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Abstract: Autonomous flight with unmanned aerial vehicles (UAVs) nowadays depends on the
availability and reliability of Global Navigation Satellites Systems (GNSS). In cluttered outdoor
scenarios, such as narrow gorges, or near tall artificial structures, such as bridges or dams, reduced
sky visibility and multipath effects compromise the quality and the trustworthiness of the GNSS
position fixes, making autonomous, or even manual, flight difficult and dangerous. To overcome this
problem, cooperative navigation has been proposed: a second UAV flies away from any occluding
objects and in line of sight from the first and provides the latter with positioning information,
removing the need for full and reliable GNSS coverage in the area of interest. In this work we use
high-power light-emitting diodes (LEDs) to signalize the second drone and we present a computer
vision pipeline that allows to track the second drone in real-time from a distance up to 100 m and to
compute its relative position with decimeter accuracy. This is based on an extension to the classical
iterative algorithm for the Perspective-n-Points problem in which the photometric error is minimized
according to a image formation model. This extension allow to substantially increase the accuracy of
point-feature measurements in image space (up to 0.05 pixels), which directly translates into higher
positioning accuracy with respect to conventional methods.

Keywords: cooperative navigation; relative positioning; image formation model; photometric
error; PnP

1. Background and Motivations

Unmanned aerial vehicles (UAVs) are a well-established tool for surveyors and engineers, as they
can provide cost-effective, high resolution, aerial imagery for mapping and 3D reconstruction of natural
and artificial structures [1]. One important limit of the current UAV technology is the dependency
on the Global Navigation Satellite Systems (GNSS) coverage as positioning information is generally
required for guidance. Good reception of the GNSS signals is also required for cm-level mapping
without the need to survey several ground control points [2,3]. The dependency on the GNSS reception
severely limits the applicability of UAVs each time the sky is in large part occluded: the geometry of
the GNSS constellation degrades and the position fix becomes irregular, inaccurate (due to multipath
effect) and unreliable. This is very common in mountainous environment, e.g., see Figure 1, or near
large natural or artificial structures, such as bridges, dams, in urban canyons, etc. In such conditions,
autonomous flight is risky and most commercial platforms prevent the take-off.
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(a) (b)

Figure 1. A rock fall protection gallery in a narrow gorge (46.6627722, 9.4484218). Approximately 80%
of the sky is occluded by natural or artificial structures and vegetation. (a) Via Mala, Graubünden (CH).
(b) Sky plot.

Many researchers are currently focusing on developing navigation solutions for GNSS denied
environments. Most of these are vision-based or involve some sort of multi-sensor fusion
(visual-inertial navigation being the most popular [4–6]). These methods rely on exteroceptive sensors
and thus are inherently dependent on the environment (e.g., enough texture has to be present in
the scene) and it is difficult to certify or guarantee their performances. This is the reason why many
excellent research prototypes exist whereas no commercial product is currently shipped with full
fledged visual-inertial navigation.

If the environment can be freely structured, e.g., by placing landmarks, beacons, or other sensors,
positioning information may be obtained similar to the one provided by GNSS. Once such landmarks
have been identified, the navigation problem can be solved, e.g., as presented in works by the authors
of [7,8]. Another solution is given by ultrawideband (UWB) positioning [9,10]. This technology offers
a low-cost replacement to GNSS in indoor environments that can reach submeter accuracy in well
designed scenarios. An example of the application of UWB ranging for cooperative navigation of
multiple UAVs can be found in the work by the authors of [11]. In the field of visible light positioning
systems, multiple light-emitting diodes (LEDs) beacons, placed at known position, are imaged with
a conventional camera [12,13]. Each beacon is identified thanks to an ID that is modulated over the
beacon light intensity: the encoded signal can be recovered from a single frame exploiting the rolling
shutter property of certain imaging sensors [14]. However, for this to work, the light source must
span over several pixels on the imaging sensor, restricting the operation to close range, compared
to the camera resolution. The opposite idea consists in placing multiple small, point-wise active
or passive targets on the moving platform and to track them from multiple static cameras placed
at known positions. The targets form high contrast image features, possibly thanks to artificial IR
or UV illumination and specific target surfaces, that are easily detected, e.g., by means of template
matching algorithms [15]. This approach is well understood and widespread in 3D Motion Capture
Systems (MOCAPs) [16] and many commercial implementations exist. The very high precision
achieved by such systems, up to 1:15000 with respect to the volume diagonal [17], comes at the price of
using several cameras in converging viewpoints and a very accurate intrinsic and extrinsic calibration.
These systems require a heavily structured environment, and it is not straightforward to set those up
outdoors, e.g., because the natural light dominates the artificial one.

In this work we focus on an alternative solution based on cooperative navigation to replace GNSS
positioning without the need of structuring the environment. This is suited for outdoor operations
where the GNSS position fix is unreliable because of occlusions or multipath effects. We consider
two UAVs (see Figure 2): the first one, D1, flies outside of the GNSS denied area, e.g., higher or far
away from any tall structure occluding the line of sight to the GNSS satellites. The second drone, D2,
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flies in an area where the GNSS signals are not available, but in line-of-sight with respect to D1. This is
common and realistic in many outdoor scenarios, for example when flying in the close proximity to
tall objects occluding a large part of the sky. D2 navigates using the position solution estimated by D1
tracking a known pattern of high-power LEDs placed on D2 fuselage: the absolute position of D2 is
obtained composing the absolute position and orientation of D1, determined by its internal INS/GNSS
navigation filter and the relative D1-to-D2 position, computed via LED tracking. A feasibility study and
the implications of such scheme on the accuracy of the reconstructed 3D models from D2 imagery were
discussed in the work by the authors of [18], whereas the first prototype was presented in the work by
the authors of [19]. A similar concept has been explored in [20], where multiple “father” UAVs help
to localize a “son” UAV, fusing opportunistic GNSS observations with collaborative measurements.
With respect to this work, we present and evaluate a real-world implementation of a visual ranging
algorithm that allows to reduce the requirements to only one “father” UAV.

Figure 2. Depiction of the proposed aerial tandem performing a close-up inspection of a dam,
where GNSS position fix is likely to be not available or unreliable because of sky occlusion
and multipath.

As in many other collaborative navigation systems [21–23], the key element is how the robots
gain knowledge of their relative position in real-time. Many methods have been explored, from laser
ranging to UWB, whereas the most widely employed one consists in optical targets. Planar coded
targets [24–26] generally consist in a high contrast geometric feature, such as a square or a circle,
in which a code is embedded to exclude false matches and to distinguish between multiple targets
present in the scene. The a-priori notion of the physical dimensions of the target, along with the intrinsic
camera calibration, allows to determine the relative pose of the target with respect to the camera using
a single image. One well known method is to locate known points on the target and then solve
the Perspective-n-Points (PnP) problem [27] using the established set of 2D to 3D correspondences.
Planar targets are widely employed in computer vision and robotics, as 3D landmarks, for camera
calibration, and in several other applications in which the environment can be structured to ease tasks
such as, for instance, navigation and object manipulation. One drawback is that typically many pixels
are needed to recover the target code, limiting to close-to-medium distance applications. Second,
the conventional planar targets are typically printed on rigid surfaces which are not applicable to
flying drones because of dimensions and aerodynamic limitations.
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2. Contributions

In this work, we present the computer-vision pipeline necessary to determine the position of an
UAV outdoors and in real-time, using a single camera placed on a second UAV that flies above the first
(up to 100 m, with the chosen set-up of camera and lenses). In this scenario, a large enough planar
optical target would not be viable because of the limitations imposed on the vehicle aerodynamics.
Thus, we chose to place small yet powerful light sources, such as light-emitting diodes (LEDs) at
known asymmetric locations on the UAV fuselage, see Figure 3.

(a) (b)

Figure 3. Six light-emitting diodes (LEDs) are mounted on the tip of each arm of an hexacopter, plus
other two on the body, in an asymmetric pattern. A 6 cm circular plate covers the background in the
vicinity of the LEDs. (a) LED positions on the unmanned aerial vehicle (UAV). (b) Detail of the LED
mounting.

In contrast with MOCAPs and indoor visible light positioning systems, in our application the
distance is long compared to the camera resolution. Moreover, no converging viewpoints are available,
so the target depth is weakly controlled and ultimately depends on how accurately the position of
the light sources can be determined in the image. In our case, the image features corresponding to
the LEDs consist only of a few pixels and are blurry because of motion. Thus, with classical template
matching or centroid methods [28] it is difficult to achieve a precision better than one pixel.

The presented method is composed of four key innovations with respect to state-of-the-art:

1. We first derive a parametric image formation model that predicts the intensity of each pixel in
the surrounding of the projection of a generic point-wise light source subject to motion blur and
considering a nonideal lens system (Section 3).

2. Given that light sources are predicted to appear as bright spots in the image, with a given shape,
size, and blur kernel, it is possible to use the image formation model in the target detection step:
close bright pixels are grouped together and the resulting clusters are ranked according to their
overall similarity to a reference image patch generated with the image formation model. Next,
the a-priori notion of the shape of the LED array is introduced to remove extra false candidates
and to associate each image feature to the correct point in the object space (Section 5).

3. Once the set of 2D to 3D correspondences has been established, we introduce an extension of the
classical iterative algorithms for the PnP problem to determine the camera pose (i.e., its position
and orientation) with respect to the LED array. Such extension relies again on the image formation
model, and, instead of minimizing the reprojection error of the object points, given the camera
pose, it minimizes the photometric error associated to each pixel in the vicinity of the LED
projections. This allows to determine a refined, subpixel location of the object points jointly
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with the camera pose, as well as the parameters of the image formation model, such as the blur
kernel (Section 4).

4. Finally, we discuss a method to control the camera exposure in real time to ensure that the LEDs
are always visible and with optimal brightness in the image, avoiding pixel saturation, and thus
violations in the image formation model assumptions (Section 6).

In Section 7 we present an experimental evaluation of the computer vision pipeline. We show the
full viability of the approach and we compare with state-of-the-art methods where possible.

3. Image Formation Model

In this section we derive an image formation model for a moving point-wise light source,
considering a nonideal lens system. We develop the model in the one-dimensional case for simplicity,
being the 2D case an intuitive extension.

At any given moment, a point-wise light source projects to a location x (e.g., in pixels) on the
imaging sensor. Suppose now that its apparent motion is uniform, with velocity v, and centered at the
origin. If the lens system is ideal, the light energy at any continuous location x of the imaging sensor
during the exposure time texp is given by

Eid(x) =
c

vtexp
Π
(

x
vtexp

)
, (1)

where Π(·) is the rectangular function, texp is the exposure time, and c is a proportionality constant.
Note that limvtexp→0

∫ ∞
−∞ Eid(x)dx = c. The measured intensity of each pixel is typically proportional

to the integral of the light energy over the pixel surface. In case of a nonideal lens system, the actual
energy distribution is obtained convolving Equation (1) with the Point Spread Function (PSF) of the
lens system. Here we assume that the PSF can be modeled with a Gaussian, i.e., PSF(x) = exp(x, σ) =

(
√

2πσ)−1e−x2/2σ2
[29]:

E(x) = Eid(x) ∗ PSF(x) =
∫ ∞

−∞

c
vtexp

Π
(

x− τ

vtexp

)
exp(τ, σ)dτ =

=
c

vtexp

[∫ x+ v
2 texp

∞
exp(τ, σ)dτ −

∫ x− v
2 texp

∞
exp(τ, σ)dτ

]
=

=
c

vtexp

[
erf
(

x + v
2 texp√

2πσ

)
− erf

(
x− v

2 texp√
2πσ

)]
, (2)

where we have used the fact that Π(x) = 1(x + 1
2 )− 1(x− 1

2 ). hen the light source apparent velocity
with respect to the camera is small, or when the exposure time is very short,

Equation (2) can be approximated with

Em(x) = c exp(x, σeq). (3)

In fact, it can be shown that Em(x)→ E(x) and σeq → σ when vtexp → 0, i.e., when the motion
or the exposure time are small. In the limit case no approximation is introduced in Equation (3) in
this case. When vtexp 6= 0, this does not hold. In order to quantify the impact of such approximation,
we first compare E(x) and Em(x) in two cases: in Figure 4a, the effects of motion blur are very well
captured by Equation (3). In the second case, see Figure 4b, we consider a faster motion and a sharper
lens system. Here, the approximation becomes more coarse. A numerical study of the difference
between E(x) and Em(x) as a function of vtexp and σ is shown in Figure 4c: it is possible to see that
with a reasonably sharp lens system (σ = 1 px), the approximation introduced in Equation (3) are
below 10% for motions of less than 5 pixels during an exposure time.
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(a) σ = 1 px, vtexp = 2 px
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(b) σ = 0.25 px, vtexp = 4 px
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Figure 4. Comparison of Em(x) with respect to E(x) in two example cases (a,b) and numerical analysis
of the difference of the two as a function of σ and vtexp (c).

4. Photometric PnP

In the following we employ the image formation model presented in the previous section to
extend the classical iterative algorithms for the solution of the Perspective-n-Points problem [27]:
if an image formation model is available for the image features associated to each known object
point, the image position of such features can be determined jointly with respect to the object pose
minimizing the photometric error with respect to the model. This is useful to better localize object
points in the image when these consist of a limited number of pixels, and may be blurred by motion,
or by a nonideal or imperfectly focused lens system.

We first review the conventional PnP algorithm. First, a set of n known 3D points in object space
are matched with their corresponding projection in the image. In classical iterative algorithms, such as
in the work by the authors of [30], or later extensions, the reprojection error is defined as the difference
between the positions of the points measured in the image and the predicted ones based on the current
estimate of the object pose. Such error is minimized, in least-squares sense, yielding the final object
pose. More precisely, the predicted image coordinates of the i-th point, [x̂i, ŷi] are given by the pinhole
camera model:

ρ

 x̂i
ŷi
1

 = K ΓC
L


Xi
Yi
Zi
1


L

, (4)

where [Xi, Yi, Zi]
L are the object coordinates of the i-th point; ΓC

L = [RC
L |LC] is the pose of the object

reference frame, L, with respect to the camera, C; and K is the 3× 3 intrinsic camera calibration matrix.
As usual, ρ is obtained from the third component of Equation (4) and eliminated. Lens distortion
can be corrected with the well known Brown’s model [31], which is omitted for brevity. Given the
corresponding image observations for each point i, [zx,i, zy,i], and their a priori uncertainty, Σi, the object
pose can be determined solving

Γ̂C
L,PnP = arg min

ΓC
L

∑
i

[
x̂i − zx,i
ŷi − zy,i

]T

Σ−1
i

[
x̂i − zx,i
ŷi − zy,i

]
. (5)

The nonlinear optimization problem in Equation (5) is typically solved by means of the
Levenberg–Marquardt (LM) algorithm. An initial guess for the camera pose can be obtained by
means of the direct linear transform [32,33]. Particular care needs to be taken in handling ΓC

L during the
optimization, as the rotation component, RC

L , belongs to SO(3), the special orthonormal group, or the
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group of rotations in three dimensions, a non-Euclidean space. RC
L is typically over-parameterized

(e.g., 4D in case of unit quaternions or 9D in case of rotation matrices) and the constraints existing
within the parameterization must be preserved during optimization. This problem is however well
understood and manifold-aware variations of LM have been proposed, e.g., see the work by the
authors of [34].

The input image coordinates, [zx,i, zy,i], are measured separately for each point i in a prior image
processing step, for example by feature or template matching, corner detection, etc. The problem in
this approach is that the accuracy of such image measurements is hardly below one pixel, especially in
presence of motion blur and/or when the image features related to the object points consist in just a
few pixels (e.g., because the distance is large compared to the camera resolution). In such cases it is
also difficult to establish a consistent a priori Σi.

In this work we propose to determine the image coordinates of the object points jointly with
the pose of L. Instead of minimizing the reprojection error, as defined in Equation (5), we minimize
the photometric error with respect to an image formation model. In our case, each known point
on the target is signalized with a small yet powerful light source. This allows us to use the image
formation model derived in Section 3. We consider a small square patch of 2M + 1 pixels centered
at an (integer) initial guess of the i-th light source position, [xi,0, yi,0]. The intensity of the pixel [x, y],
with [x, y] ∈ {xi,0 −M, . . . , xi,0 + M} × {yi,0 −M, . . . , yi,0 + M} is given by

Î ([x, y], [xi, yi]) = a exp

−
[

x− xi
y− yi

]T

Ω

[
x− xi
y− yi

]+ b, (6)

where [xi, yi] are the unknown image coordinates of the i-th point-wise light source. Equation (6) is the
straightforward extension of Equation (3) to the two-dimensional case: a is an unknown proportionality
constant, b is the background intensity, and Ω is a positive definite matrix encoding the blur kernel.
We assume that the target is small in the image space, the background can be assumed as uniform,
and that all the light sources have similar intensity. This means that a and b are unknown but common
to each object point. The same holds for Ω, provided that no fast rotation occurs around the target
center viewing ray.

The target pose is determined along with the image coordinates of the points and the unknown
parameters of the image formation model as

Γ̂C
L = arg min

ΓC
L ,[xi ,yi ],a,b,Ω

∑
i

∑
x,y

(
zI([x, y])− Î([x, y], [xi, yi])

)2

Photometric error

+ ∑
i

[
x̂i − xi
ŷi − yi

]T

Σ−1
i

[
x̂i − xi
ŷi − yi

]
Geometric error

, (7)

where [x̂i, ŷi] and Î are as defined in Equations (4) and (6) and zI is the pixel intensity as measured in
the image. The geometric error component is equivalent to Equation (5): it is defined in terms of the
unknown image positions of the points (and not with respect to image measurements) and constraints
them to be consistent with the three-dimensional structure of the light source array. Indeed, Σi does no
longer correspond to the a priori uncertainty of the image measurements: it acts as a weight between
the geometric and the photometric error components and accounts for uncertainties in the 3D positions
of the object points and for the imaging system not perfectly satisfying the pinhole camera model.

The details of the solution of the optimization problem in Equation (7) are analogous to the ones
of conventional PnP. However, further parameters have to be initialized: initial guesses for a and b
can be obtained averaging the central and the corner pixels of each image patch, whereas Σ can be set
to be the identity matrix. In continuous operations, the values obtained for the last processed frames
are used.
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In Figure 5 we depict the results based on two real images, with the accent on the shape of the
determined blur kernel; a comparison of the predicted versus actual image intensities are shown in
Figure 6.
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Figure 5. Results of fitting the image formation model on two real images of the light-source arrays;
isolines at 3σ are plotted in red and image patches in dashed green. (a) Results at 80 m. (b) Results at
100 m.
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Figure 6. Observed versus predicted pixel intensities for the image in Figure 5a.

5. Target Detection

As an additional input for the solution of the Photometric PnP problem, we need to first locate the
correct image features in the image, and next to establish the association of each image feature to the
corresponding object point. In this work we solve this nontrivial segmentation task relying on specific
aspects of the application at hand: the object points are signalized with point-wise light sources and
are imaged from medium to large distance with a monochrome camera. Moreover, the tilt between
the target and the camera is small, as both UAVs are hovering or gently moving in formation flight.
Our solution first generates a set of promising image locations, then reduces this set based on the
predicted appearance of a point-wise light source in the image, and finally establishes the association
between image features and object points relying on the a priori knowledge of the geometry of the
target. The details are given in the following.

Since the point-wise light sources appear as bright spots in the image, provided that a proper
exposure time is set (see Section 6), the first step is to threshold the image and to cluster connected
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bright pixels together. However, further objects in the scene may be bright in the image, such as highly
reflective or white surfaces. To eliminate most of these candidates, we rely on the photometric model
developed in Section 4: From the latest estimates of the photometric model parameters (or from default
assignments, for the first frame) we can generate the expected appearance of a light source, in terms of
a 2M + 1× 2M + 1 patch, see Figure 6, middle row. Indeed, the parameters a and Ω encode the shape
and the size that a bright spot should have to correspond to one of the target signalizing lights. All
clusters found are ranked according to the similarity with respect to the generated patch (in terms of
squared intensity difference) and only the K most similar ones are kept. Here, K is a parameter of the
algorithm that is chosen to be 5–10 times the number of object points N.

In the last step, we introduce the a priori knowledge on the shape of the target to exclude the
remaining outliers and to establish the association between each image feature and the corresponding
object point. For each couple of candidate image features, ci and cj, we pretend that these correspond
to object points 1 and 2. Based on this assumption, we compute the 2D transformation [x, y] = T(c)
(translation, rotation and scale) that maps the image coordinates of ci and cj to the object coordinates
of points 1 and 2. Such transformation is unique and can be computed in closed form. Then, for each
remaining image feature, ch, we apply T to obtain the expected object coordinates of ch, T(ch). If the
association ci → 1, cj → 2 is correct, we expect to find an object point approximately at coordinates
T(ch), which we check iterating trough all the remaining object points. If we find an element for which
the discrepancy is below a given threshold, we consider this a match. The couple (i, j) that scores the
highest number of matches, plus the matches themselves, give us the searched association between
image features and object points. Note that we have assumed that a translation, rotation and scale is
sufficient to approximately map image to object coordinates. In general, an homography would be
needed instead, if the object points are coplanar. However, in the application at hand, the relative tilt
between the two UAVs, and thus between the camera and the target, is small, making the perspective
effect negligible.

The last step of the image segmentation algorithm performs an exhaustive search trough all the
possible image feature to object point associations. Indeed, there is no apparent difference (e.g., color or
shape) between the light sources signalizing object points and we can not rely on other distinctive
image features to identify the location of the target with high confidence, as instead happens with
most of the planar targets, e.g., a black and white surface with an encoded identifier, as in the work by
the authors of [24]. Moreover, one ore more of the features corresponding to object points may fail to
rank among the best K ones according to the similarity to the reference image patch. The presented
algorithm can tolerate up to N − 3 missing points, even tough the more points are missing the higher
the chance of a wrong detection is. The complexity of the algorithm is O(K3N), where K is the number
of image features kept after the photometric test and N is the number of object points. This moderately
high complexity is bearable by a small embedded computer in real-time, provided that K is kept
relatively small. This is desirable, as a weaker photometric filter, and thus more candidate bright spots,
increase the possibility of a wrong match: for instance, a set of bright stones on the ground could lay in
a configuration comparable to the one of the object points on the target. This problem can be mitigated
by increasing the number of object points. However, their density must be kept below 1/(2M + 1)2

points/pixel2 in the whole range of operating distances, otherwise multiple ones may lie in the same
image patch considered for the photometric PnP adjustment, violating model assumptions.

6. Automated Exposure Adjustment

In Equations (3) and (6) we introduced an image formation model for point-wise light sources
able to account for motion blur and Gaussian lens point spread function. However, in practice,
zI(x, y) ∈ [Imin, Imax]: saturated pixels are outliers with respect to that model, and can not be employed
in the least-square adjustment. This means that the exposure time, texp, has to be adapted to maintain
a sufficient apparent brightness of the light sources while limiting pixel saturation. In the following,
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we discuss how an optimal exposure time can be computed in real time based on the current estimate
of the parameters of the image formation model.

It is well known that the light intensity per unit of surface decreases with the square of the distance
from the source. Additionally, the light sources are generally directional, so that the emitted power
decreases drastically as the angle of looking increases. The total light energy Etot reaching the sensor
during the exposure time texp can be modeled with

Etot = λ
texp

‖LC‖2 α(ΓC
L ), (8)

where ||LC|| is the distance from the target and α ∈ [0, 1] is a function modeling the non-uniform
light emission, which is thus dependant on the relative camera pose with respect to the target. λ is an
unknown proportionality coefficient depending on the light sources intensity. After the light sources
array has been successfully detected and measured in an image, an estimate for Etot can be obtained
from the final a, b, and Ω, as in Equation (7):

Êtot = κ
∫∫

Î(x, y)− b dxdy = κa
2π√
|Ω|

, (9)

where Î is as in Equation (6) and κ is a coefficient depending on the camera gain and quantum efficiency.
Imposing Êtot = Etot and κ = 1, (arbitrarily), we obtain

λ =
2πa

∥∥LC
∥∥2

texpα(ΓC
L )
√
|Ω|

. (10)

We continuously determine λ using multiple frames with an exponential moving average filter so
that local unmodeled effects are accounted for. Once λ has been determined with sufficient accuracy,
Equation (8) can be solved in texp, using the last known parameters to determine the exposure time
needed to achieve the desired Etot, which is chosen such that the number of saturated pixels is minimal,
based on an average |Ω|. Indeed, for the same Etot, the peak intensity is a function of Ω, as in case of
motion the same light is spread over multiple pixels. While typically the relative camera pose changes
slowly, the blur kernel Ω does not, as it is highly dependant on the angular velocity of camera and
on vibrations.

Clearly, for a given λ (which is related to the light sources intensity), there exist a distance for which
the computed exposure time becomes excessive. The background features (e.g., the terrain) reflect the
sunlight and the more texp is increased, the more the highly reflective points in the background will
look like the target light sources in the image. This can be solved, up to a certain density of candidates,
by means of a clever image segmentation algorithm which takes into account the geometry of the array
to exclude possible outliers. However, whatever algorithm will break above a certain distance.

7. Experimental Evaluation

We mark each tip of the arms of a hexacopter, plus other two points on the fuselage,
with high-power LEDs, as in Figure 3. The maximum distance between two LEDs is 65 cm. We place
the copter on the ground and we fly a second one, equipped with a nadir camera, above the first.
The flight pattern has a “butterfly” shape (on), it is centered at the target position and enlarges with the
elevation (which tops at 100 m). The camera has 5 MP resolution, a pixel size of 3.45 µm/px, the focal
length of the lenses is 8 mm, so that 1 px ≈ 4.3 cm from 100 m distance. The flight was performed
under sunny conditions.

We first evaluate the impact of the exposure adjustment algorithm: texp needs to be controlled in
real-time as a function of the current estimates of ΓC

L , Ω, a, and b to achieve an optimal LED intensity
in the image. In Figure 7, we show that as soon as the exposure adjustment algorithm is engaged,
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Êtot, as defined in Equation (8), is constant regardless of the camera pose: the farther we move from
the light sources, the higher the exposure time has to be set. In the considered range of distances,
the background is still substantially less bright than the light sources, which ensures that the threshold
and clustering algorithm works properly.
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Figure 7. (a) Estimated energy Êtot and texp compared to
∥∥LC

∥∥. After the exposure adjustment
algorithm is engaged the LEDs energy is constant regardless of the target pose. (b) Distribution of pixel
intensities at elevation 40 m, texp = 300 µs and 100 m, texp = 1000 µs.

Next, we discuss the precision of the determined image coordinates. In Photometric PnP, [xi, yi]

are explicit unknowns in the least-squares adjustment, so we can evaluate their a posteriori uncertainty:

Σpost =
ν>Σ−1ν

R
(JTΣ−1 J)−1, (11)

where ν is the residuals vector, R is the problem redundancy, i.e., the number of observations minus
the degrees of freedom, Σ is the a priori measurement uncertainty, and J is the Jacobian of the residuals
with respect to the unknowns. Σ includes the relative weight between the photometric and the
geometric constraints (see again Equation (7)), and it is defined as Σ = [12(M+1)2 , 02n; 02(M+1)2 , k12n],
with k = 30, determined empirically. This means that a residual of 30 units in pixel intensity has the
same weight of 1 pixel in the geometric constraint (zI([x, y]) ∈ [0, 255]). As a comparison, we run
a classical iterative PnP algorithm (we used the well known implementation available in OpenCV)
employing the centroid of the bright clusters as image measurements. In PnP, only ΓC

L is estimated, so
we determine the a posteriori uncertainty of image measurements by means of covariance propagation.
Note that for PnP we do not need to specify an a priori uncertainty for the image observations (which
would be arbitrary), as Σ = γ1 and Σpost does not depend on γ. The results shows that Photometric
PnP allows to determine the location of the light sources with better precision compared with classical
methods, 1σ ≈ 0.05 px, as it is shown in Figure 8.

More accurate image coordinates translate in better determination of the relative target position
with respect to the camera, L̂C. We show this comparing the position results with respect to a classical
PnP algorithm. The reference for this comparison is obtained as follows. We exploit the fact that the
target is static and we orient all the images with the well know bundle adjustment software Pix4D
Mapper, with the scale being fixed by camera position priors from a GPS receiver and by ground
control points. Such adjustment gives the reference camera poses and the target position with respect to
a global frame W, ΓW

C and LW , out of which the reference LC
ref is computed. As hundreds of images are

adjusted together, LC
ref is more precise than L̂C, which instead is determined from a single frame only.

To eliminate one possible source of bias in the results, we use the same calibration in all the experiments.
The result of the comparison are reported in Table 1. It is possible to see that the results are practically
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unbiased, except for the Z component, and that the photometric PnP algorithm outperforms classical
PnP in all the statistics. Notably, we reduce the standard deviation of the error by a factor of two in
the Z component, which is the most sensible to the accuracy of image measurements. An equivalent
comparison for the orientation estimates, R̂C

L , is not reported here as all planar targets suffer of pose
ambiguity, meaning that in certain circumstances two orientations of the target would produce the
same image projection of the known points [35], which complicates the comparison. Nevertheless,
both algorithms achieve a standard deviation better than 10◦ for roll and pitch and 2◦ for yaw.
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Figure 8. A posteriori uncertainty of the image coordinates of the light sources (a) and of the 3D
position of the target (b).

Table 1. Relative target position error statistics (in mm).

Photometric PnP Classical PnP

X Y Z X Y Z

mean 3 14 −292 −6 20 −359
std 82 96 578 118 161 920

RMS 82 97 647 118 162 986

8. Conclusions

We have presented an extension to classical algorithms for the solution perspective-n-points
problem. In case an image formation model is available for the image features corresponding to the
known points of the target, the photometric error can be minimized as a function of the target pose
and of the unknown parameters of the model. This model was formulated for point-wise light sources
subject to motion blur and nonideal lens system. We obtained an improvement of the target position
precision up to a factor of two in real world experiments. As a plus, the new algorithms allows to
determine the exposure time for the next frame so that the apparent intensity of the light sources is
optimal for the preliminary image segmentation task, required to detect and recognize the target in
the image.
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