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Abstract: Although many climate research experiments are providing valuable data, long-term
measurements are not always affordable. In the last decades, several facilities have secured long-term
experiments, but few studies have incorporated spatial and scale effects. Most of them have been
implemented in experimental agricultural fields but none for ecological studies. Scale effects can be
assessed using remote sensing images from space or airborne platforms. Unmanned aerial vehicles
(UAVs) are contributing to an increased spatial resolution, as well as becoming the intermediate
scale between ground measurements and satellite/airborne image data. In this paper we assess
the applicability of UAV-borne multispectral images to provide complementary experimental data
collected at point scale (field sampling) in a long-term rain manipulation experiment located at the
Kiskun Long-Term Socio-Ecological Research (LTSER) site named ExDRain to assess the effects on
grassland vegetation. Two multispectral sensors were compared at different scales, the Parrot Sequoia
camera on board a UAV and the portable Cropscan spectroradiometer. The NDVI values were used
to assess the effect of plastic roofs and a proportional reduction effect was found for Sequoia-derived
NDVI values. Acceptable and significant positive relationships were found between both sensors at
different scales, being stronger at Cropscan measurement scale. Differences found at plot scale might
be due to heterogeneous responses to treatments. Spatial variability analysis pointed out a more
homogeneous response for plots submitted to severe and moderate drought. More investigation is
needed to address the possible effect of species abundance on NDVI at plot scale contributing to a
more consistent representation of ground measurements. The feasibility of carrying out systematic
UAV flights coincident or close to ground campaigns will certainly reveal the consistency of the
observed spatial patterns in the long run.

Keywords: unmanned aerial vehicles (UAVs); field experiments; LTSER; drought; multiscale
approach; NDVI; Sequoia

1. Introduction

Climate change effects on ecosystems are being investigated at different spatial and temporal
scales. Both observational and experimental approaches are being applied to identify trends,
shifts and changes for different ecological indicators. Among the many initiatives, the Long-Term
Ecological Research (LTER) networks are informing about the factors driving changes in biodiversity,
the self-organizing capacity of ecosystems, the effects of rare events and disturbances, the impacts
of stressors on ecosystem function and the interactions between short- and long-term trends [1].
These LTER networks rely on site-based monitoring and research by providing data and detecting
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trends identifying drivers and pressures on ecosystems and biota. The LTER networks” major
contribution is the enlargement of temporal and spatial scales to test global research hypotheses. In this
case, as in the NEON [2] and GCOS [3] networks, observational approach is the dominant method.

Experimental designs have been widely implemented to test research hypothesis in relation to
climate change. Typically, field experiments are designed to replicate conditions at which single and
multi-factor effects occur. Factors are controlled and effects are measured during a predetermined
period or in few cases for the long run such as ANAEE [4] or Drought-Net [5]. At plot scale, climate
manipulation experiments are a particularly effective way to study the ecological consequences of
climate change [6]. However, they are normally conceived to collect measurements at a certain spatial
scale, usually related to plot size or sampling method [4]. Only few experiments are planned which
follow a multiscale approach. Historical examples are the Oregon Transect Ecosystem Research
Project [7] or the HIWATER [8] which used remote sensing images together with ground-truth data.
Nevertheless, the experimental ecologist is hard-pressed to find specific guidance for the design,
execution and analysis of experiments to produce results that account for scale-dependent effects [9].

Remote sensing has traditionally been proposed as the essential tool to scale down the processes
observed with the help of the images provided either by Earth observation satellites or airborne
cameras/sensors and ground measurements. While covering the gradient from global to local scales,
remote sensing has been providing critical information to map changes and trends [10]. In the last
decades, remote sensing scientists are thoroughly investigating upscaling procedures to integrate
multiscale information for any observation of ecological relevance [11,12]. Major advances have
been reached in precision farming [13] mostly by using thermal, multi and hyperspectral airborne
sensors. However, there is a lack of research in multiscale approaches using remote sensing for
long-term ecological and climate change experiments [4]. There are many high and very high-resolution
sensors on board of Earth observation satellites providing images with spatial resolution going from
a few meters to tens of centimetres. Such availability enhances the multiscale approach but the
high-resolution images are costly and have to be pre-ordered and acquired over the study area. High-,
medium- and low-resolution scenes are periodically acquired by the orbiting satellites collecting
a time series of images illustrating temporal changes and trends at the landscape scale. The fine
resolution satellites or airborne campaigns may help in detailed habitat mapping, for instance while
dramatically increasing costs. Yet, Unmanned Aerial Vehicles (UAVs) can be flown over the same area
as frequently as required, only constrained by weather conditions or legislation, becoming a suitable
tool to map either elements or processes. As a major trait, UAVs provide the opportunity to define
spatial resolution as detailed as requested according to the mission objectives [14]. Remote sensing
UAV is becoming very useful in cropland monitoring [15,16] and precision farming [17]. It is also being
widely applied for environmental assessment [18] and similar studies on grasslands have addressed
sensor comparison for leaf area index estimation with ground measurements and UAV acquisitions [19].
Few studies are focusing on upscaling essential variables from natural vegetation making use of UAV
and multispectral sensors [14,20].

As an expected consequence of global warming, extreme events are becoming more frequent
across ecosystems including extreme and sudden droughts causing vegetation die-offs and community
shifts [21]. Extreme drought events can reduce primary production [22] and community functional
diversity [23]. At plot scale, climate manipulation experiments are particularly effective way to study
ecological consequences of climate change, especially long-term multi-site field experiments [6,24].
This is the case of the ExDRain experiment set out at Kiskun LTER station where rain manipulation
is applied since 2014 for several plots after the application of extreme drought event for some of
them [25]. Ecosystem recovery is assessed by periodically measuring plant cover and biomass using
NDVI (Normalized Difference Vegetation Index, [26]) collected using a portable CropScan MSR87
multispectral radiometer (Cropscan, Inc., Rochester, MN, USA) as a non-destructive method [27].
Cropscan has 8 narrow (10 nm bandwidth) spectral bands centred at 460, 510, 560, 610, 660, 710, 760
and 810 nm (bands 660 and 810 are usually used for NDVI calculation). However, the plant community
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is composed by several grassland species and the response to treatments is very heterogeneous [6] due
to different phenology and structure. Plots are larger than Cropscan footprint measurement and UAV
complementary information might help in providing ancillary information enhancing the assessment
on treatments effects.

In this work we assess the applicability of UAV-borne multispectral and RGB (Red-Green-Blue)
cameras to enhance experimental data by providing complementary information. We check the
correlation between data collected at point (field sampling) and plot (UAV sampling) scales and
analyse new observed patterns in relation to the effects of the ExDRain experiment on the vegetation.
We question whether NDVI-derived from UAV multispectral images acquired at lower scale are in
coherence with Cropscan point measurements. On the other hand, we examine the information
provided by UAV images and assess the effects of experimental treatments at plot scale, by which we
hypothesize that effects at different scales may be different and can enhance the interpretation of the
observed results.

2. Study Site and Experimental Design

2.1. Kiskun LTER Site

The Kiskun LTER site is located in the Kiskunsdg National Park (46°52'N, 19°25'E) in a Pannonian
sand forest-steppe vegetation mosaic [25] of high plant diversity and nature protection value [28].
It is included into the Kiskun LTSER (Long-Term Socio-Ecological Research) platform (Figure 1).
The Kiskunsag region is located in Central Hungary covering 14,000 km?. It is an extremely
heterogeneous sandy area, consisting of arable fields, abandoned pastures, planted forests and
extensive natural and semi-natural habitats from xeric grasslands to salt marshes. The soil is calcaric
arenosol which enhances the semidesert character of the vegetation. Climate of the study area is
temperate continental. The vegetation period starts in April and finishes in October. Based on regional
30 years average values (1961-1990), mean annual temperature is 10.4 °C, mean monthly temperature
ranges from —1.9 °C in January to 21.1 °C in July, while mean annual precipitation is 505 mm with a
peak in June [29].

Kiskun LTER focuses on studying the effects of climate change (more extreme weather events and
longer vegetation periods) and land use change (abandonment of arable fields, decrease of grazing and
afforestation) on biodiversity as well as ecosystem functions and services in Kiskunsag. According to
climate change scenarios for Hungary, the frequency of extreme dry and wet years is expected to
increase in the study region [30].

2.2. ExDRain Experiment

The experimental area represents the sand grassland of the continental semiarid forest-steppe
biome of Central Europe. The purpose of the experiment is to investigate how extreme and moderate
events interact by observing their single and combined effects on plant cover, abundance and
biomass of the grassland species in the site. The experimental design takes the results of the
multi-site EU FP5 VULCAN and the EU FP7 INCREASE projects [24,31,32] into consideration. In our
study plots, we sampled open grassland patches of semi-arid perennial grassland dominated by C3
bunchgrasses. We study the ecosystem recovery following the extreme drought and how it is affected
by experimentally reduced or increased precipitation.

One-off extreme drought treatment was created by excluding precipitation for five months in
2014. Starting in 2015 and repeating in each summer, four levels of long-term precipitation change
are applied: (1) strong drought (2-months duration), (2) moderate drought (1-month), (3) control,
and (4) water addition (four times per year, one per month between May and August, ca. 100 mm
in total). The two (i.e., extreme and precipitation change) treatments are combined in a full factorial
design (2 x 4 = 8 treatment combinations), in six replications (Figure 1c,d) resulting in a total number
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of 48 plots of 3 x 3 m size. Exclusion is reached by covering with plastic the corresponding plots and
watering using irrigation diffusors (Figure 2).

Plant biomass was estimated by non-destructive field spectroscopy with a portable Cropscan
MSR87 multispectral radiometer (Cropscan, Inc., Rochester, MN, USA) measuring at the same time
incoming and reflected radiation. Cropscan measurements were taken always exactly at the same
location placing the sensor above the plots at a height of 1.5 m. With a field of view (FOV) of 28°, the
Cropscan samples a circular area of 0.44 m? (diameter: 0.75 m) and the distance between measurement
points of the neighbouring plots was 1 m. The frame allowed us to repeat the sampling of each plot
at the same position during the different measurement events. Plastic roofs were removed for every
Cropscan measurement event. The last measurement for this study took place during the week of 23
to 27 July 2018.

From red (660 nm) and near infrared (810 nm) Cropscan reflectance values bands, we calculated
NDVI . The NDVI provides an accurate proxy for plant aboveground green biomass estimation for
pioneering plant communities [27,33].

Kiskunsag, L
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Figure 1. (a) Location of the 16 first Long-Term Socio-Ecological Research (LTSER) platforms declared
in 2007 in Long-Term Ecological Research (LTER)-Europe [34] plus the three incorporated in 2010.
Nowadays, the number has increased to 31 [35] and more have been created in other LTER regional
networks [36]. (b) Location of Kiskun LTSER platform in Hungary (green area) and the ExDRain
experiment site (red dot). (c) Details of experimental area with the different treatment plots. (d) Plot
size and treatment legend by colours and crosses.
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Figure 2. Left picture shows the removable plastic roofs used to exclude from rainfall for drought

treatments in the ExDRain experiment and right picture the irrigating event for the watered plots.

3. Materials and Methods

3.1. UAV and Equipment

We used DJI Phantom 4+ quadcopter equipped with its original 4K 20 Mpix RGB CMOS camera
plus a special mount designed to bring the camera Parrot Sequoia (Figure 3). This multispectral sensor
captures images at 4 spectral bands (b1 green —550@40 nm, b2 red —660@40 nm, b3 red edge —735@10
nm and b4 near infrared —790@40 nm) with a vertical FOV of 48.5° in addition to an RGB sensor
which was shut off during this study. The Sequoia camera is connected to its own battery and provides
wireless connection to be accessed and programmed through a computer. Additionally, the Sequoia
camera brings a sensor of irradiance located in the upper part of the mount which is concurrently
capturing irradiance while taking pictures [37]. A calibration panel is provided with every Sequoia
camera to be pictured before flight allowing for bands’ reflectance calculation after flight [38].

Irradiance sensor

Battery pack
RGB camera

Sequoia camera

Figure 3. Unmanned Aerial Vehicle used for the study consisting of a DJI Phantom 4+ quadcopter
equipped with its 4K RGB camera and a specific mount for the Parrot Sequoia multispectral camera,
including both the camera itself and the sunshine sensor (original design from Zcopters).

3.2. Mission Planning and Geometric Processing

On 30 July at solar noon and with clear sky conditions we flew the UAV Phantom 4 Pro + equipped
with the Parrot Sequoia multispectral camera over the whole ExDRain area (0.31 ha from 3.86 ha total
flight area, Figure 4). One single flight of 14 minutes was carried out at 50 m above ground seeking
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to produce output images of 5.50 cm of nominal ground sampling distance (GSD) for Sequoia bands
and 1.43 for the RGB 4K camera. The flight was carried out at the lowest speed to increase platform
stability [39,40]. Radiometric calibration was simply achieved by reflectance calculation according to
radiance coefficients and irradiance measured at every picture centre [41]. Vignetting correction was
applied in the process. Mission planning was carried out using Pix4DMapper© software for Android
devices which allows for the design of grid missions and defining all flight parameters. Pictures lateral
and longitudinal overlap was defined as 80% both for DJI Phantom 4 Pro+ mission and for Sequoia
camera which calculates the corresponding time and distance between camera shots.

. Plot @ Cropscan footprint e Measurement location

Figure 4. Left image shows a false color RGB composite with near infrared-red edge-red Sequoia
bands with the overlay of plot limits, Cropscan sampling footprints and measurement location points.
Right image shows Normalized Difference Vegetation Index (NDVI) image calculated with Sequoia
near infrared and red bands evidencing the plots covered by plastic (darker plots).

We located 16 ground control points (GCPs) with a differential GPS providing centimetric
precision (20 cm on-site precision and 4 cm after post-processing) to improve geometric accuracy of the
outputs to be produced. Images are automatically geotagged by Sequoia camera and the set of pictures
were introduced into Pix4DMapper© software (Pix4D S.A., Lausanne, Switzerland) to be stitched
and generate a multispectral orthomosaic together with digital surface model [42]. Ground control
points are plotted on top of a point cloud at the intermediate step in the processing to provide a
3D Root Mean Square (RMS) error for the output. The NDVI image from Sequoia was generated
using near infraredand red bands (Figure 4). Additionally, we processed the images acquired by
the 4K RGB camera with a GSD of 1.43 cm to improve the geolocation of the periodical Cropscan
point measurements.

3.3. Ground-Truth Sampling and Assessment of Plastic Effect

Cropscan periodical measurements were carried out during the previous week to the UAV
flight when plastic roofs were removed. As data capture campaigns are too intensive and Cropscan
measurements have to be also acquired close to noon, we could not fly with UAV and Sequoia camera
on board exactly at the same time of acquisition. The experiment had to be strictly applied so that
plastic roofs were mounted during UAV flight.

Therefore, as half of the plots were covered with plastic to exclude rain, we collected spectral
signature of a calibration panel with Cropscan and Sequoia both above and below the plastic to assess
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plastic’s effect on reflectance and irradiance. Image processing and data download was started once
back at the office of the station.

Parallel ground measurements during UAV flight were also collected for several plots both with
CropScan spectroradiometer and Sequoia camera in order to compare both sensors for the similar
spectral wavelengths. These measurements were geolocated with sub-metric precision as well.

3.4. Multiscale Analysis and Spatial Variability

We compared NDVI Cropscan ground measurements for every plot with NDVI values from the
Sequoia multispectral orthomosaic at 3 scales:

1.  Pixel value at the point scale (n = 96).
Average value at the FOV scale (0.75 m diameter buffer around point measurements, 1 = 96).
3. Average value at the plot scale (3 x 3 m, n = 48).

The purpose of this analysis was to find the best related scale between both sensors and to assess
sensor comparison. We used the lineal coefficient of determination R? for every scale comparison.

Finally, we compared spatial NDVI variability using standard deviation, Moran and Shannon
Indices at plot scales taking advantage from the additional spatial information provided by
Sequoia multispectral orthomosaic. This analysis will enable us to assess plot spatial heterogeneity,
autocorrelation and how the Cropscan NDVI FOV measurements are related to Sequoia NDVI for
plots identified per treatment.

4. Results

4.1. Geometric Accuracy of UAV Multispectral and RGB Orthomosaics

Table 1 shows the geometric characteristics of the two produced orthomosaics. Absolute root mean
square errors (RMSEs) of the multispectral orthomosaic was below 1 pixel. However, it was bigger than
1 pixel for the RGB orthomosaic. Figure 4 shows a Sequoia false colour composite (NIR-RedEdge-Red)
of the ExDRain experimental area and the NDVI image.

Table 1. Geometric characteristics of the UAV missions carried out over Dofiana and Braila.

Flight Characteristics Multispectral RGB 4K Camera
Ground Sampling Distance (cm) 5.5 1.45
Number of images 1064 135
Absolute RMS error (cm) 4.8 2.5

Location of Cropscan point measurements were revised and re-located using reference elements
which were very conspicuous in both orthomosaics.

4.2. Plastic Effect

Spectral reflectance and irradiance captured above and below plastic roofs show overall lower
values while measured under plastic (Figure 5). The effect on the irradiance is higher than for
reflectance being magnified for short wavelengths.

The NDVI calculated from these measurements are higher for plastic covered plots when Cropscan
was used below the plastic (R2 =0.81,p < 0.01, n = 8). Nevertheless, the relationship was lineal and
underestimation was proportional to the measured values under plastic.
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Figure 5. Left chart shows irradiance values collected with Cropscan spectroradiometer above and
below plastic covered plots on a grey calibration panel. Right chart displays the corresponding
reflectance values.

4.3. Multiscale Comparison

Table 2 shows the coefficient of determination (R?) between the Cropscan and Sequoia NDVI
values at different scales. Results are shown for all plots together and separately for plastic covered
plots and uncovered ones. An acceptable positive and significant relationship was maintained
between both sensors at the different scales, being lower at plot scale and higher at FOV scale for
all measurements, covered and uncovered plots. Plastic covered plots systematically showed lower
Sequoia NDVI values although proportional to those measured below plastic cover.

Table 2. R? values between Cropscan and Sequoia NDVI values for the different measurement scales
(n = 96 for point and FOV measurements, 1 = 48 for plots). R? values between data from plastic covered
and uncovered plots are also provided (sample size is divided by two). All R? values were significant

atp <0.01.
Scales All Measurements Plastic Cover No Plastic
Point scale 0.43 0.31 0.37
FOV scale (circle, 40 cm radius) 0.46 0.41 0.65
Plot scale 0.38 0.21 0.33

Figure 6 shows the overall relationship between NDVI values of Cropscan and Sequoia at plot
scale (R? = 0.38, p < 0.01, n = 48) with different markers as a function of the treatment.

We assessed treatments effect on Sequoia and Cropscan NDVI values. Aggregated Cropscan
values (two FOV measurements per plot) were much more similar among treatments than Sequoia
NDVI values at plot scale (Figure 7). Values for the covered plots were lower which can be due
to the plastic effect but they still follow the measured trend by Cropscan, i.e., plots submitted to
moderate drought show higher values than those under severe drought treatment. Yet, drought
treatments significantly showed lower NDVI values than control and watered treatments (one sample
t-test t = 2.79, p < 0.01, n = 24). Plots submitted to extreme drought effect did not show significant
differences within treatment neither with Sequoia average NDVI values per plot nor with Cropscan
point measurements (Figure 7).
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Figure 6. Scatterplot of Cropscan and Sequoia NDVI values for all plots. Different markers are used to
distinguish among treatments. Linear fit is also shown (R? = 0.38, p < 0.01, n = 48).
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Figure 7. Boxplots of NDVI values from Cropscan and Sequoia plot measurements according to
experimental treatments: control/moderate/severe drought/rainfed. Boxplot (a) shows the values for
those plots that were not submitted to extreme drought in 2014 and boxplot (b) shows the values for
those plots submitted to extreme drought.

We also assessed spatial variability within plots since Sequoia data provides much more
information for every single plot than Cropscan. Figure 8 depicts the standard deviation for Sequoia
NDVI values per plot indicating more spatial variability within control and watered plots than for
plots submitted to moderate and severe drought.
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Figure 8. Boxplot of standard deviation for Sequoia NDVI values of ExDRain plots according to
treatments. Boxplot (a) shows the values for those plots that were not submitted to extreme drought in
2014 and boxplot (b) shows the values for those plots submitted to extreme drought.

Average Moran Index values per treatment calculated from Sequoia NDVI values per plot revealed
lower spatial autocorrelation for control and watered treatments than for both drought treatments
(Table 3). Spatial autocorrelation of control and watered plots is lower, and therefore plots appear more
heterogeneous in terms of NDVI variability. Conversely, either moderate or severe drought treatments
manifest a higher homogeneity in NDVI values which might indicate a more homogeneous response
to treatments. Yet, extreme drought event only is evidenced for severe drought treatment where the
plots with the two treatments show higher spatial autocorrelation or a more homogeneous response.
Shannon index did show a very low variability with a very similar pattern.

Table 3. Average Moran and Shannon Indices per treatment from NDVI Sequoia values at plot scale.

Treatment Extreme Drought Moran Index Shannon Index
C ) No 0.8522 10.3499
ontro Yes 0.8473 10.3530
No 0.9077 10.3525
Moderate drought Yes 0.9043 103478
Rai No 0.8440 10.3417
am Yes 0.8729 10.3522
No 0.8834 10.3462

Severe drought Yes 0.9195 10.3567

5. Discussion

Our study provides a first basis for the implementation of multiscale methodological approaches
on field experimental sites. Rapid and easy deployment and flight of UAVs equipped with multispectral
cameras can enhance and complement the results from these experiments by providing data from
surrounding pixels not measured in the experiment. In our case, the use of Sequoia multispectral
camera contributed to confirm the measured trends using Cropscan spectroradiometer at ground
scale. The NDVI values retrieved from Sequoia measurements were significantly related to Cropscan
measurements at different scales (Table 2), being weaker at plot scale and higher at FOV scale for
uncovered plots and for all measurements. A lower relationship at plot scale may be revealing not
necessarily an increase in sensor discrepancies but an influence of surrounding pixels in the treatment
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effect for the full plot. Such findings reveal a scale effect on treatments which has to be considered.
The use of drone multispectral images clearly enhances the information of treatments effects on
vegetation. So far, most of the multiscale approaches using UAVs have been applied in agricultural
studies [18], showing that vegetation indices derived from the use of UAVs are reliable for assessing
effects of experimental plots [43]. As UAVs are becoming widely available, its systematic use will
certainly complement the data collected at ground scale. Much work has been done over crops
evidencing the plausibility of upscaling essential information on crop health [15-17]. However, it
is crucial to understand the critical difference between crops and natural grasslands, as essentially
being manifested in the spatial distribution of individuals (homogeneous fields with similar growth
and health versus heterogeneous growth, phenology and foliar greenness) and different species
composition. Our main intention in this study was to show the spatial differences as a response to
experimental treatments as an enhancement of such information by using UAVs.

One big constraint of the study was the presence of plastic roofs over the treated plots. Plastic effect
on measurements consequently showed lower NDVI Sequoia values and higher Cropscan values
measured under the plastic cover (due to reduced irradiance). Transparent plastic-mulch film allows
visible lights to penetrate, but blocks outgoing long-wave radiation, and thus causes the greenhouse
effect [44]. Levin et al. [45] claimed that white and transparent plastic-mulch films have three
absorptions centred at 1218, 1732 and 2313 nm that are not affected by dust, rinse and surface factors.
In our case, we did not use any of these wavelengths and plastic effect can be considered as negligible
while making comparisons only among plastic covered plots.

Sequoia NDVI average values revealed much bigger differences between treatments than
Cropscan FOV measurements (Figure 5), but this effect cannot be separated from the plastic effect as
shown for Sequoia NDVI lower values. Significant differences are found between drought treatments
(severe and moderate) and control/watered treatments for Sequoia. Extreme drought effect was
evident neither with Cropscan nor with Sequoia measurements. These results are compliance with
major findings from the VULCAN/INCREASE experiment which revealed that recurring drought
treatment (precipitation exclusion) leads to mid-season reduction of aboveground biomass [6]. This is
coherent with the results obtained by using NDVI from multispectral Sequoia on board of UAV.

Species composition has also been assessed under ExDRain experiment and it changed
considerably in response to both extreme drought and long-term precipitation changes (unpublished
data). Although UAV mapping could not deal with species mapping in this case, plant species
variability might have an effect on NDVI values and therefore on spatial NDVI variability [46].
Actually, we were able to detect spatial variability within plots manifested for the treatments as more
homogeneous response in plots under drought treatment according to SD and Moran Autocorrelation
Index (Figure 8 and Table 3). Such finding may indicate heterogeneous responses to treatments based
on the NDVI values at plot scale which are not considered at Cropscan FOV scale of measurement.
Spatial variability might be due to different abundance on plant species and their spatial distribution
patterns within plots, but this has to be investigated. Sha et al. [19] found better estimates of Leaf
Area Index (LAI) values over sparsely vegetated areas as in our case. On the other hand, it also points
out the need to assess the homogeneity of the measured effect per plot and per treatment in order to
increase the consistency of the results. An analogous effect has been found for the temporal scale in
the VULCAN/INCREASE experiment where results show that the effect of drought treatment can be
overestimated with only one measurement at the time of the peak biomass, while multiple within-year
measurements better describe the response of biomass [27].

One major challenge for these studies, where point measurements have to be located in high
resolution orthomosaics, is the need to precisely geo-locate such measurements to guarantee a reliable
data comparison. Even though high precision DGPS were used providing centimetric precision, RMS
errors from the orthomosaics are close or are even bigger than final GSD. Therefore, the combined use of
multispectral with RGB high-resolution images can clearly assist in re-locating the point measurements
by identifying conspicuous elements in the image.
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6. Conclusions

In this paper we confirmed the valuable and fast applicability of multispectral images captured
by UAVs over experimental sites in providing complementary spatial information to the ground
measurements at point scale. One single flight was used to confirm acceptable multiscale NDVI
correlations being measured at point, FOV or plot scale. Although plastic covered plots reduced the
NDVI values, main differences between treatments were coherent with the ones measured at ground
scale with portable Cropscan spectroradiometer. Differences found at plot scale might be due to
heterogeneous response to treatments. Spatial variability analysis pointed out a more homogeneous
response for plots submitted to severe and moderate drought. More investigation is needed to address
the possible effect on NDVI of species abundance at plot scale contributing to a more consistent
representation of ground measurements. The feasibility to carry out systematic UAV flights in the
future coincident or close to ground campaigns will certainly reveal the consistency of the observed
spatial patterns in the long run.
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