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Abstract: Interest in small unmanned aircraft systems (sUAS) for topographic mapping has
significantly grown in recent years, driven in part by technological advancements that have made
it possible to survey small- to medium-sized areas quickly and at low cost using sUAS aerial
photography and digital photogrammetry. Although this approach can produce dense point clouds
of topographic measurements, they have not been tested extensively to provide insights on accuracy
levels for topographic mapping. This case study examines the accuracy of a sUAS-derived point
cloud of a parking lot located at the Citizens Bank Arena (CBA) in Ontario, California, by comparing
it to ground control points (GCPs) measured using global navigation satellite system (GNSS) data
corrected with real-time kinematic (RTK) and to data from a terrestrial laser scanning (TLS) survey.
We intentionally chose a flat surface due to the prevalence of flat scenes in sUAS mapping and the
challenges they pose for accurately deriving vertical measurements. When the GNSS-RTK survey
was compared to the sUAS point cloud, the residuals were found to be on average 18 mm and
−20 mm for the horizontal and vertical components. Furthermore, when the sUAS point cloud was
compared to the TLS point cloud, the average difference observed in the vertical component was
2 mm with a standard deviation of 31 mm. These results indicate that sUAS imagery can produce
point clouds comparable to traditional topographic mapping methods and support other studies
showing that sUAS photogrammetry provides a cost-effective, safe, efficient, and accurate solution
for topographic mapping.

Keywords: small unmanned aircraft system (sUAS); photogrammetry; point cloud; accuracy; global
navigation satellite system (GNSS); terrestrial laser scanning (TLS)

1. Introduction

Topographic maps are critical geospatial data products used in earth surface studies that provide
insights on environmental conditions, geomorphology, and other earth surface processes and features.
Typical methods for topographic mapping, particularly small to medium spatial extents, consist of
total station (TS), global navigation satellite system (GNSS), terrestrial laser scanning (TLS), or airborne
light detection and ranging (LiDAR). Mapping professionals most often rely on TS and GNSS for
producing as-built plans, site-monitoring, and general topographic surveys due to their high levels
of accuracy; however, they are time-consuming and costly, especially for medium-to-large-sized
topographic mapping projects (≥0.15 km).

TLS has recently experienced a growing adoption rate due to falling costs and smaller form factor
designs, turning it into an industry standard for mapping professionals, specifically when fine details
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are required to be mapped and modeled. However, it is limited to line-of-sight and it is inefficient in
areas with many physical barriers and moving objects. In those cases, airborne LiDAR may be preferred
over TLS as it is able to capture complete site information rapidly. Airborne LiDAR can successfully
evaluate large areas to perform agricultural, geomorphological, and environmental applications [1]
and provide enough detail to detect changes or evaluate physical damage [2]. However, issues arise
when airborne LiDAR is not accompanied with high-resolution imagery that is needed to support
change detection or provide insights on the existing conditions requiring a visual perspective [3].
Furthermore, it is costly and may not provide sufficient details required for topographic mapping
when fine-scaled surface features are needed.

Small unmanned aircraft systems (sUAS) have been increasingly employed to capture images that
can generate high-resolution point cloud measurements of the terrain using digital photogrammetry at
very low cost, a feature attractive to a mapping professional who cannot afford traditional methods.
sUAS were initially known for their role in military applications as “drones,” but the use of sUAS in
civilian applications, such as construction, is rapidly growing [4]. sUAS have been deemed useful
for tasks varying from post-disaster reconnaissance [5] to construction safety applications [6]. Rather
than risking lives and sending surveyors into compromised structures after a disaster, sUAS are
able to remotely detect damage at a safe distance [7]. Data from sUAS have also been used with
echo soundings to conduct bathymetric surveys [8], fatigue crack detection in the inspection of steel
bridges [9], and masonry [10]. The Federal Aviation Administration (FAA) has estimated that as many
as 7500 commercial sUASs operated in US airspace in 2018, with a value of 13.6 billion dollars [11].

Cameras on commercial off-the-shelf sUAS platforms can easily provide 3D remote sensing
capabilities that eliminate the need for expensive scanners [1]. Studies using sUAS include the
collection of construction material information, voltage transmission line inspection, enforcing safe
practices on construction sites, homeland security rescue operations, forest fire detection, natural
resources, forest monitoring, geology, and delivery of goods [12–21]. Advancements made in digital
photogrammetry software have revolutionized the field of sUAS data collection and analysis, allowing
engineers and scientists to generate high-resolution topographic maps with low-cost optical cameras [22].
This software has the ability to produce orthorectified imagery maps (orthophotos), point clouds and
digital surface models (DSM) at spatial resolutions in the order of centimeters [1,23]—a quality vital to
topographic mapping applications [5,24–30].

Although there have been several studies that evaluate the accuracy of DSMs derived from
sUAS equipped with optical cameras, the causes for highly variable accuracy is not well understood,
as described by Smith and Vericat [31]. Several factors that may affect sUAS-derived products,
are flight parameters, flight speed, flight direction, orientation of the camera, camera focal length,
image quality, processing software, topography of mapping area, and type of sUAS (rotary or fixed
wing). The combination of several or a single factor may influence the overall accuracy. For example,
Manfreda et al. [32] evaluated different flight combinations and the distribution and number of ground
control points (GCPs) to reduce the error of the 3D model for monitoring a dam. However, their study
sample is limited to evaluating sixteen checkpoints and not several thousands of points as those found
in point clouds, which is necessary to deeply understand the behavior of the derived 3D model. The
horizontal and vertical accuracy reached was 0.20 cm and 3.5 cm, respectively, which is higher than
what is allowed for many engineering applications, particularly in the vertical component (e.g., civil
and surveying engineering). These limitations are similar for several other studies, where they solely
compare the accuracy between a limited number of checkpoints and not the overall 3D model within
the area mapped [25,26,33–43]. The results achieved in these studies are highly variable requiring the
need for thorough evaluations comprised of a greater sample.

Salach et al. [44] evaluated the vertical accuracy of digital terrain models (DTMs) derived using
LiDAR and photogrammetry in uncovered and vegetated areas. The results provided an insight
on the possibilities of sUAS equipped with an optical camera and LiDAR, however, the number of
checkpoints used is limited to thirty five and the accuracy observed for them was low for both the



Drones 2019, 3, 64 3 of 14

horizontal and vertical component, where the X and Y errors observed were 0.061 m and 0.063 m, and
0.068 m for the Z error. Additionally, the airborne LiDAR data used as ground truth for comparison
had a low density of 4 points per square meter and a vertical accuracy of 0.15 m. Naumann et al.
[45] performed an accuracy comparison between TLS and sUAS derived DSMs at a dike for coastal
engineering, where they were able to observe a STD of 0.040 m between the sUAS and TLS point
clouds for over 680,000 points. However, a large number of GCPs (11) were used to maximize the
accuracy results, which is more than desired by most practitioners, especially for a study area with
simple geometry. Espositoa et al. [46] evaluated the performance between a sUAS derived point cloud
and TLS for 3D reconstruction of a building. In their study, they were able to achieve a global accuracy
of 0.10 m and better than 0.05 m for local measurements. Although the results seemed promising, the
two different point clouds had to be manually aligned followed by automatic alignment and optimized
to fit using 20 GCPs, which does not provide an independent evaluation amongst the two different
mapping methods. For these reasons, it is critical to test point clouds from sUAS photogrammetry
against traditional mapping methods to evaluate their suitability for topographic mapping, especially
when accurate point clouds are required in the centimeter-level range.

In this study, we evaluated the accuracy of a point cloud derived from sUAS imagery by comparing
it to GNSS real-time kinematic (RTK) and TLS ground truth measurements of a parking lot. GNSS-RTK
is a conventional mapping practice that achieves high-accuracy positioning ranging in the ±2 cm
level, while TLS is capable of high-accuracy positioning in the ±5 mm level. Both of these mapping
techniques offer high-accuracy positioning and are commonly used in topographic mapping. sUAS
technology has been shown to compute earthwork quantities with high accuracy, [36,47], and extensive
testing has been performed to illustrate the impact of GCPs [24–26,33–43], however, the accuracy of
the resulting point clouds has yet to be tested extensively, which is one of the main contributions of
this study: to evaluate the performance of a sUAS point cloud comprehensively against GNSS-RTK
and TLS mapping methods at areas beyond the GCPs, where the accuracy level reflects how well the
sUAS point cloud was fitted to a priori GCPs and does not reflect the overall accuracy in areas away
from the GCPs. We intentionally surveyed a flat area since flat scenes are commonly encountered in
the field, e.g., agriculture, civil engineering, and construction, which pose challenges for accurately
determining vertical measurements. Furthermore, our study provides a detailed workflow on data
acquisition that may be replicated to support researchers, scientists, or practitioners in achieving high
accuracy sUAS derived point clouds. The data acquisition workflow followed in this study may
alleviate aforementioned issues associated with the low accuracy of point clouds derived from sUAS
imagery. The primary idea of the data acquisition workflow is to minimize all possible sources of error
that typically contribute to the generation of the ground truth data used for comparison (e.g., GNSS
and TLS measurements) and the sUAS derived point cloud.

2. Materials and Methods

2.1. Study Area

The study area consisted of a relatively flat parking lot at the Citizens Bank Arena (CBA)
in Ontario, California (Latitude: 34◦04′27.69”N, Longitude: 117◦33′40.38”W), having a maximum
elevation difference between the lower, east end of the site and the upper, west end of the site of
about 4 m. The north-south inclination is much smaller for most areas. The total area mapped was
approximately 0.017 km2. Most of the site was paved, except for a few parking lot islands that had
trees without leaves. There were several light fixtures distributed throughout as well. We selected
this site for its relative absence of vegetation, which can complicate surface modeling and accuracy
analysis. Its simple planar geometry and temporal stability make it ideal for comparing the results of
different mapping methods over time. The total field time to complete all measurements was 2 hours
from arrival to departure, including the sUAS setup, sUAS survey, TLS survey, and GNSS-RTK survey
of GCPs and checkpoints. All measurements were connected to the same five GCPs shown in Figure 1.
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The checkpoints allowed evaluation of the test data for locations outside of the GCPs (see Figure 1),
which would have minimum errors since they served as anchor points for adjusting the sUAS point
cloud. Figure 1 shows the study area, including the distribution of the GCPs, checkpoints, scan and
sphere stations.
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Figure 1. Shown in the top portion of the figure are the 5 GCPs (red) of the control configuration and
the distribution of the 19 checkpoints (blue) used for the parking lot study area of the CBA in Ontario,
CA. Shown in the bottom portion of the figure are the 13 sphere (yellow) and 4 scan (green) stations
used in the collection and registration of the TLS data.

2.2. sUAS Image Acquisition

The aerial survey was performed on 5 April 2018, using a DJI Phantom 4 Pro v2.0 sUAS with its
factory-installed 20-megapixel camera. The survey area covered approximately 0.017 km2, over which
the sUAS flew at about 45 m above the ground collecting images at nadir with a forward overlap of
85% and a sidelap of 75%. The wind speed was 8 mph during the flight, the temperature was 28◦

Celsius, and the imagery was acquired around midday. The flight lasted 5 min and 46 s and captured
201 images. The flight was performed using the DJI GS Pro application, which constructed an autopilot
flight path based on input parameters—such as flying height, forward lap, and sidelap—and executed
it in the field. All images contained geotags from the sUAS’s onboard GNSS sensor, which helped with
initial photogrammetric alignment but lacked the accuracy required for direct geo-referencing. For
high accuracy adjustments, we used an indirect geo-referencing technique utilizing GCPs to adjust and
anchor the photogrammetrically-derived point cloud.

2.3. GNSS-RTK Survey

A GNSS-RTK survey established the 5 GCPs and 19 checkpoints using a Trimble R10 rover and
base station and a Trimble TSC3 data collector. The rover was set to have a position dilution of precision
(PDOP) mask of 4.0, an elevation mask of 15◦, and the precision horizontal and vertical tolerances
were set to 0.009 m and 0.012 m, respectively, while the base was set to have an elevation mask of 15◦
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and a logging interval of 1 s. The base station used for GNSS-RTK survey collected observations for
2 hours and was placed roughly 100 m away from the rover location, where there was an unobstructed
line of sight between the rover and base station. This established a base station accuracy level of 2 cm
in the vertical and horizontal components. The rover collected data at each GCP and checkpoint for 3
min, producing 180 GNSS observations, while the base station collected data during the entire survey,
producing a total of 7200 GNSS observations over two hours.

2.4. sUAS Point Cloud Generation

After the images were retrieved from the sUAS, the commercial modeling software Pix4D was
used to create the sUAS based point cloud. The general framework of Pix4D involves automatic aerial
triangulation (AAT), bundle block adjustment (BBA), DSM, point cloud and orthophoto generation.
The Pix4D workflow begins with the AAT producing tie points from the images based on similar
features in overlapping images, using the GCPs as a reference. Then, after the initial AAT is completed,
BBA is used to estimate the internal parameters of the camera, which include the focal length, principal
point, radial and tangential distortion, and absolute camera position and orientation parameters for
each image. Finally, the process ends when the BBA converges on a solution with an assessment of the
adjustment error. From the 5 GCPs used in the BBA, a 3D root-mean-square error (RMSE) of 3 mm
was observed and a spatial resolution of 7.5 mm was achieved. The final processing steps consist of
the preparation of the sUAS point cloud to be imported into Autodesk ReCap Pro to compress the
sUAS derived point cloud and subsequently import into Autodesk Civil 3D for comparison against the
GNSS-RTK survey data.

2.5. Camera Self-Calibration

The nonmetric camera self-calibration technique was applied to the “uncalibrated” images by
manually identifying 5 GCPs on the images and applying them as constraints to refine the camera
self-calibration and georeferencing parameters; therefore, georeferencing relied exclusively on GCPs.
Ideally, the camera calibration parameters should be estimated in laboratory settings, however, these
parameters often change under in-flight conditions [48], therefore, most practitioners prefer to apply
the self-calibration method on a flight-to-flight basis [49,50]. Depending on several factors, such as
flight configuration (e.g., flying height, overlap, and image orientation), environmental conditions,
surface complexity, purpose of sUAS survey, number and distribution of GCPs, quality of GCPs and the
flying and shutter speed, the camera self-calibration parameters can vary [51]. Having a low number
of GCPs can lead to a poor self-calibration and may lower the accuracy of the sUAS-derived point
cloud, DSM, and orthophoto [51]. Therefore, it is critical to test several self-calibration scenarios to
optimize the self-calibration parameters for each sUAS survey.

The estimated internal parameters of the camera in Pix4D, were estimated to be 8.653 mm,
6.403 mm, 4.268 mm, 0.008, −0.022, 0.017, 0.000, and 0.000 for the focal length (f ), principal point
offset in x- and y-direction (cx and cy), radial distortion coefficients (K1, K2, and K3), and tangential
distortion coefficients (P1, and P2), respectively. The mean absolute camera position and orientation
uncertainties were estimated to be 3 mm, 3 mm, 96 mm, 0.004◦, 0.005◦, and 0.001◦ for X, Y, Z, Omega,
Phi, and Kappa, respectively. In addition, the standard deviations of the absolute camera position and
orientation uncertainties were estimated to be 1 mm, 1 mm, 2 mm, 0.001◦, 0.001◦, and 0.000◦ for X, Y, Z,
Omega, Phi, and Kappa, respectively.

2.6. TLS Survey

We used a Faro Focus3D X 330 laser scanner to capture the 3D point cloud, which served as the
ground truth for comparing the entire sUAS point cloud. This survey was performed by scanning
the parking lot at four scan stations and georeferenced using spheres placed at the five GNSS-RTK
surveyed GCPs and eight additional checkpoint locations, visible in all scans. The spheres were placed
by using a 2 m rod and bipod at each sphere station. Registration of the four TLS point clouds was
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performed using Faro Scene software. Upon completing the registration, a visual inspection was
performed to ensure proper registration. A spatial resolution of 4.1 mm was achieved by the data
collection. The final processing steps are similar to those from the sUAS point cloud, which consist of
the preparation of the TLS point cloud to be imported into Autodesk ReCap Pro to compress the TLS
derived point cloud and subsequently import into CloudCompare, where the TLS point cloud will be
evaluated against the sUAS point cloud.

2.7. Point Cloud Comparison (sUAS versus TLS)

The point cloud analysis compared the sUAS and TLS point clouds. It is important to note that
performing a cloud-to-cloud (C2C) comparison is challenging due to the irregular point spacing from
the sUAS and TLS point cloud datasets, and no commonly recognized method currently exists for
assessing point cloud accuracy [52]. The only guide available to evaluate point clouds is given by the
Vertical Accuracy Reporting for LiDAR Data by the American Society for Photogrammetry and Remote
Sensing (ASPRS) [53]. For these reasons, the vertical component is the most appropriate comparison
to perform.

The C2C comparison is performed in CloudCompare by computing the nearest neighbor distance
between the reference (i.e., ground truth) and the compared cloud (i.e., sUAS point cloud). In this
approach, the Euclidean distance is computed between each point in the compared cloud with the
nearest point in the reference cloud. The analysis involved both a tabular summary and visualization
to reveal spatial patterns between the two point clouds. The C2C comparison was tested by applying
three maximum search distances (0.5 m, 1 m, and no limit) between the TLS and sUAS point clouds
to minimize the presence of outliers. These search distances provide an opportunity to perform a
thorough evaluation and will help reveal any concerns that need to be addressed that are impacted by
the maximum search distance parameter.

The point clouds were evaluated in the raw irregular point spacing form to minimize errors that
may be introduced by interpolation techniques that are typically used to grid data to a regular point
spacing [54,55]. By comparing the two point clouds without gridding the data and/or introducing
interpolation techniques, it provides a true comparison of the point clouds produced from the two
mapping techniques. To determine if there are any vertical displacements within the point clouds, it is
necessary to provide a quality assessment of the vertical component. To offer a holistic evaluation of the
vertical accuracy, we determine the error for the entire parking lot mapped rather than solely evaluating
the checkpoints surveyed, as it will reveal spatial trends comprehensively within the test site.

3. Results

The sUAS point cloud yielded a 3D RMSE of 3 mm during BBA at the 5 GCPs, suggesting that
the BBA had successfully converged with the GCP anchor points. At face value, this error level
appears comparable to, if not better than, most traditional mapping methods (e.g., TLS, GNSS, and TS).
However, this accuracy level simply reflects how well the sUAS point cloud was fitted to the a priori
GCPs and does not provide a clear indicator of overall accuracy in areas away from the GCPs. Doing
so would lead to an ecological fallacy or false inference. This is one of the main contributions of this
study: to evaluate the performance of a sUAS point cloud comprehensively against GNSS-RTK and
TLS surveying techniques at areas beyond the GCPs. Another contribution of our study is to provide
a detailed workflow on data acquisition that may be replicated to support researchers, scientists, or
practitioners in achieving high accuracy sUAS derived point clouds. The data acquisition workflow
followed in this study may alleviate aforementioned issues with the low accuracy of point clouds
derived from sUAS imagery. The primary idea of the data acquisition workflow is to minimize all
possible sources of error that typically contribute to the generation of the ground truth data used for
comparison (e.g., GNSS and TLS measurements) and the sUAS derived point cloud. The resulting
high-resolution orthophoto and DSM from the sUAS survey are shown in Figure 2.
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Figure 2. High-resolution orthophoto (top) and DSM (bottom) produced from the sUAS survey after
the BBA converged for the parking lot of the CBA in Ontario, CA.

3.1. sUAS versus GNSS-RTK Survey

The GNSS-RTK comparison involved comparing the sUAS point cloud to GNSS-RTK
measurements at nineteen checkpoints distributed throughout the test site (see Figure 1), where
we evaluated the residuals and statistics in the X, Y, Z, horizontal, and 3D components (see Table 1).
A cross-examination of Table 1 highlights the reliability and accuracy of the sUAS point cloud. The
table characteristics illustrate minor differences between the two methods, where the RMSE is within
the ±2 cm accuracy of the GNSS-RTK measurements for the horizontal component and slightly over
±3 cm for the vertical. The vertical component usually has the largest error for most measurement
methods, as in our case (see Table 1). Therefore, the 3D error is generally influenced by the higher
values of the vertical.

Table 1. Accuracy assessment of the residuals between the sUAS point cloud and the GNSS-RTK
survey measurements for the nineteen checkpoints shown in Figure 1.

Direction Median (m) Mean (m) STD (m) Min (m) Max (m) RMSE (m)

X −0.009 −0.012 0.009 −0.030 0.004 0.015
Y 0.009 0.007 0.010 −0.008 0.026 0.013
Z −0.016 −0.020 0.025 −0.067 0.025 0.032

Horizontal 0.016 0.018 0.009 0.004 0.040 0.020
3D 0.030 0.033 0.019 0.005 0.078 0.038

The spatial plots of the nineteen checkpoint projection residuals are shown in Figure 3. A review
of the projection residual plot in Figure 3 highlights the behavior of the sUAS point cloud when the
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BBA is constrained by the introduction of the well-distributed 5 GCPs. The horizontal residuals are
mainly in the north and west directions. In Figure 3, the positive differences signify the positions
where the sUAS point cloud is higher than the GNSS-RTK measurements, and the negative differences
represent positions where the sUAS point cloud is lower than the GNSS-RTK measurements. It is
shown in Figure 3 that the elevations of the sUAS point cloud are primarily lower than those of the
GNSS-RTK measurements, which is supported by the characteristics of the statistics shown in Table 1.
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Figure 3. A plot of the projection residuals for the sUAS point cloud when compared against the
GNSS-RTK measurements. The arrows depict the magnitude and direction of the horizontal coordinate
differences; the diameter of the circles represents the magnitude of the elevation difference; the blue
and red color represent the positive and negative differences, respectively.

By performing this evaluation, we provide an independent assessment of the performance of
the BBA since the nineteen checkpoints were not included in the model and were solely compared in
Autodesk Civil 3D independently. The five GCPs were evenly distributed on the ground throughout
the study area, placed at the corners and at the center. This particular placement of the GCPs for a small
rectangular project site of simple geometry provides quality performance for a BBA and minimizes the
magnitude of the errors within the point cloud. To emphasize the differences between the sUAS point
cloud and GNSS-RTK measurements explored herein, the results obtained highlight the quality of
the horizontal and vertical accuracy of the sUAS point cloud. These results are relatively stable and
provide confidence that a quality high-resolution point cloud from sUAS imagery is produced when
proper procedures are followed.

3.2. sUAS versus TLS Point Cloud

Table 2 shows TLS ground truth registration errors of 3 mm and below for the horizontal and
vertical components and under 5 mm overall. This meets the typical industry standard of 6 mm or less
for the overall distance error and indicates that a proper registration was performed, making the TLS a
reliable baseline for comparing the sUAS point cloud.

Table 2. Errors observed during the registration process of the four scan stations in Faro Scene.

Error Mean Max

Horizontal (m) 0.003 0.012
Vertical (m) 0.003 0.016
Distance (m) 0.005 0.016
Angular (◦) 0.130 0.370

Figure 4 illustrates the vertical difference between the sUAS and TLS point clouds. There were
a total of 18,933,496 and 69,430,865 points used in the comparison between the sUAS and TLS point
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clouds, respectively. Overall, the majority of the site exhibits similar spatial patterns amongst the three
distinct search distances tested. The sUAS point cloud exhibits higher differences at the center of the
test site, likely due to having only 1 GCP at the center, producing a barrel effect in the point cloud
comparison. This effect is shown through the edges of the test area exhibiting smaller differences in the
range of ±2 cm, while in the midsection it increases to 4 cm.
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Table 3 shows the descriptive statistics of the differences between the sUAS and TLS point clouds.
It shows average vertical differences of 0.002 m, 0.002 m, and −0.030 m for search distances of 0.50 m,
1-m, and no limit, respectively. The standard deviation of the vertical distance for the search distance
of 0.50 m, 1-m, and no limit, are 0.031 m, 0.039 m, and 0.240 m, respectively. Although the overall
average differences and standard deviations are relatively small, especially for search distances of
0.50 m and 1-m, they still exhibit a positive bias (i.e., over-estimated) due to noisy outliers in both the
TLS and sUAS data, which can be removed manually by filtering the point cloud before performing
the C2C comparison. As expected, the unlimited search radius produced the largest average error and
standard deviation due to outliers caused by matching unrelated but distant nearest neighbors.
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Some of the discrepancies observed may originate from the C2C process where the spatial
resolution is lower than desired and the distance amongst the points compared may be larger than
preferred. This will provide different elevation values for distinct points within the respective point
clouds. Considering the vertical statistical values related to the TLS measurements, the corroboration
procedure endorses the high performance of the images acquired by the sUAS. Certainly, the comparison
among the sUAS and TLS point clouds could be influenced by artifacts related to the methodology
used for point cloud production and the workflow followed to process the sUAS datasets.

Table 3. Tabulated C2C Z-distance comparison between TLS data (ground truth) and sUAS point cloud
with the maximum search distance constrained to 0.50 m, 1-m, and no search distance constraint.

Max Search Distance Mean (m) STD (m)

0.50 Meter 0.002 0.031
1-Meter 0.002 0.039

No Limit −0.030 0.240

4. Discussion

Georeferencing plays a critical role in topographic mapping and other studies of the Earth’s
surface. Since the dual-frequency GNSS-RTK measurements served as the baseline for establishing all
other coordinates, errors in the GNSS survey would propagate to the TLS and sUAS data. This made it
critical to minimize the errors in the GNSS-RTK survey prior to using this data for the TLS and sUAS
surveys. To minimize the impact of errors that may be introduced from the GNSS-RTK survey, proper
data acquisition and set up procedures were followed, including post-processing of the GNSS-RTK
data, a critical step in achieving high-accuracy positioning.

An area of interest in current research involves looking at ways to reduce the errors of surface
models through image acquisition techniques and by using different photogrammetric algorithms [32,
51]. Technique-based approaches include adjusting flying height, flight pattern, overlap, camera
tilt, GCP distribution, and using different photogrammetric software. These studies appear to show
that the horizontal accuracy of photogrammetrically derived point clouds is usually better than
the vertical accuracy. Therefore, most of the studies primarily focus on the vertical accuracy rather
than the horizontal, especially when the point spacing is irregular, for example, point clouds. Prior
studies have shown that at minimum four or five GCPs are typically required to produce accurate
point clouds [29,56], a primary reason why we chose 5 GCPs. However, the generated point cloud
from photogrammetric algorithms is highly impacted by other factors such as flying height, GCP
configuration, flight pattern, optical system quality, camera tilt, overlap, and surface complexity.
Therefore, the results in this study may be improved in future research, including removing the
barrel effect in the point cloud comparison by incorporating additional GCPs in the BBA and testing
additional study areas with various terrain characteristics. These additional tests will help verify the
results achieved in this study.

The literature [5,24–30] has shown that sUAS are capable of aiding projects related to the earth’s
surface; however, limited studies are available relating to their accuracy in regards to conventional
methods, especially GNSS-RTK and TLS surveys. The accuracy results achieved in the study are
superior to those found in current literature that aim to assess the accuracy of sUAS for topographic
mapping [24–26,33–41]. This evaluation supported the idea that the use of sUAS can support
topographic mapping projects and mitigate the efforts required for accurate point cloud production.
The ease-of-use, accessibility, affordability, accuracy, and quality of the high-resolution point clouds
derived from sUAS imagery, with the possibility of high temporal frequency, make these systems ideal
for monitoring and general topographic mapping.

The accuracy achieved by the sUAS derived point cloud in comparison to the GNSS-RTK and TLS
measurements can be linked to the proper preparation, execution, and framework of the aerial survey,
GNSS-RTK survey, TLS survey and planning, and to the processing techniques for each mapping
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method. Proper methods and practices need to be performed with care to ensure that optimal results
can be achieved. Otherwise, the quality of the sUAS point cloud may be deteriorated.

Although the results generated were promising, it should be noted that operational challenges
will be encountered for employing sUAS photogrammetry due to environmental conditions. For
example, weather conditions can affect smooth flight operation and it may cause difficulty in accurate
point cloud generation. Therefore, weather conditions should be considered, especially when climate
conditions suddenly change. Accessibility to place and locate GCPs and checkpoints along the project
site may cause problems. Though sometimes it is considered that all areas within a project site will be
accessible, this is not always the case. Some areas are considered inaccessible due to them being unsafe
or hazardous, particularly along steep slopes of terrain. Obstructions may also cause challenges and
may be found in areas with high relief terrain or in urban environments (e.g., power lines, structures,
trees, high vegetation, etc.). These obstructions can deteriorate the quality of the GNSS measurements
and limit the line-of-sight between the pilot and sUAS. Nonetheless, as technology continues to advance
and sUAS become more affordable, the accuracy of these systems will also improve, and they will
become a mainstay technology for topographic mapping.

5. Conclusions

This study assessed the accuracy of point clouds derived by photogrammetry based on sUAS
images for topographic mapping. The sUAS photogrammetry method generated a dense point cloud
with 7.5 mm spatial resolution using the Pix4D software package to process imagery captured from
sUAS and geo-referenced using the GNSS-RTK surveyed GCPs. We found that, when flying at about
45 m, a 3D RMSE of 3 mm at the GCPs can be achieved and residuals of 18 mm and −20 mm for the
horizontal and vertical components, respectively, can be attained at the checkpoints. Furthermore,
when the sUAS point cloud was compared to the TLS survey, the average difference observed was
2 mm with a standard deviation of 31 mm for the vertical component. These residuals are well within
the 2 cm error range of the GNSS-RTK survey, proving that measurements conducted with sUAS with
GCPs are comparable to, and in aspects, superior to traditional mapping techniques.

In this study, the distribution and number of GCPs used to generate the dense point cloud were
not tested and should be considered in future studies. Assessing the accuracy of these point clouds is
a critical step towards proving the capacity of the sUAS-photogrammetric method for topographic
mapping. In particular, topographic mapping that requires sub-decimeter dense and accurate point
clouds, where it cannot be achieved efficiently or economically with traditional mapping techniques.
It is noted that the photogrammetric method will not perform properly in areas of homogenous texture
and complex vegetation, resulting in voids, artifacts, or sparse areas in the point cloud. Images from
sUAS do not penetrate dense vegetation and the resulting point cloud contains very few ground points
beneath vegetation, only if gaps in canopy cover allow imaging below. Despite these limitations, the
techniques have great potential in a wide range of application areas beyond topographic mapping,
including city modeling, coastal monitoring, and agriculture. The accuracy evaluation in this study
will serve to strengthen the feasibility of sUAS-photogrammetrically derived point clouds and will
increase the confidence to implement sUASs equipped with optical systems for applications that are
required to generate point clouds for topographic mapping. It is emphasized that the results obtained
relate to those of a flat surface and that in varied or inclined surfaces the results may differ.

This study embodies an evaluation of sUAS-derived point clouds. However, numerous aspects
that were not addressed in the study impact the process and the accuracy of the sUAS point clouds.
Therefore, it is recommended that future studies (1) evaluate different surface morphologies at different
complexity levels, (2) test other photogrammetric algorithms, and (3) test other optical systems. This
and future examinations of this type will expand the current body of knowledge related to the accuracies
of sUAS-photogrammetrically derived point clouds.
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