquatic emergent plant cover, as reported in few other
studies [85,86] but very weakly with water depth. Aquatic emergent plant height did only show low
significant fits with the green band and not with the vegetation height model (VHM). Although VHM
has been shown to work for crops [76], further investigation is required to enhance the application on
aquatic vegetation. Aquatic emergent plants can be found with different plant densities and percent
cover what might affect plant height retrieval from image matching [77]. Water turbidity was also
significantly modeled through a linear relationship with the spectral index NDWI as already suggested
by McFeeters [47] when it was proposed. However, only accurate results were found while applied on
inundated areas with percentage open water higher than 50%. We used these models to generate the
mapping for the remote sensing wetland indicators over the whole overflown areas (Figure 6).

Few aquatic plant species showed high spectral separability mainly using Red Edge and NIR
bands [56]. The spectral signature of floating macrophytes was clearly separable from helophytes and
grasses. However, the mapping of Azolla filiculoides, the alien invasive species in the understorey of
bulrush was not noticeable for Sequoia bands. Previous studies have shown the difficulty of mapping
aquatic ferns under a canopy of bulrush but the capability of identifying them while floating on
open waters [15,29]. Although our research shows a high spectral separability between emergent and
floating species, further investigation has to be done in examining the relationship of these practical
RS wetlands indicators with the Essential Biodiversity Variables and Ecosystem Services [87].

Another relevant role played by UAV multispectral mapping evidenced in our work is the
feasibility of enlarging the set of ground-truth data in such inaccessible or remote areas. By overflying
areas where few ground points are sampled, based on spectral relationships as shown here, we can
easily expand the ground-truth area to the whole flown area. Thus, we may easily increase sampling
size for empirical modeling with satellite remote sensing imagery. In this study, we used the
segmentation of multispectral orthomosaic from the UAV flight to enlarge ground-truth from the
sampling points to the segments containing them. We only applied this upscaling for inundation
mapping with Sentinel-2 images according to management request, although other RS wetland
indicators might be upscaled too. The procedure allowed to accurately mapping inundation occurrence
in Doñana marshes. While many upscaling studies have been carried out for crops [12,88] only few
have been tested for natural vegetation [14,89,90] and none for aquatic vegetation. A different approach
might be applied as well by directly using pixel values from the mapped wetland EI indicators as
ground-truth data for the S2 scene. However, an estimation of the propagation error would be
desirable for such an option as well as and assessment of the optimal resampling method from Sequoia
to S2 pixels.

While scaling up ground-truth information, attention should be paid in the choice of the
atmospheric correction model to be applied on satellite images. For instance, here we selected
QGIS-SAC model based on DOS which may result in reflectance bias in comparison to other methods
such as physical modeling or pseudo-invariant areas [91]. Here we found a close band-to-band
relationship between Sequoia and S2 reflectances, but still a 40% unexplained variance that might be
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due to such biases or to the differences in spectral resolution [92]. These findings have necessarily to be
refined by using handheld spectroradiometers in coincidence with the flight campaigns and satellite
image acquisition.

We also want to emphasize the possibility to add temporal dimension to this kind of rapid
assessments. Any mission might be repeated with the same planning during the inundation period or
after sudden changes. These frequent missions will clearly enhance the data to model other relevant
RS wetlands indicators such as hydroperiod [67]. In addition, recovery processes after disturbances
can also be evidenced using a time series of UAV multispectral images [93,94].

6. Conclusions

In this paper, we confirmed the valuable and fast applicability of multispectral images captured
by UAVs over two LTSER wetland sites in providing detailed mapping of inundation levels, water
turbidity, and depth as well as aquatic plant cover. The resulting maps can play as detailed inputs to
assess habitat diversity, wetlands dynamics, and ecosystem productivity and updated as frequently
requested by managers or scientists. UAVs can easily reach remote areas with short-time flights
resulting in an enlargement of the surveyed area (while allowed by local authorities). This advantage
can definitely contribute to increase the area for ground-truth purposes when used for upscaling
to satellite images. We tested the coherence between Sentinel-2 MSI bands and Parrot Sequoia
showing the close multispectral relationship what makes possible the transference of UAV-scale
to satellite-scale models.
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