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Abstract: Unmanned aerial system (UAS) acquired high-resolution optical imagery and object-based
image analysis (OBIA) techniques have the potential to provide spatial crop productivity information.
In general, plant-soil feedback (PSF) field studies are time-consuming and laborious which constrain
the scale at which these studies can be performed. Development of non-destructive methodologies
is needed to enable research under actual field conditions and at realistic spatial and temporal
scales. In this study, the influence of six winter cover crop (WCC) treatments (monocultures
Raphanus sativus, Lolium perenne, Trifolium repens, Vicia sativa and two species mixtures) on the
productivity of succeeding endive (Cichorium endivia) summer crop was investigated by estimating
crop volume. A three-dimensional surface and terrain model were photogrammetrically reconstructed
from UAS imagery, acquired on 1 July 2015 in Wageningen, the Netherlands. Multi-resolution image
segmentation (MIRS) and template matching algorithms were used in an integrated workflow to detect
individual crops (accuracy = 99.8%) and delineate C. endivia crop covered area (accuracy = 85.4%).
Mean crop area (R = 0.61) and crop volume (R = 0.71) estimates had strong positive correlations
with in situ measured dry biomass. Productivity differences resulting from the WCC treatments
were greater for estimated crop volume in comparison to in situ biomass, the legacy of Raphanus was
most beneficial for estimated crop volume. The perennial ryegrass L. perenne treatment resulted in a
significantly lower production of C. endivia. The developed workflow has potential for PSF studies as
well as precision farming due to its flexibility and scalability. Our findings provide insight into the
potential of UAS for determining crop productivity on a large scale.

Keywords: remote sensing; unmanned aerial systems; object-based image analysis; plant-soil
feedback; plant productivity; template matching; segmentation; precision agriculture

1. Introduction

Plant-soil feedback (PSF) describes the reciprocal interactions between plants and soil biota [1].
Plants and their associated microorganisms influence soil properties, such as mineral nitrogen
concentration and organic matter content, as well as the abundance of plant pathogens and mutualists [2].
The net effect of these changes can enhance or suppress the performance of succeeding plants relative
to fallow soil [3]. Understanding PSF mechanisms is necessary to avoid the risk of negative PSF and
generate potential positive PSF by applying well-matching crop rotations in agriculture systems [4,5].
Most PSF field studies are dependent on time-consuming and laborious destructive sampling methods
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which constrain the scale at which these studies can be performed [6]. Therefore, there is a need to
develop new non-destructive methodologies that enable the investigation of PSF mechanisms at a high
resolution under actual field conditions and at realistic spatial and temporal scales [4,7,8].

Remote sensing is used to study ecological phenomena and for applications in precision farming,
which involves the use of sensors and information technologies to bring data from multiple sources to
support decisions associated with crop productivity and a more efficient use of farm inputs, such as
fertilizers and herbicides [9–12]. Data can be acquired by unmanned aerial systems (UAS), otherwise
known as drones, with a more flexible spatial and temporal resolution compared to other remote
sensing platforms [13,14]. Remote sensing technologies with high spatial and temporal resolutions
allow testing PSF in the field, which minimizes and ultimately discards the need to destructively
sample crops and generalize from a limited number of samples [8,15]. This is not only relevant for PSF
research but also for assessment of crop productivity, which is based on multiple parameters such as
dry biomass, height, and volume [11].

Crop parameters such as canopy cover, canopy biochemical composition, pigment concentration,
and vegetation indices can be derived using high-resolution cameras and hyperspectral sensors [16,17].
Recent work showed that UAS carrying a hyperspectral sensor can be used to characterize plant
traits and assess PSF effects of different cover crop treatments on a succeeding main grain crop [8].
Three-dimensional data can be obtained from light detection and ranging (LiDAR) or digital aerial
photogrammetry [16]. Both LiDAR [16–18] and digital aerial photogrammetry [19–21] enable direct
measurement of crop dimensions and indirect measurement of above ground biomass and biophysical
parameters. Although unable to return points from below the canopy, multispectral UAS are more
affordable and require a smaller payload and battery capacity compared to hyperspectral and LiDAR
UAS [22–24]. Another advantage is that digital aerial photogrammetry provides high-resolution
orthophoto mosaics in addition to accurate digital surface models.

There is potential for integration of crop discrimination methods, which take advantage of the
high-resolution orthophoto mosaic, and estimation of crop dimensions. This enables incorporation of
meaningful individual crop or plot objects, rather than pre-defined sample plots, in further calculation
of crop dimensions. Object detection methods, such as template matching, are used in remote sensing
to determine the amount of objects on an image and predict their positions [25]. Template matching is
among the earliest and simplest of such methods but usually results in a high commission error in
more complex images [26]. In recent work, a workflow was developed in which template matching
was combined with an object-based image analysis (OBIA) object detection approach to overcome
this problem [26,27]. A common base of OBIA is image segmentation, but it also incorporates other
concepts that have been used for decades in remote sensing such as feature extraction, edge-detection,
and classification [28,29]. A crucial advantage of an object approach over a pixel approach is the
additional spatial dimension for objects such as distance, morphology and topology [29–31]. Grouped
pixels can characterize fields remarkably better than single pixels using high-resolution imagery [32],
several studies have shown OBIA produces higher accuracies compared to pixel-to-pixel analysis for
thematic mapping [33–37].

In this study, the suitability of UAS-based optical remote sensing to measure differences of crop
productivity of a leafy vegetable crop between multiple soil treatments (different cover crop treatments
preceding the main crop) was assessed using an OBIA approach. Individual main crop detection and
crop area segmentation and classification were performed based on an orthophoto mosaic. Mean crop
volume was calculated for the experimental plots using the segments, detected crops, and a digital
surface model. The developed methodology demonstrated the suitability of UAS and digital aerial
photogrammetry for measuring crop productivity during crop growth in a non-destructive way and
for application in large-scale PSF research.
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2. Materials and Methods

2.1. Study Area

The study area of approximately 0.3 hectare, property of Wageningen University & Research,
is located in the eastern part of the Netherlands around 9 m above sea level (51◦59′41.72” N,
5◦39′17.89” E; Figure 1). A field experiment was established in 2015 to investigate the legacies of
different monocultures and mixtures of plant species grown during autumn and winter, i.e., winter
cover crop (WCC) treatments, on the succeeding endive (Cichorium endivia) summer crop; more details
are provided by Barel et al. (2018) [2]. The study area includes 60 experimental plots of 3 × 3 m2

with each plot planted with 10 × 10 endive individuals. The endive plants were four weeks old when
planted in early May. Prior to endive different cover crop treatments were grown on the experimental
plots from August-February, after which the cover crops were incorporated in the soil. The different
cover crop treatments comprised of monocultures of Radish (Raphanus sativus; Rs), perennial ryegrass
(Lolium perenne; Lp), white clover (Trifolium repens; Tr), and common vetch (Vicia sativa; Vs) and the
species mixtures Lp+Tr and Rs+Vs. In addition, a fallow treatment was used as a reference (Table 1).
Each treatment was performed five times and positioned randomly according to a randomised block
design with five parallel blocks.
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Figure 1. Study area near Wageningen; an orthophoto mosaic of 1 July 2015 displayed in a true colour
composite. Both maps are projected in WGS 84/UTM zone 31N. In the image on the right the light
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Table 1. Experimental field layout.

Field Characteristic Data

Crop count 5930
Plot count 60

Plot dimensions 3 × 3 m2

Crop species Endive

Cover crop species Radish (Raphanus sativus; Rs), perennial ryegrass (Lolium perenne; Lp), white
clover (Trifolium repens; Tr), and common vetch (Vicia sativa; Vs)

Cover crop treatments Monocultures: Rs, Lp, Tr, and Vs; mixtures: Rs+Vs and Lp+Tr; fallow
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2.2. Data

Summer main crop biomass was obtained by destructive sampling on 6 July 2015, at time of
harvest, using three plants per experimental unit. The samples were equally distributed, leaving
out outer rows of plants to avoid potential edge effects [2]. Dry biomass (g m−2) was determined by
weighing vegetation after it was dried in an oven at 70 ◦C for 48 h [8]. An UAS flight was undertaken
close to harvest on 1 July 2015 at an average speed of 4 m s−1 and an altitude of 60 m. Aerial imagery
was acquired at parallel flight lines, with images of 4608 × 3464 px having a forward and lateral overlap
of 80% approximately, using the Panasonic GX1 camera with a 14 mm pancake lens. The camera
was mounted onto an Aerialtronics Altura AT8 octocopter carrying an XSens MTi-G-700 GPS-Inertial
Navigation System (INS) [38]. RTK-GPS equipment (Topcon FC-336) was used to register the field’s
outer corners, identifiable on the aerial imagery, as ground control points.

2.3. Processing and Analysis

The processing approach developed in this study comprised five steps: photogrammetric
pre-processing, template matching, object-based image analysis (OBIA), data fusion, and evaluation
(Figure 2). First, UAS derived imagery was pre-processed using digital photogrammetry. Second,
multi-resolution image segmentation (MIRS) and template matching were performed to segment main
crop covered area and detect individual crops, respectively, on the orthophoto mosaic. Third, data
fusion included: stratification of detected crops by main crop area, aggregation of CHM values on
the OBIA-object level, and averaging objects’ area and volume by the amount of crops they represent.
Finally, detection accuracies were determined and a comparison between crop volume estimates and
field samples was undertaken.
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2.3.1. Pre-Processing

Geometric calibration and further photogrammetric processing was performed as described
by Suomalainen et al. (2014) [38]. The calibration was performed using the Agisoft Lens (v0.4.1)
calibration software, which incorporates the shift and rotation of the photo camera and the relative
position of the GPS-INS to the UAS frame. Photogrammetric processing followed Agisoft PhotoScan
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Pro’s workflow (v1.1.2), incorporating a Structure-from-Motion algorithm to find conjugate tie-points
between overlapping images and a block bundle adjustment to fit the camera positions and found
points together [38–40]. After photogrammetric processing, four ground control points were used in a
final georectification procedure to correct for geometric distortions [41]. A digital surface model and an
orthophoto mosaic were built with a resolution of 1.5 cm and 2.9 cm, respectively, covering a surface of
2.25 hectares.

A digital terrain model was created by removing the crop-covered areas, including an additional
30-cm buffer, from the digital surface model and interpolating the non-crop areas. The raster cells
were converted to point features, of which 0.1% was randomly selected prior to interpolation. The
natural neighbor interpolation technique was used as it is appropriate for point features with an
uneven distribution and density; it limits overshoots of local high values and undershoots of local
low values [42]. The digital terrain model was subtracted from the digital surface model to calculate
the crop height model (CHM; Figure 3). Imagery of the study area was acquired during two separate
flights which resulted in deviating crop heights along the border of the flights. Three experimental
plots affected by the mentioned boundary related errors were excluded from further analysis.
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Figure 3. Map showing the crop height model (CHM) for four experimental plots including
multi-resolution image segmentation (MIRS) based vector objects representing main crop area. Highest
height values occur at the center of spatial objects while lowest height values occur at the edges
of objects.

2.3.2. Template Matching

Crops were detected on the orthophoto mosaic using Trimble eCognition Developer’s (v9.3)
template matching workflow. The workflow includes building an optimised template in an iterative
process and a matching procedure incorporating normalized cross-correlation [43]. The procedure
can only be executed on a single band, the green band is selected because of highest contrast between
crop-objects and background. An initial average template is generated based on eight samples
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selected according to the guidelines described by Tiede et al. (2017) [26], crops with different shapes,
sizes, shadow directions, and light conditions were incorporated in the template (Figure 4). The
matching procedure requires a cross-correlation coefficient threshold which was set low (R = 0.55) to
prevent underdetection.Drones 2019, 3, x FOR PEER REVIEW 6 of 13 
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Figure 4. Eight sample templates used for template matching representing crop-objects with different
shapes, sizes, and shadow directions: (a) small crop with no overlap, (b) two-sided overlap, (c)
three-sided overlap, (d) four-sided overlap, (e) side with no shadow, (f) side with shadow, (g) crop
located at plot’s corner, (h) possible error values within image.

2.3.3. Object-Based Image Analysis

The region-growing MIRS algorithm was used to create multi-pixel object primitives based on
spatial and spectral features [44,45]. The algorithm takes all individual pixels of the orthophoto mosaic
as a starting point and merges similar adjacent regions considering a user-defined threshold, i.e., scale
parameter, for the maximum internal heterogeneity within the features [30]. Defining the optimal scale
parameter is not a standardized process [35]. The parameters, including the scale parameter, were
kept on default because visual inspection showed that adjusting individual parameters did not lead to
improvements, as presented by Nuijten (2018) [46].

The object primitives are aggregated during a classification process based on a vegetation index
and hierarchy [30]. The visible-band-based triangular greenness index (TGI) developed by Hunt et al.
(2011) [47] was applied, which is able to capture crops clearly [48]. Object primitives were merged
with adjacent primitives based on an optimum TGI threshold value (TGI = 38) which was found
by trial-and-error.

False positives were removed in an automated workflow based on the proximity of crops within
plots. Buffers of 10 cm were created around all classified objects, thereafter, objects with intersecting
buffers were merged. Only vector objects within a merged region larger than 1 m2 were included in
further analysis.

2.3.4. Data Fusion

A concept of stratified template matching [26,27] was applied using objects resulting from image
segmentation and classification to exclude irrelevant areas. The CHM height values are averaged on
the object level. A pixel’s value is assigned to a vector object when its centroid intersects with the
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object. Mean crop volume is based on the area of the object, its average CHM height, and the number
of detected crops within the object, calculated as:

Crop volume = (height × area)/crop count (1)

2.3.5. Evaluation

The results of MIRS are assessed using a manually drawn binary wall-to-wall map of crop covered
area, providing details on areas correctly segmented, oversegmented, and undersegmented. To
evaluate the results of MIRS and stratified template matching the following measures were determined:
omission (false negatives) and commission errors (false positives), detection rate, and accuracy index
(AI). The AI, which quantifies the trade-off between omission and commission error, was calculated
as [49]:

AI = 100(1 − (FP + FN)/REF) (2)

where FP and FN are false positives and false negatives, respectively, and REF is the number of
reference crops in the study area.

Pearson’s correlation coefficient was calculated to determine correlation on a plot level between
the estimated values and in situ measured biomass. It assumes values to be continuous, normally
distributed, and linearly related [50]. Tukey’s honestly significant difference (HSD) test was applied
to the estimated and in situ data to determine whether population means between WCC treatments
were significantly different (p < 0.05) [51]. Tukey’s HSD test is a common method for multiple pairwise
comparisons with data meeting the assumption of normality and homogeneity of variance [52].

3. Results

Endive crops were well covered by the OBIA-based vector objects, with a detection and accuracy
rate of 88.3% and 85.4%, respectively (Table 2). The commission error was remarkably low, inclusion of
bare soil or grass between the crops in the segmentation results was scarce, which is illustrated by the
four experimental plots in Figure 5. Crops surrounded by around 3–6 cm of bare soil or grass were
represented by an individual vector object. Objects represented between 1 and 101 individual crops
with an average of 48.8 individuals. Before automated removal of omission errors, 201 vector objects
were segmented correctly while 138 objects were located outside the experimental plots.

Template matching resulted in 21,500 matches but after integration with the vector objects, a high
detection rate and overall accuracy were achieved of 99.9% and 99.8% respectively (Table 2).

Figure 6 shows the statistical relation between in situ crop biomass and crop volume is higher than
between in situ crop biomass and crop area. The figure includes the Pearson correlation coefficients
for crop area (R = 0.61) and crop volume (R = 0.71) indicating a positive and strong relation with
in situ biomass.

Table 2. Results of crop covered area segmentation and individual crop detection using an object-based
image analysis (OBIA) and an integrated template matching (TM) approach.

Metric OBIA Stratified TM

True positives 429.3 m2 5,921 crops
False positives 14.2 m2 1 crops
False negatives 56.9 m2 9 crops
Detection rate 88.3% 99.9%

Accuracy index 85.4% 99.8%
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Figure 6. Scatterplots including linear model with 95% confidence interval, Pearson correlation
coefficient (R-value), and significance level (p-value) of the correlation between in situ dry biomass and
unmanned aerial systems (UAS)-based mean crop area estimates (left) and between in situ dry biomass
and UAS-based mean crop volume estimates (right).

In situ crop biomass and estimated crop volume showed a comparable pattern but differences
between treatments are clearer for estimated crop volume (Figure 7). Based on mean crop volume
estimates, C. endivia crops receiving Rs WCC treatment seem to be most productive with a crop volume
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of 11,281 cm3 (Figure 7, right). Only the Lp and Lp+Tr cover crop treatments resulted in C. endivia
plants that were significantly different (smaller) compared to plants grown after the cover crop Rs
(Tukey’s test, p < 0.05). The Lp treatment resulted in lowest C. endivia crop volume of 4,369 cm3, which
is significantly different from all other treatments, including its mixture Lp+Tr. Lp is followed by
Lp+Tr and Tr with a volume of 8,351 cm3 and 9,242 cm3, respectively. Although the difference between
the monoculture Rs and its mixture Rs+Vs is clearly visible in the graph, it is not significant.
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Figure 7. Bar plots presenting in situ mean crop dry biomass (g m−2; left) and UAS-based mean crop
volume estimates (cm3; right) including Standard Error (SE). Different letters at the bottom of each bar
indicate significant differences between the winter cover crop (WCC) treatments, based on Tukey’s test
(p < 0.05).

4. Discussion

Effects of WCC treatments on crop productivity can be derived from UAS acquired high-resolution
RGB imagery using an integrated OBIA approach, including MIRS and template matching algorithms.
This enables PSF research under actual field conditions and at realistic spatial and temporal scales.
Labor-intensive destructive sampling methods can be replaced by UAS-based remote sensing
approaches. The developed scalable workflow is also interesting for applications in farming as timely
and spatial information on crop productivity can be gathered, which can support evidence-based
operational management decisions.

4.1. Object-Based Image Analysis

MIRS-based vector objects were a good representation of main crop area, while non-crop areas
were correctly excluded. The experimental plots were isolated, which made calculation of crop volume
on the plot-level relatively simple. In a non-experimental setting this set-up is likely to be less ideal,
but the vector objects can be clipped to investigate local productivity differences within large fields. To
investigate productivity differences between different sized areas, vector objects should be averaged
based on the number of crops they represent. Individual crops were detected with a high accuracy
using the stratified template matching approach, which averts the problem of overdetection typical for
template matching [25].

The MIRS algorithm was not capable of building objects for individual crops because object
primitives were often representing multiple crops. When segmenting individual crops is desired, we
recommend further research on the development of new algorithms. Marker-based segmentation
algorithms using detected crops as starting points are worth investigating.
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4.2. Crop Height Model

The accuracy of the digital terrain model is highly important for estimating crop volume as crop
heights are around 10–19 cm. The required digital terrain model can only be derived accurately when
there are sufficient areas not covered by vegetation and the study area has a planar surface [53]. The
accuracy of height measurements from consumer grade GPS-INS instruments can be insufficient,
this likely caused the deviations of heights along the boundary of the two flights [38,54]. Imagery is
preferably acquired in a single flight to avoid problems related to deviations in determined height.
Distortions are common for surface models based on digital aerial photogrammetric techniques [55].
Underestimated height values occur at the edges of spatial objects, while overestimated values occur
at the center [55]. This suggests that volume calculations for vector objects representing individual
crops is inappropriate and it supports using a method that uses larger objects representing multiple
crops for aggregation of height values.

A stronger positive correlation was found between mean crop volume estimates and dry biomass
than between mean crop area estimates and dry biomass (Figure 6). This shows that using additional
three-dimensional photogrammetric data for object-based crop productivity analysis is preferred when
DTM accuracies allow it.

4.3. Plant-Soil Feedback

A comparable pattern of C. endivia productivity in response to the legacies of WCC treatments
was found between the UAS-based results and the previous study focused on in situ measurements [2].
That study stated that C. endivia biomass increased in response to the legacies of WCC treatments as
compared to fallow soil, with the exception of the legacy of Lp. The non-destructive analysis method
as presented in this current paper showed larger differences between Lp and other WCC treatment
effects, as well as between monocultures and their mixtures, in comparison to the destructive method.
It proves that UAS-based methods are highly capable of providing detailed information about crop
productivity and PSF effects.

More information about relevant PSF pathways influencing subsequent plant productivity is
provided by Barel at al. (2018) [2], based on in situ measurements of soil-organic matter, potential
mineral nitrogen availability, and plant-feeding nematodes. Remote sensing methods do not have the
capability to determine biotic and abiotic soil properties and to proof directly which soil properties are
accountable for differences between treatments. However, UAS-based hyperspectral remote sensing
enables quantification of plant traits that are related to plant legacies in the soil as plants respond to
altered soil conditions [8,56].

4.4. Scalability

PSF research and practices in precision farming mainly rely on laborious manual procedures,
which include destructive sampling and spectral measurements of plants and soil [1,6,57]. UAS data,
on the other hand, can be acquired with a flexible temporal and spatial resolution and systems can be
deployed with increasing affordability [14]. This research project confirms UAS-based analysis can
complement or replace destructive methods for measuring crop productivity and allows increased
temporal observations. A non-destructive method allows studying PSF effects and crop productivity
for larger areas and discards the need to destructively sample crops and generalize from a limited
amount of samples.

Photogrammetric processing can be done automatically [38] and the developed OBIA workflow is
straightforward. However, terrain model’s suitability, appropriate classification parameters, and crop
template might vary with different plant species and physical environmental conditions. The crops in
the study showed overlap, had irregular shapes, and included shadows. Based on these conditions, it
is assumed that MIRS and template matching will deliver similar results for other crop species.



Drones 2019, 3, 54 11 of 14

5. Conclusions

UAS in combination with digital aerial photogrammetry and OBIA methods enable crop
productivity analysis. Stratified template matching and MIRS resulted in a crop detection accuracy of
99.8% and well delineated main crop areas with 85.4% accuracy. Within an integrated workflow, mean
C. endivia crop volume estimates had a strong positive correlation (R = 0.71) with in situ measured dry
biomass, which was stronger than for mean crop area estimates (R = 0.61). The Lp WCC treatment
resulted in a significantly different (lower) production of C. endivia compared to the other WCC
treatments. Productivity differences resulting from the WCC treatments were larger for C. endivia crop
volume in comparison to field measured biomass, with crop volume being an important parameter
given the crop is primarily marketed fresh. Although in situ measured biomass of C. endivia crops was
not promoted more by Rs as compared to most other WCC legacies, for estimated crop volume, the
legacy of Rs was most beneficial.
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