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Abstract: The application of drones provides a powerful solution for “the last-mile” logistics services,
while the large-scale implementation of logistics drone services will threaten the safety of buildings,
pedestrians, vehicles, and other elements in the urban environment. The balance of risk cost and
service benefit is accordingly crucial to managing logistics drones. In this study, we proposed a
cost-benefit assessment model for quantifying risk cost and service benefit in the urban environment.
In addition, a global heuristic path search rule was developed to solve the path planning problem
based on risk mitigation and customer service. The cost-benefit assessment model quantifies the risk
cost from three environmental elements (buildings, pedestrians, and vehicles) threatened by drone
operations based on the collision probability, and the service benefit based on the characteristics of
logistics service customers. To explore the effectiveness of the model in this paper, we simulate and
analyse the effects of different risk combinations, unknown risk zones, and risk-benefit preferences
on the path planning results. The results show that compared with the traditional shortest-distance
method, the drone path planning method proposed in this paper can accurately capture the distri-
bution of risks and customers in the urban environment. It is highly reusable in ensuring service
benefits while reducing risk costs and generating a cost-effective path for logistics drones. We also
compare the algorithm in this paper with the A* algorithm and verify that our algorithm improves
the solution quality in complex environments.

Keywords: urban logistics; drones; path planning; risk cost; service benefit; optimization algorithms

1. Introduction

The daily parcel of e-commerce enterprises has attracted huge attention due to their
rapidly growing volume. In 2021, the global parcel shipping volume exceeded 159 billion
parcels, which is expected to reach 256 billion in 2027 at a compound annual growth rate
of 8.5 per cent [1]. Meanwhile, the variability of customer demand characteristics, such as
different service locations and service times, has led to the need for logistic service providers
to invest large-scale capacity and resources in “the last mile” transportation of parcels [2].
Thus, more and more companies are trying to find innovative and autonomous delivery
methods for “the last mile” transport, such as drone logistics, to improve the quality of
logistics. With the development of technology, drones’ airworthiness and cargo-carrying
capacity have improved significantly. Electric-powered logistics drones are not restricted
by road networks and can reduce environmental costs and increase service flexibility [3].
The contactless services provided by drone logistics are also widely recognised due to the
coronavirus outbreak [4]. Overall, the above advantages make drone logistics a powerful
solution to solving the problems of traditional logistics [5]. Internationally renowned
logistics companies such as Amazon, DHL Express, and Jingdong Logistics have begun
developing drone logistics versions [6]. Statistics from BusinessWire also show that the
global business value of drone package delivery has grown from USD 0.68 billion in 2020
to approximately USD 1 billion in 2021 and is expected to be USD 4.4 billion in 2025 [7].
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However, the accident risks associated with the large-scale application of logistics
drones must be effectively assessed and managed. The drone would not only threaten the
safety of people and vehicles on the ground in urban environments [8], but also may collide
with high-rise buildings [9]. To ensure the safety of other aircraft, people, and property
after a drone crash, aviation organisations, including the Federal Aviation Authority (FAA),
require a risk mitigation assessment in the pre-flight state [10]. Hence, the study of path
risk assessment and mitigation methods is a critical technical prerequisite for logistics
drone applications.

Throughout the existing research, the vehicle path problem is a classical mathematical
model for studying urban last-mile logistics. It is based on the travelling salesman problem
(TSP) [11], which ensures the minimum transportation time or cost by planning the service
sequence of customers. The existing research evolved on the basis of this problem model.
Murray and Chu [12] proposed a collaborative path-planning model for trucks and drones
considering drone service range and load capacity constraints. In this work, they reported
two new variants of the traditional TSP problem, the flying sidekick travelling salesman
problem (FSTSP) and the parallel drone scheduling travelling salesman problem (PDSTSP).
Yurek and Ozmutlu [13], Freitas and Penna [14], and Mbiadou Saleu et al. [15] also presented
various algorithms for these problems. The above-simplified approaches assumed that the
order of customer service at different locations remains consistent with the drone’s service
path, while ignoring the problem of safety risks inevitably involved in the actual operation.
Inspired by this factor, existing studies have started to consider the risk assessment of
drone operations. These mainly include the risk of collision in flight and the impact
on the ground.

Falling drones would threaten the safety of pedestrians and vehicles on the ground.
Mitici and Blom [16] proposed a mathematical model for collision probability estimation,
which provides a research solution for the collision risk assessment of drones. Bertrand
et al. [17] studied the probability of drone operations threatening road traffic, defined the
range of ground a falling drone could affect, and developed a collision probability model
to identify high-risk areas in the road network. Koh et al. [18] and Clothier et al. [19]
studied the extent of injury to pedestrians struck by drones and proposed weight limits
for drones based on the associated injury scales and criteria. Drone aerial collision risks
mainly originate from buildings, no-fly zones, unstable weather, and other drones [20]. To
assess the risk of aerial collisions, existing studies have established various collision models,
mainly including the REICH model, the EVENT model, and the position probability model
based on the concept of position error. The REICH model [21] lays the foundation of flight
safety interval assessment and is mainly applied to assess the risk of collision between two
aircraft in parallel flight paths. It finds that the collision probability and relative velocity
in each direction determine the flight collision risk. The EVENT model proposed by
Brooker [22] combines radar and controller operations to analyse lateral and longitudinal
separation, which can calculate the probability of collision risk in each direction. The
probabilistic model based on position error focuses on collecting and processing information
about the positioning error and trajectory deviation of the drone, in order to predict the
probability of the flight trajectory conflicting with the risk area [23].

Based on the conflict risk assessment research, most research on drone path risk
mitigation aims to find no-conflict paths. One intuitive approach is geometry-based. The
closest proximity point approach is used to solve the potential conflict warning problem
by measuring the position between two drones, thus avoiding collision risk and ensuring
the safety of the planned path [24,25]. As an improvement to the geometric method, Fan
et al. [26] and Tang et al. [27] introduced artificial potential fields (APF) and simulated the
environment by designing virtual attractive and repulsive potential fields for autonomous
guidance of the drone to avoid obstacles. Driven by efficiency, many researchers have tried
to use heuristic search to find the optimal no-conflict path. For example, a node-based
optimal algorithm is a special form of dynamic programming. When a map or graph
is already constructed, they first define a cost function, and then search each node and



Drones 2022, 6, 418 3 of 27

arc to find a path with minimum cost. It mainly includes the A* algorithm [28], Lifelong
Planning A* (LPA) [29], Theta* [30], Lazy Theta* [31], D*-Lite [32], Harmony Search [33],
etc. Evolutionary algorithm, which contains genetic algorithm [34], memetic algorithm [35],
particle swarm optimisation [36], ant colony optimisation [37], and shuffled frog leaping
algorithm [38]. The evolutionary algorithm starts by selecting randomly feasible solutions
as the first generation. Then, taking the environment, drone capacity, goal, and other
constraints into consideration, the planner evaluates the fitness of each individual. In the
next step, a set of individuals is selected as parents for the next generations according to
their fitness. The last step is a mutation and crossover step and stops the process when a
pre-set value is achieved. The best fitness individual is decoded as the optimal path. Recent
studies have treated drones as intelligent agents for stochastic dynamic threats in urban
environments and used reinforcement learning to guide drones to avoid collisions [39–41].

Nevertheless, it is still an open problem for drone logistics to plan effective service
paths in complex urban environments and ensure service completion based on reducing
the threat to pedestrians, vehicles, buildings, etc. Many works focus on only considering
obstacles in the environment during the finding phase of collision-free paths, while little
attention has been paid to the fact that the risk cost from the threat is simultaneous with
the service benefit of providing services to customers. To address the shortcomings in the
above studies, we propose an urban environment model considering the coupling effect of
customer service requirements and complex risks and develop a path point search strategy
for improving the exploration of feasible paths in the environment. We summarise the
main contributions of this paper as follows.

(1) We studied the complex risk factors of drone operation in urban environments and
established a risk quantification model, which considers three primary risk sources in
urban environments, including pedestrians, vehicles, and buildings.

(2) We established a logistics service benefit quantification model and proposed a multi-
drone path planning method that integrates risk cost and service benefit, with the goal
of guiding drones to find a path with the highest service benefit and lowest risk cost
under the constraints of flight performance indicators, such as energy consumption
and step length.

(3) We proposed a path point search strategy to solve a dynamic path planning problem
driven by customer demand and risk. The strategy ensures that drones can adjust
local paths in dynamic environments through regular global searches.

The rest of this paper is organised as follows: Section 2 analyses the critical elements
affected by drones in the urban environment and illustrates the concept of path planning
that combines customer needs and risks. The proposed methodology is described in
Section 3, followed by simulation validations and case studies in Section 4. The summary
of our work is in Section 5.

2. Problem Definition

Drones operate at low altitudes below 400 feet above the ground in cities. Once there
is a collision, they can cause threats to buildings and other non-cooperative drones in the
air. On the other hand, they can threaten pedestrians and vehicles on the ground when
a crash occurs [42,43]. We conclude the primary environmental elements threatened by
drone operations into four categories as follows.

(1) Drone impacts pedestrians, causing fatalities;
(2) Drone impacts vehicles, causing traffic accidents;
(3) Drone impacts high-rise buildings, resulting in property loss;
(4) Drone collision with other non-cooperative drones.

In this work, we ignore other risk factors, such as noise and privacy impacts on the
public, due to their insignificance [44]. Pedestrians, vehicles, buildings, and logistics service
customers are randomly dispersed in the city. Therefore, the core problem in logistics drone
path planning is quantifying risk cost and service benefit for different locations. The urban
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environment for drone flight is divided into discrete 2D grids, and each grid’s risk cost and
service benefit are derived from environmental risk elements and customer demand. The
cost-benefit value within each grid is used to guide drones to serve more customers and
avoid high-risk areas in the complex urban environment.

The technology framework of the proposed work is presented in Figure 1. There are
five steps to quantify risk cost and service benefit in the environment. First, the threat of
drone operations to pedestrians, vehicles, and buildings in the city is analysed. Then, we
develop three risk cost assessment models to quantify the various types of risk costs from
the above elements under threat. Thirdly, we develop a service benefit assessment model
based on the characteristics of logistics customers. Fourth, we synthesise the integrated risk
cost and service benefit into cost-benefit values. Fifth, we construct the cost-benefit map.
The urban environment is gridded, and the cost-benefit value calculation method of the
flight path is established. Based on the cost-benefit map, we propose a drone path planning
model with energy limitation constraints and a search algorithm with heuristic factors.
To explore the effectiveness of the model in this paper, we next simulate and analyse the
effects of different risk combinations, unknown risk zones, and risk-benefit preferences
on the path planning results. We also compare the algorithm of this paper with the A*
algorithm to verify the solving ability of this paper’s algorithm. Finally, the reusability of
the method in this paper is demonstrated by statistical analysis.

Figure 1. The technology framework of the proposed work.

3. Materials and Methods
3.1. Risk Assessment Model

This section presents a quantitative model of the integrated risk cost. We analyse the
risks derived from the operation of drones in an urban environment. Figure 2 depicts the
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impact of considering risk cost mitigation on path planning results. The environment is
divided into equal-sized grids, and the risk cost within each grid is calculated according
to the integrated risk model. The colours in the map show the distribution of risk cost,
with red representing areas of high risk cost and blue representing areas of low risk cost.
The dashed line indicates the path with the shortest distance from the starting point to the
end, and the solid line is the path that considers risk cost mitigation, which chooses the
area with lower risk cost to pass, and the final path has a much lower risk cost than the
shortest path.

Figure 2. Risk cost mitigation affects path planning results.

3.1.1. Quantifying the Risk Cost Associated with Pedestrians

The risk cost of a drone striking a pedestrian is modelled according to the three
components of collision [45,46]: (a) a drone crash, (b) a drone striking pedestrians, and
(c) resulting in the death of pedestrians, as shown in Figure 3.

Figure 3. Drones and pedestrians.

We quantify the risk cost due to drones affecting pedestrians by potential fatalities as
in Equation (1):

Cost1 = Costp = PcrashSdρpPd (1)
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where Cost1 is the quantified value of pedestrian risk cost, Pcrash is the probability of a
drone crash, Sd is the exposed area of the ground impacted by the falling drone, ρp is the
population density, and Pd is the fatality rate associated with the kinetic energy of the drone.
The speed of the drone hitting the ground is shown in Equation (2):

vd =
∫ t

0
(g− f )dt =

∫ t

0

(
g−

fdSdρAv2
d−real

2m

)
dt =

√
2mg

fdSdρA

(
1− e−

H fdSdρA
m

)
(2)

where g = 9.8m/s2, f is the resistance acceleration, fd is the drag coefficient, ρA is the air
density, vd−real is the actual airspeed of the falling drone, m is the mass of the drone, H
is the height of the drone falling point. The energy generated by the descending drone is
shown in Equation (3)

E f d =
1
2

mvd
2 (3)

Considering that the buffering effect of buildings and trees can mitigate the injury of
falling drones to pedestrians, a sheltering factor S f , S f ∈ (0, 1] is introduced to consider
this sheltering effect when calculating risk costs. A higher value implies a better sheltering
effect and a lower probability of death. By combining the sheltering element into the
kinetic energy equation, the lethality Pd of a falling drone can be obtained as shown in
Equation (4):

Pd =

(
1 +

√
µ

ν
(

ν

E f d
)

1
4S f

)−1

(4)

where µ is the energy that might cause a 50% fatality with S f = 0.5, ν is the impact energy
threshold required to cause fatality as S f approaches zero. The values of S f for different
environments are shown in Table 1.

Table 1. Sheltering coefficients [47].

Sf Type of Shelters

0 None
0.25 Trees
0.50 Low-rise buildings
0.75 High-rise buildings

1 Industrial buildings

3.1.2. Quantifying the Risk Cost Associated with Vehicles

Vehicles are another key element in the urban environment that can shelter falling
drones; different from buildings and trees, the sheltering effect of vehicles mainly occurs
while driving. Similar to the modelling of drone strikes on pedestrians, falling drones
cause road traffic accidents in three components [17]: (a) a drone crash, (b) a drone striking
vehicles, (c) resulting in traffic accidents, and (d) causing human fatalities, as shown
in Figure 4.

Quantify the risk cost due to drones affecting vehicles by potential fatalities, as shown
in Equation (5)

Cost2 = CostV = PcrashPV NV (5)
where PV is the probability of a falling drone hitting a vehicle, proportional to the traffic
density, and NV is the average number of fatalities caused by a crash. The probability of a
drone hitting vehicles on the ground is defined as the ratio of the total area occupied by
vehicles to the entire scope of the road, as shown in Equation (6)

PV =
SVρV
Droad

(6)

where SV is the average projected area of the vehicle, ρV is the traffic density, and Droad is
the road width.
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Figure 4. Drones and vehicles.

3.1.3. Pedestrian Density and Vehicle Density

The density distribution of pedestrians and vehicles in the urban environment can
directly affect the risk cost of drone operations. Their density distribution is highly corre-
lated with attractive facilities [48]. To quantitatively assess this correlation, gravity models
are used to calculate pedestrian and vehicle density [49]. Inspired by gravity models, the
pedestrian density in urban environments is shown in Equation (7).

ρP = e(1−r2)ρ0
P (7)

where ρ0
P is the average pedestrian density, r is the distance from the centre of gravity. If

there is an increase in r, it leads to a decrease in ρP, as shown in Figure 5.

Figure 5. Gravity model for pedestrian distribution.

Similarly, the road traffic density distribution is shown in Equation (8):

ρV = e(1−r2)ρ0
V (8)

where ρ0
V is the average traffic density.

3.1.4. Quantifying the Risk Cost Associated with Buildings

As shown in Figure 6, the operation of drones in urban airspace inevitably involves
potential conflicts with buildings, and this potential conflict incurs risk costs [50]. Consider-
ing the overlapping locations of logistics customers and buildings, buildings cannot simply
be set up as no-fly grids.
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Figure 6. Drones and buildings.

The flight risk decreases as the distance between the drone and the building increases.
However, due to the different sizes and shapes of buildings in the city, the influence range of
buildings on drones is also different. For a normal distribution, setting different variances
can reflect the different influence ranges of buildings, which is simple compared to other
distributions or describing the shape and dimensions of the buildings. To simplify the
model calculations, the distribution of the risk cost due to the influence of the building is
assumed to be a normal distribution with different variances [51].

For n independent buildings in the map, given the central location Bi = (Xi, Yi) of the
i-th building, CostBu(x, y) denotes the risk cost of the point (x, y) when considering the
impact of the building Bi, as shown in Equation (9)

Cost3 = CostBu(x, y) =
1√
2πσ

e−
d2

2σ2 (9)

where d =
√
(x− Xi)

2 + (y−Yi)
2, i ∈ {1, 2, · · · , n} indicates the Euclidean distance

between the drone and the centre of the building.

3.1.5. Comprehensive Risk Model

In the previous section, risk cost quantification models were constructed for three
elements: pedestrian, vehicle, and building. The different calculation methods would
obtain different values of risk cost magnitude, which cannot be measured by the same
standard. Therefore, the risk costs of the three elements need to be standardised to describe
the total risk cost in the urban environment.

The risk costs of all three elements can be calculated through a particular distribution,
and then each type of risk cost contained in a raster would be divided by the maximum
risk value generated by the risk source separately. It is guaranteed that all risk cost values
for each type are in the range of (0, 1].

The weights of the three risks may vary with the difference in their importance or
preference, and the contribution of each risk may also vary with the cost [52]. For example,
aviation regulators emphasise the risk of pedestrian fatalities caused by drones. The risk
cost of pedestrians will be weighted much more than the other two factors. Traversing the
areas with high pedestrian density will result in higher costs, so the planned paths will be
more inclined to avoid these areas.

For point (x, y), its cumulative risk value needs to consider a pedestrian risk zones,
b vehicle risk zones, and c building risk zones. The total risk cost of the point (x, y) is
calculated as shown in Equation (10),

Rtotal(x, y) = αi∑a
i=1

Ci
1

Ci
1−max

+ αj∑b
j=1

Cj
2

Cj
2−max

+ αk∑c
k=1

Ck
3

Ck
3−max

(10)

where αi, αj, αk are the weighting factors, αi + αj + αk = 1.
The cumulative risk Rtotal(x, y) of the path C is shown in Equation (11)
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∫
(x,y)∈C

Rtotal(x, y) (11)

3.2. Drone Path Planning Model Based on Risk Cost and Service Benefit

The flight path of drones performing logistics services needs to mitigate the path risk
cost based on ensuring service completion. Therefore, the objectives of logistics drone
path planning include risk mitigation and customer service. The integrated risk cost
quantification model established in the previous section can be used for risk mitigation.
Customers’ locations in cities often overlap with risk factors, such as buildings, crowds, and
roads. This would cause drone service paths to pass through risk areas, so it is necessary to
balance the path risk cost and service benefit. Figure 7 depicts the impact of considering
risk cost mitigation and service benefits on the path planning results. The solid white
arrows indicate the shortest path, the white dashed arrow is the path considering risk
cost mitigation, and the white dotted line indicates the path that balances risk cost and
service benefit, where the path is changed to fulfil customer needs based on the most risk
cost-effective path.

Figure 7. The path planning based on risk and customer.

In this section, our primary work is to establish a multi-drone path planning method
to guide drones to find a path with the highest service benefit and lowest risk cost under the
constraints of flight performance indicators such as energy consumption and step length.
Furthermore, a global search strategy is proposed to solve the above paths.

3.2.1. Service Benefits Modelling

Assume that each customer has an initial requirement C0
demand−j that needs to be

handled by drone. We also assume that the drone can only serve a certain distance from the
customer’s location. Therefore, for a customer j, the range that can be served is denoted
as s(pj, R), where pj is the location of the customer j and R is the radius of the acceptable
service range. Service starts when the drones enter the service range of the customer j. Each
drone has a constant service speed τ. The remaining demand Cdemand−j of the customer
served by k drones simultaneously over time ∆t is shown in Equation (12)

Ct
demand−j = Ct+∆t

demand−j − τk∆t (12)

Assuming a nonlinear relationship between customer residual demand Cdemand−j
and service revenue Cb(Cdemand−j), this paper uses a sigmoid-like function to improve
performance, as shown in Equation (13)

Cb(Cdemand−j) = 1− exp

[
−

(Cdemand−j)
χ

Cdemand−j + ψ

]
(13)

where χ and ψ are control parameters. For each customer, the service revenue Cb(Cdemand−j)
decreases rapidly with its remaining demand Cdemand−j. It is guaranteed that serving
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the customer with the highest remaining demand generates the greatest revenue, thus
increasing global customer service completion.

3.2.2. Energy Consumption Modelling of Drones

Assuming that the lifting and lowering process of the drone is ignored and only
straight-line flight is considered, the energy consumed for moving a distance d at a constant
speed v is shown in Equation (14),

Ev = P(w)
d
v

, ∆Ev = P(w)∆t (14)

where P(w) is the power of the drone moving at a constant speed v. For the n-rotor drone,
its power is shown in Equation (15),

P(w) = (W + w)
3
2

√
g3

2ρAςn
(15)

where W is the self-weight of the drone, w is the weight of the load carried by the drone,
ρA is the fluid density of air, ς is the area of the rotating blades, and g is the acceleration of
gravity. The total power of the drone is shown in Equation (16),

Etotal = ηCVn (16)

where η is the energy conversion efficiency, C is the capacity of the cell, and Vn is the
nominal voltage of the n cells.

The drone departs with an empty load. As the drone services the customer, the
drone’s load increases while the customer’s remaining demand decreases. After the current
customer is served, the drone maintains the current load until it starts serving the next
customer.

Assuming that the demand is proportional to the load and the scale factor is ε, then
for a drone i serving x customers at the same time, the load varies with time, as shown in
Equation (17),

wt+∆t
i = wt

i + τxε∆t (17)

3.2.3. Global Path Planning Model

Based on the risk cost and service benefit quantification model, We introduce a cost-
benefit matrix to measure the benefits and costs between any two points on the map. The
map is represented as an N × N grid, and the cost-benefit matrix TCmn between any points
pm and pn is shown in Equation (18)

TCmn = dpm ,pn +
Mbene f it

1 + ∑n∈s(pj ,R) Cb(Cdemand−j)
+ Mrisk

∫
(x,y)∈C

Rtotal(x, y) (18)

where pm, m ∈
{

1, 2, · · · , N2} is the current position of the drone, pn,n ∈
{

1, 2, · · · , N2}
is the next position of the drone. dpm ,pn is the Euclidean distance between pm and pn.
∑n∈s(pj ,R) Cb(Cdemand−j) is the benefit generated by the demand of all customers that can
be served at point pn. Mbene f it and Mrisk are the coefficients of service benefit and risk cost,
which affect the path planning strategy. In practice, Mbene f it and Mrisk can be adjusted
according to preference. For example, if the tolerance for risk cost is poor, then Mrisk can be
set to a higher value to amplify the impact of risk cost.

The goal of the present work is to plan a service path with minimum total cost. The
total cost includes the risk cost and the inverse of the service benefit. The objective function
is shown in Equation (19)

min : TC(P) = ∑eir∈P TC(eir), i > 0, r = i + 1 (19)

where P is the flight path consisting of edge e, TC(P) is the total cost of the path P, and
TC(eir) is the cost of the edge eir.
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According to the drone energy consumption model, the power available for flight is
limited. Therefore, the logistics drone must complete the service and reach the endpoint as
soon as possible before consuming the planned available power. The constraint is defined as

∀lir ≥ lmin, eir ∈ P, r = i + 1, i, r > 0 (20)

Econsume = ∑eir∈P Eir
consume ≤ Eplan (21)

(xi − xi−1, yi − yi−1)
T(xi+1 − xi, yi+1 − yi)

‖(xi − xi−1, yi − yi−1)‖ · ‖(xi+1 − xi, yi+1 − yi)‖
≥ cos βmax (22)

Equation (20) represents the shortest distance constraint for an edge between two
adjacent nodes in the drone path, lmin is the minimum distance of the edge, and lir is the
length of the edge eir. Equation (21) represents that the total energy consumption of the
drone must not exceed the available power, Econsume is the total energy consumption of the
path P, Eir

consume is the energy consumption of each side eir in the path P, and Eplan is the
total available power. Equation (22) represents the constraint on the maximum turning
angle of the drone, (xi, yi), (xi−1, yi−1), (xi+1, yi+1) are the coordinates of three consecutive
path points, and βmax is the maximum acceptable turning angle.

3.2.4. Path Planning Algorithm

To solve the least-cost flow problem for large scale in this study, heuristic methods (e.g.,
A* algorithm) have better performance in terms of computational time to solve the path
planning problem. The standard A* algorithm generally uses the Manhattan or Euclidean
distance to select the following move location. However, in the cost-benefit environment
established in this paper, the cost of each raster is different and unevenly distributed, so
considering only the distance cannot reflect the actual cost of the path. As the complexity
of the environment increases, the traditional A* algorithm has difficulty finding a suitable
path and deadlocks. Therefore, the following path search rule is proposed to improve the
environment’s exploration, and the rule’s effectiveness is verified in the experimental stage.

(1) Environmental exploration strategy
In this work, a heuristic factor is set according to the Boltzmann distribution to ensure

a complete exploration of the environment. The drone is currently at the path point pi,
i ∈

{
1, 2, · · · , N2}, and the probability of the point pr, r ∈

{
1, 2, · · · , N2} being selected as

the next path point is calculated based on the value TCir, as shown in Equation (23)

p(i, r) =
exp

[
T

TCir

]
∑

k∈R,k 6=i
exp

[
T

TCik

] (23)

where T is the temperature parameter that controls the degree of environment exploration,
R is the set of all N2 points in the map. At the beginning of exploration, since the drone
knows little information about the environment, a smaller T value is set to ensure that the
drone can explore the environment quickly in the early stages. As the exploration time
increases and the drone has enough information about the environment, the value of T is
increased to ensure that the algorithm can reach convergence within a specific time.

(2) Original global path generation rules
A sequence of points forms a drone path. The calculation of the cost-benefit value

TCmn for the drone moving between two points in the map is established in Equation
(18). The path point exploration rule based on the cost-benefit value TCmn is established in
Equation (23). Based on this, our global path planning is divided into two steps. Based on
this, our global path planning is divided into two steps. Firstly, based on the cost-benefit
value in the environment at the planning start time t0, a series of paths satisfying the
constraints are iteratively generated according to the global search method (as shown in
Algorithm 1), and the path with the optimal cost-benefit value is selected as the original
global path. The second step performs local replanning on the basis of the original global
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path (as shown in Algorithm 2). The generation of the original global path is described
as follows.

(1) For the i-th drone (UAVi), for each episode repeat (2)–(6).
(2) Initialise Pathi to an empty list Pathi[]. The initial position P0 of the drone is the

first point Pathi[1] in Pathi.
(3) For each step in each episode, repeat (4)–(5).
(4) For the current location point ps, select the next point ps+1 according to the Boltz-

mann exploration strategy.
(5) Add ps+1 to Pathi[], as the s + 1-th path point Pathi[s + 1]. Return to (3) until the

target point is reached or the power is exhausted.
(6) Finish this episode, episode + 1, and return to (2).
(7) Until episode = MAX, the learning process ends and the current optimal Path

is output.
The process of global path planning is defined in Algorithm 1.

Algorithm 1 Original global path generation

1 For i in UAVnum do
2 For episode← 0 toMAX do
3 Pathi ← Pathi[ ]
4 Pathi[1]← P0
5 For ps ← P0 to Target do
6 ps+1 ← Boltzmann
7 Pathi[s + 1]← ps+1
8 s = s + 1
9 End for
10 episode = episode + 1
11 End for
12 End for

(3) Drones Movement and local path replanning rules
Based on the original global path defined in Algorithm 1, we need to further establish

the rules that the drone moves according to the original path and simulate the actual
operation of the drone on the original path. During the flight of drones, new risk areas may
appear on the map as time changes, causing the subsequent part of the original global path
to cross high-risk cost areas, and then the original path needs to be locally replanned. The
reason for the above situation is that global path planning is carried out at time t0, and
some risk zones in the environment do not exist at this time but appear at time t = t0 + ∆t
(e.g., the temporary gathering of pedestrians due to time-predictable activities). This risk
zone needs to be addressed by local path replanning rules during the actual flight of the
UAV based on the original global path. This does not require real-time path planning, only
further pre-planning for new risk zones that are known to occur during flight. The process
of local path replanning by the drones to avoid the newly generated risk zone is defined
in Algorithm 2.

For the ith drone (UAVi) Scan is executed after moving one step along the original
path. After Scan is executed, there are two scenarios. The first scenario is the discovery of
new obstacles (including other drones), and the cost-benefit matrix will be recalculated for
replanning the subsequent paths. The second scenario is that the surrounding environment
remains unchanged, and the path also keeps the same. For each time interval ∆t, the
step length of the drone movement is fixed as Step. If the distance between the current
position and the subsequent path point is less than Step, the drone will move directly to
the subsequent path point.
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Algorithm 2 Drone Movement and local path replanning

13 For i in UAVnum do
14 Pathi ← Pathpoint Generation( )
15 End for
16 For i in UAVnum do
17 If posi == Target then
18 Stop(i)
19 else
20 Obstacle← Scan
21 If Obstacle then
22 Pathi ← Pathpoint Generation( )
23 End if
24 If posi == Pathi[1] then
25 Pathi ← Pathi[2 . . . end]
26 End if
27 posi == Move(Step, Pathi[1])

28 For j with UAVi in (Pj, R) do
29 Cdemand−j ← Cdemand−j − τ

30 Ev ← Ev − P(wi)∆t

31 wi ← wi + ετ

32 End for
33 End if
34 End for

4. Results

In order to validate the path planning model coupling risk cost and service benefit,
we perform simulations and analyses in a constructed urban environment containing
pedestrian risk zones, vehicle risk zones, building risk zones, and logistics customers.

First, the urban environment model is constructed based on the modelling of risk
areas and customer demands above. Then, we apply the proposed path search algorithm
to search the logistics service path with the lowest risk cost and the highest service benefit.

Based on the above, the effect of risk combinations and the dynamic addition in
risk areas are investigated to verify the reliability of the model and algorithm, which can
mitigate the three risk costs while ensuring the response to the dynamic environment. Next,
sensitivity analysis is conducted for the risk and benefit coefficients to study the balance of
risk cost and service benefit in path planning. To evaluate the effectiveness of the algorithm
proposed in this paper, the three most critical metrics in logistics path planning, namely,
service completion, average path length, and average risk, are considered to compare with
the A* algorithm. Finally, simulations and statistical analyses were performed to evaluate
the effectiveness of the proposed path planning model for balancing risk cost and service
benefit when extended to other urban environments.

4.1. Path Planning for Multiple Drones

The urban environment model proposed in this paper includes pedestrian risk, vehicle
risk, and building risk, and it is verified that drones can ensure the completion of customer
service while reducing the cost of path risk. In this section, the required parameters for
simulation experiments are shown in Table 2 [46,53,54], and the optimisation effect of the
model in this study compared with the traditional method is analysed.
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Table 2. Simulation parameters.

Parameters Value Parameters Value

lmin/m 2 ρV/vehicle ·m−1 7.12× 103

Pcrash 6.04× 10−5 NV 0.25
ρA/kg ·m−3 1.23 αi, αj, αk 0.50, 0.25, 0.25

fd 0.30 χ, ψ 2, 8
Sd/m2 0.02 R/m 200

ν/kg ·m2 · s−2 232 Mrisk, Mbene f it 20, 1
µ/kg ·m2 · s−2 106 C/A · s 1/144

ρp/people ·m−2 0.007 Vn/kg ·m2 · A−1 · s−3 22.80
SV/m2 9.68 W/kg 20

Droad/m 20 n 6
η 0.70 ε 0.50

The flight area with a range of 1000 × 1000 m is divided into 50× 50 grids. In the
environment model, we assume that the drone starting points are represented by black
circles; the endpoint is represented by a black cross; the building risk zones are randomly
generated variance σ; the crowd risk zones and the road vehicle risk zones are randomly
generated risk radius r; the customer zones to be served are assigned random initial
demand dj ∈ (0, 10].

Considering that the size of the drones is much smaller than the size of the grids, in
this paper, we use the integral method to obtain the path risk cost, and the calculation
result is not affected by the size of the grids and drones. Therefore, the drone is considered
a prime point to simplify the calculation. The drone path planning is guided based on the
risk cost distribution consisting of pedestrians, buildings, and vehicles in the environment
and the service benefit distribution determined by the customer’s location and acceptable
service range. The path planning is performed in MATLAB using the algorithm described
above. The initial environment modelling and path planning results are shown in Figure 8.
The paths of the three drones departing from different locations are represented by three
colours. Path group 1 represents the result of path planning considering the balance of
service benefit and risk cost, where Drone 1 serves Customers 1, 2, and 3 according to the
solid red path, Drone 2 serves Customers 4 and 5 according to the solid blue path, Drone 3
serves Customers 4, 5, and 6 according to the solid green path. Path group 2 is the path
only considering customer service without risk. Path group 3 is the path only considering
risk without customer service. The colours in the map show the distribution of risk cost,
with red representing areas of high risk cost and blue representing areas of low risk cost.
The contour lines represent the distribution of risk cost due to building risk and pedestrian
risk, and road 1 and road 2 represent the vehicle risk cost distributed along the road. The
specific path parameters are shown in Table 3.

As shown in Figure 8 and Table 3, the result of path planning without considering
the risk model (path group 2; no risk considered) traverses the high-risk area to ensure
the shortest path to complete the customer service and reach the endpoint, resulting
in increased risk cost. The path without considering customer service (path group 3; no
customer considered) ignores customers overlapping with the location of high-risk areas for
ensuring the shortest length and lowest risk cost path to reach the endpoint. The customers
overlapping with high risk cost areas are completely ignored, leading to a decrease in
service completion. The model of this paper, which considers both risk avoidance and
customer service completion as the driving force, can balance the risk cost and service
benefit. Risk cost is reduced by 81.25% compared with path group 2, and service completion
is improved by 57.00% compared with path group 3.
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Figure 8. Environment modelling and path planning.

Table 3. Comparison of path planning results.

Path Group Average Path Length/km Completion Ratio Average Risk Cost

Cost-effective path 1.24 1.00 6.20
No risk considered path 1.11 1.00 33.07

No customer considered path 1.19 0.43 3.01

4.2. Path Planning with Different Risk Combinations

According to the result in the previous subsection, it can be seen that the model
obviously mitigates the risk cost in path planning. However, the comprehensive risk
model proposed considers three types of risks: pedestrian, vehicle, and building. The path
planning results also are affected to an extent by the difference in risk models.

Therefore, further quantitative analysis is required to study the effects of different
risk combinations on drone path planning and risk costs in urban environments. This
section simulates and studies path planning in the above flight area with four risk combina-
tions: (a) Group A considers three risks, (b) Group B considers pedestrians and buildings,
(c) Group C considers buildings and vehicles, (d) Group D considers pedestrians and
vehicles, and (e) Group E does not consider risks.

Figure 9 presents the effect of different risk combinations on path planning. Path A
has a total risk cost of 6.20. Path E is the worst because it does not mitigate any risks, with
433.23% higher total risk cost than Path A. Path B and Path C have similar results, with
Path C being 7.99% higher than Path B due to dense pedestrian areas being more relevant
to buildings. The risk cost of Path D increases by 53.99% relative to Path A. Due to the
gravity model, the distribution of pedestrians and vehicles is associated with buildings,
and disregarding building risks leads to a subsequent small increase in pedestrian and
vehicle risks, but this increase is significantly lower than Path B and Path C, where the
corresponding risks are not considered.
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Figure 9. Impact of different risk combinations in the environment on path planning.

The average path length is affected by the combination of risks, and Path E has the
shortest length without considering risks. Considering all three risk types, the model
proposed in this paper only increases the path length by 12.00% over Path E.

For the increase in path length, on the one hand, the 12.00% increase in path length is
minimal compared to the 433.23% increase in risk. On the other hand, we add the constraint
of drone energy consumption to the path planning model. Although the length of Path
A increases, it still completes all customer service requirements and reaches the target
point within the energy consumption constraint, indicating that the increase in path length
is negligible.

The results show the path planning under different risk combinations to further
understand the differences in the various types of risk costs of the path planning results
while considering the risk combinations.

This paper investigates each type of risk cost (pedestrian risk cost R1, vehicle risk cost
R2, and building risk cost R3) in the above five risk combinations. The results are shown in
Table 4. Path C was planned without considering the risks associated with pedestrians in
the environment. The drone path enters dense pedestrian areas, resulting in a pedestrian
risk cost R1 of 15.48, which is higher than the case of Path A and Path B, where pedestrian
risk is considered. On the contrary, the risk combination considered in Path B includes
pedestrian risk, thus avoiding the area with high pedestrian risk costs. However, vehicle
risk is not considered, resulting in a higher vehicle risk cost of 14.47. The exclusion of
building risk in Path D leads to an increase in building risk by 452.63%.

Table 4. Split comparison of path risk costs.

Risk Cost Group A Group B Group C Group D Group E

Total Risk Cost 6.20 18.40 19.87 9.55 33.07
Pedestrian Risk Cost R1 3.35 3.56 15.48 5.64 16.62

Vehicle Risk Cost R2 2.66 14.47 3.11 2.86 15.11
Building Risk Cost R3 0.19 0.37 1.28 1.05 1.33

The gravity model leads to an overlap of the three risk types, which is similarly
demonstrated in the variation of the three types of risk cost. Path B ignores vehicle
risk, while pedestrian risk and building risk increase respectively by 6.27% and 94.74%;
Path C ignores pedestrian risk, but vehicle risk and building risk increase respectively by
16.92% and 573.68%; Path D ignores building risk, and pedestrian and vehicle risk increase
respectively by 68.35% and 7.52%. Although Path D ignores the building risk, the drone
path does not intrude into the high building risk zones due to the presence of pedestrian
risk, so the building risk is reduced by 17.97% compared to Path B. The relevance of the
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variation in different risk cost types also proves the importance of studying the integrated
risk assessment model in this paper.

Path E presents that all three types of risk values are the highest among the five paths
due to the correlation of various risk areas in the urban environment, such as the dense
distribution of pedestrians and vehicles around the buildings. Therefore, the path planning
results without considering any risk, the cost of all three risk categories is higher than the
value of the corresponding risk category in any other combination.

For the mitigation effect of each type of risk, comparing Path E with Path A, it is
shown that Path E in construction risk is 1.33 and Path A is 0.19, decreasing the risk by
about 85.61%. Path E in vehicle risk is 15.11, and Path A is 2.66, decreasing the risk by
approximately 82.40%. Path E for pedestrian risk is 16.62, and Path A is 3.35, decreasing
the risk by about 79.85%. The total risk is reduced by approximately 81.25%. As a result,
the model in this paper has a good mitigation effect on all three types of risks, and the
proportion of the three risk reductions is kept at about 80.00%.

We can conclude that more risk sources in path planning can effectively mitigate the
total path risk cost. This is because capturing more comprehensive risk sources is beneficial
for avoiding more high-risk areas. It also further demonstrates the importance of our
analysis and modelling for various types of elements threatened by drones in cities, which
can guarantee the effectiveness of capturing risk costs in path planning.

4.3. Temporary Response Effect of the New Risk Area

During the process of drone logistics transportation in urban environments, the ob-
stacles and risk areas in the environment can basically be examined and commanded to
go around in the global path pre-planning stage before starting the mission due to the
more comprehensive network coverage. However, due to the complexity of the urban
environment, it is still challenging to avoid unknown obstacles in advance, such as flocks
of birds, which require commanding the drone to change its route to avoid them.

In the path planning algorithm of this study, the drone scans the global environment
at each step. Once there are new risk areas that affect the original flight path of the drone,
the subsequent path is replanned to ensure that the drone adapts to the dynamic urban
low-altitude environment. This section focuses on analysing the effect of the avoidance
strategy proposed by the algorithm.

As shown in Figure 10 and Table 5, when a new risk area appears at the location of
the point (0.2, 0.9), drone 1 moves one step according to the original path and finds that
the subsequent original path passes through the new high risk cost area, so a local path
replanning is performed to avoid the new risk area. The red dashed line in Figure 10
represents the locally replanned path of drone 1, and the solid red line indicates the original
path. The solid blue line indicates the path of drone 2, the solid green line indicates the
path of drone 3. As the new risk zone does not affect the original paths of drone 2 and
drone 3, the paths of these two drones do not change. For analysing the impact on drone
1, which was replanned to avoid the new risk zone, we further compared and analysed
the path parameters. The path length of drone 1 increased from 1.62 of the original path to
1.69, and the growth rate was 4.32%. The path risk cost was affected by the new risk zone,
which increased from 5.20 to 5.22, with a growth rate of 0.35%. The service completion was
always 100%, indicating that the path length increase was negligible. It is clear that the
avoidance strategy proposed by the algorithm allows the drone to change the original path
before entering the new risk zone. It could ensure that the risk cost from the new risk zone
is mitigated and the increase in path length is minimal.
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Figure 10. Path replanning due to new risk zones.

Table 5. Results of path replanning.

Drone 1 Path Length/km Completion Ratio Path Risk Cost

Original Path 1.62 1 5.20
Replanning Path 1.69 1 5.22

In order to further study new risk zones, this paper investigates the effect of the
number of new risk zones on the path planning results. As shown in Figure 11, the length
of path 1 increased by about 3.99% on average with the addition of each new risk area, the
service completion always remained at 1, and the path risk cost increased by about 0.30%
on average.

Figure 11. Path replanning due to new risk zones.
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In summary, the temporary response of the algorithm to new risk zones can reduce
new risk costs on the basis of service completion. The avoidance strategy is influenced by
the time when the risk zone is discovered. The above discussed that a new risk zone is
discovered before the drone enters that risk zone. Because the avoidance strategy requires
the drone to scan and judge whether there is a new risk zone once in each step, it can guide
the drone to update the next path point in time to avoid the risk zone. In the case that the
drone has already entered the new risk zone when it is found, it is obvious that the drone
will change the next path point according to the strategy, thus leaving the risk zone with
the shortest distance. This case does not need to be discussed.

4.4. Sensitivity Analysis on Coefficients

After the above analysis, it can be seen that the model in this paper has a good effect on
mitigating the path risk cost based on the assurance of service completion. Trade-off effects
of service benefits and risk costs will be discussed in this part. In the model, the parameter
Mbene f it determines the priority for the service, thus affecting service completion. When
Mrisk has a fixed value, a larger Mbene f it makes the drone more inclined to satisfy more
customers, and the drone will bear more risk costs and path lengths due to the overlap of
customer locations and risk areas. On the contrary, a smaller Mbene f it means that the drone
will ignore some customers but reach the destination directly with a shorter path and lower
risk cost. As shown in Figure 12, service completion and average risk will increase with the
increase of Mbene f it.

Figure 12. Sensitivity analysis of the parameter Mbene f it (Mrisk = 5).

Since Mbene f it is the coefficient of customer service benefit, its change had the most
significant impact on service completion among the three indicators, which was 0.51 when
Mbene f it = 0 and increased to 1 when Mbene f it = 2 with a growth ratio of 49%; while the
average path length increased from 1.07 to 1.165 with a growth ratio of 8.87%; the average
path risk increased from 1.385 to 1.832 with a growth ratio of 32.27%.

Average path length and average path risk increased much less than service comple-
tion. Due to the increase in Mbene f it, drones tend to complete more services, resulting in
the drones needing to detour farther to reach the customer service area. The path risk also
increased due to the overlap of customers and risk areas. However, since the minimisation
objective in this paper’s model includes path length and risk cost, this constraint ensures
that the path length and risk cost remain stable when customer service completion increases
rapidly. It can be found that our model achieves a flexible balance of service benefit with
risk and path cost by adjusting Mbene f it.
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Similar to parameter Mbene f it, Mrisk controls the drone’s tolerance for risk. When Mrisk
increases, drones are more inclined to avoid the risk zone to reduce path risk, which leads
to a rapid decrease in the average risk. The average path risk decreases by 79.09%, with a
52.90% decrease from Mrisk = 0 to Mrisk = 10 and a 26.19% decrease from Mrisk = 11 to
Mrisk = 20. Customer service completion remained at 100% when Mrisk ≤ 10. Due to the
overlap between customer location and risk area, when Mrisk ≥ 11, the coefficient of risk
cost was much higher than customer service benefit, drones tended to avoid risk instead of
serving customers in the risk area, leading to a decrease in customer service completion
rate, which decreased by 25% when Mrisk = 20.

With the increase of Mrisk, drones tend to move away from the risk area, leading to
an increase in path length. Due to customer demand, the drone still needs to enter the
customer area while avoiding the risk area, so the path length grows faster with an increase
of 16.37% when Mrisk ≤ 10. In the stage of Mrisk = 11 to Mrisk = 20, the influence of the
customer is significantly weaker than the risk area, which can be proved by the 25% drop in
demand completion analysed above. A sufficiently large Mrisk value made the drone less
likely to extend the detour distance, which can be demonstrated by the average risk value
decreasing by 26.19% from Mrisk = 11 to Mrisk = 20, which is about 50% less than Mrisk = 0
to Mrisk = 10. The reasons mentioned above eventually led to a significant slowdown in the
growth of drone path length, which increased by only 0.5% from Mrisk = 11 to Mrisk = 20.
The results for the parameter Mrisk are shown in Figure 13.

Figure 13. Sensitivity analysis of the parameter Mrisk (Mbene f it = 0.5).

According to the analysis of the above results, it is evident that the adjustment of the
coefficients Mrisk and Mbene f it changes the preference for risk and benefit in path planning,
which leads to significant differences in the parameters of the planning results (average
path length, service completion ratio, average risk cost). It also further demonstrates the
importance of our proposed path planning approach that considers balancing risk cost
and service benefit, which can reflect the process of completing customer service while
avoiding risks in the actual operation of logistics drones.

Another critical parameter affecting drone paths in complex urban environments is
the acceptable service range for customers. Due to the fact that customer locations often
overlap with high risk cost areas such as buildings, pedestrians, and vehicles, part of the
customer demand may be discarded if the acceptable service range decreases and the drone
path needs to traverse more high-risk cost areas to complete the service. Therefore, we
further analyse the impact of acceptable service range R on path planning results.
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According to the results shown in Table 6, it can be seen that as the acceptable service
range decreases, the overall service completion decreases significantly due to balancing
the risk cost and service benefit, and the path risk cost will decrease due to ignoring
some customers. The acceptable service range decreases from 200 m to 100 m, and the
service completion decreases by 57.00%, while the average path risk cost only increases
by 12.26%. This is because the reduction of the acceptable service range causes the drone
needs to traverse more high-risk cost areas to complete the service, which is detrimental
to the goal of balancing risk cost and service benefit, so the drone discards part of the
customer requirement. When R = 150m, only the service to Customer 2 was dropped
due to balancing risk cost and service benefit, so service completion decreased. However,
providing service to Customers 4, 5, and 6 leads to a 5.97% increase in risk cost due to the
reduction in the acceptable service range.

Table 6. Sensitivity analysis of the parameter R.

R/m Mrisk Completion Ratio Average Risk Cost Unserved Customers

200 20 1 6.20 None
150 20 0.90 6.57 Customer 2
100 20 0.43 5.44 Customers 2, 4, 5, and 6
100 5 0.90 11.35 Customer 2

The variation of completion degree in customer demand shows that the reduction of
the acceptable service range does not affect the completion degree for Customers 1 and 3,
which do not overlap with the high-risk cost area. Meanwhile, Customers 2, 4, 5, and 6,
which overlap with high-risk cost areas, were not served. The comparative experimental
results of adjusting the risk cost preference parameter Mrisk also demonstrate that the
purpose of discarding some customer demands is to balance the service benefits and risk
costs. For the case that the acceptable service range was 100 m, the drone path accepted
a higher risk cost when Mrisk = 5; thus, Customers 4, 5, and 6 that were not served at
Mrisk = 20 could be served, and the service completion was improved to 90%. While path
risk costs increased by 83.06% due to serving customers whose acceptable service ranges
overlap with high risk cost areas.

In summary, it is important to improve the acceptable service range of customers
for logistics drone risk management. Logistics drone companies also need to adjust the
risk cost and service benefit preferences according to the acceptable service range and
customers’ location in order to ensure service quality.

4.5. Algorithm Effectiveness Comparison

We propose path point generation rules with an exploration strategy to adapt the
scenario for multi-drone logistics operations in urban environments and verify the effec-
tiveness of our algorithm in this section. The A* algorithm [55] is a standard algorithm for
path planning by limiting the selectable actions of drone movements. We consider that
both the A* algorithm and the algorithm proposed in this paper are node-based optimal
algorithms, while the A* algorithm performs local merit by limiting the candidate nodes at
the current location when selecting the next location. The algorithm in this paper is a global
merit algorithm that selects any point within the map in the form of probability by setting
heuristic factors. So, we take the A* algorithm as the benchmark for comparison, which
is a more relevant comparison. In addition, we choose the genetic algorithm as another
comparison algorithm because it treats paths as individuals and selects individuals with
higher fitness through the calculation of individual fitness functions. This approach is
consistent with the global merit strategy for node search, and the comparison shows the
effectiveness of the method in this paper more clearly.

Based on the A* algorithm, at each step of path planning, a drone can choose among
one of a fixed number of equally distributed directions to move one unit step. In our
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experiments, we set up eight directions for drones and thus have eight candidate nodes
pi for a drone to choose from at each step. To apply the A* algorithm in the constructed
environment, it is required to specify the cost-benefit function of performing an optional
action at the current location, as shown in Equation (24)

AiPi = di,pi + MriskRPi +
Mbene f it

1 + ∑Pi∈s(pj ,R) Cb(Cdemand−j)
(24)

where i is the current position, pi is the candidate point specified for the next step, di,pi is
the Euclidean distance between i and pi, RPi and Cb(Cdemand−j) are risk cost and service
benefit consistent with the previous definition.

For genetic algorithms, we need to specify the calculation of individual fitness, as
shown in Equation (25)

Ai =
1
di +

1
MriskRi +

Ci
b

(
C0

demand − Cend
demand

)
Mbene f it

(25)

where i is the i-th path individual, di is the path length of individual i, Ri is the total path
risk cost of individual i, Cend

demand is the remaining customer demand after the drone provides

service by path, C0
demand is the initial total customer demand, Ci

b

(
C0

demand − Cend
demand

)
is the

benefit of the service completed by path i.
According to the comparison with the results of the genetic algorithm, the quality of

the results obtained by the algorithm in this paper is basically consistent with the method of
directly generating the overall path. There was a difference in path length of about 2% and
a difference in risk cost of about 5%. The similarities in the values and trends of the results
demonstrate that applying the global merit strategy in the node search process can improve
the quality of the results. Service completion is the most important index to measure the
result of logistics service path planning in a complex urban environment. As shown in
Tables 7 and 8, compared with the A* algorithm, the service completion of our algorithm
is significantly higher, with an improvement of 20–40%. The path planning results of the
algorithm in this paper have a slightly higher average risk than the A* algorithm. While the
difference between the two algorithms’ path lengths remains between 1 and 2%, proving
that the increase in risk basically comes from the existence of an overlap between the
customer location and the risk area.

Table 7. Comparison of the planning results of the two algorithms by varying Mbene f it.

Mbenefit
(Mrisk=5)

Proposed Algorithm A* Algorithm Genetic Algorithm

CompletionRatio Path Length Risk Cost CompletionRatio Path Length Risk Cost CompletionRatio Path Length Risk Cost

0.01 0.66 1.08 1.41 0.45 1.10 0.50 0.65 1.10 1.50
0.05 0.69 1.14 1.57 0.49 1.14 0.51 0.69 1.15 1.64
0.1 0.73 1.14 1.60 0.54 1.13 0.55 0.74 1.15 1.70
0.15 0.74 1.17 1.79 0.54 1.15 0.55 0.74 1.17 1.84
0.2 1.00 1.17 1.83 0.61 1.15 0.54 1 1.18 1.91
0.25 1.00 1.17 1.83 0.61 1.16 0.54 1 1.18 1.91
0.5 1.00 1.21 2.42 0.61 1.19 0.54 1 1.22 2.50
1 1.00 1.21 3.62 0.61 1.19 0.54 1 1.23 3.81
2 1.00 1.21 3.63 0.61 1.19 0.54 1 1.23 3.81
5 1.00 1.21 3.63 0.61 1.19 0.54 1 1.23 3.81

The mentioned indexes show that the proposed search rule promotes the drone’s
exploration of the environment compared to the A* algorithm. Furthermore, the shortest
path could be found based on the guarantee of completing the service. In addition, the
algorithm can flexibly respond to the change of risk factor k, which ensures the risk
tolerance of drones. It avoids the situation that the original algorithm cannot complete the
path planning in the complex environment.

As Mrisk increased significantly, the drone was more sensitive to risks in the environ-
ment. This is equivalent to a more complex risk area in the environment, which requires
more detours to avoid, and the A* algorithm fails to find a valid path and deadlocks in
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this situation. The path search rule proposed in this study still guarantees 100% service
completion, while the average path length and average risk have a smooth change. It
indicates that the solving ability of our algorithm is still acceptable.

Table 8. Comparing the planning results of the two algorithms by varying Mrisk.

Mrisk
(Mbenefit=0.5)

Proposed Algorithm A* Algorithm Genetic Algorithm

CompletionRatio Path Length Risk Cost CompletionRatio Path Length Risk Cost CompletionRatio Path Length Risk Cost

1 1.00 1.09 2.86 0.58 1.10 0.73 1 1.12 2.99
2 1.00 1.16 2.72 0.58 1.15 0.62 1 1.18 2.90
3 1.00 1.18 2.50 0.59 1.16 0.61 1 1.13 2.83
4 1.00 1.20 2.45 0.60 1.19 0.61 1 1.21 2.69
5 1.00 1.21 2.42 0.61 1.19 0.54 1 1.25 2.56

10 1.00 1.23 1.65 1 1.27 1.87
20 0.75 1.24 0.60 0.76 1.28 0.73
50 0.60 1.26 0.59 0.58 1.29 0.71
75 0.60 1.26 0.59 0.57 1.29 0.70
100 0.60 1.26 0.58 0.57 1.29 0.70

As for the benefit coefficient Mbene f it, the search rule proposed in this study can better
show the change in the preference for customer demand. The service completion was 100%
when Mbene f it = 0.2, which increased by 34% compared with Mbene f it = 0.01, and remained
at 100% completion. For the A* algorithm, when Mbene f it = 0.2, the service completion
was 61%, with an increase of 16%, indicating that the A* algorithm is worse in response to
the demand factor Mbene f it. The main reason for this difference is that the path search rule
proposed in this paper can guarantee a comprehensive exploration of the environment.

4.6. External Validity Analysis

The effectiveness of the proposed path planning model needs to be validated in
balancing risk costs and service benefits when extended to other urban environments.
In this work, external validity is performed, and 100 different urban environments are
randomly generated.

Randomly generated pedestrian density and vehicle density were in the range
[5, 25]× 103(people/km2) [56]. The buildings in all environments had randomly generated
variance σ. The flight area range was 1000× 1000m and was divided into 50× 50 grid
areas. We set up the customer area to be served and assigned a random initial demand
of dj ∈ (0, 10]. The results of path planning without considering risk and the cost-benefit
model proposed in this paper were calculated separately in 100 independent environments.
The path risk costs obtained from these two methods were compared to demonstrate the
risk mitigation effect of the model in this paper. The total risk cost for each simulation
is shown in Figure 14. Among the 100 generated samples (urban model), the average
customer service completion rate of the paths planned by the model in this study reached
98.68%, and all showed good risk mitigation effects.

To test the effectiveness of risk mitigation, the results were further statistically analysed
to calculate the percentage of risk mitigation at the 95% confidence level. Two sample
groups were considered, the risk-mitigated group (Group 1) and the risk-unmitigated
group (Group 2). There were 100 samples within each group. Due to the large sample size
(n1, n2 � 30), a normal distribution could be used to calculate confidence intervals. The
results of calculating the sample means (x1 and x2) and sample variances (s2

1 and s2
2) for

the two groups are shown in Table 9. µ1 and µ2 are the population means. (µ2 − µ1)/x2 is
the confidence interval for the risk mitigation effect, where µ2 − µ1 was estimated by the

following equation: (x2 − x1)± Zα/2

√
s2

1/n1 + s2
2/n2.
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Figure 14. Mitigation effects of path risk in 100 urban environments.

Table 9. Statistical analysis parameters of the risk-mitigated group and the risk-unmitigated group.

Group 1 Group 2

Sample Size n1 = 100 n2 = 100
Sample Means x1 = 10.02 x2 = 34.99

Sample Variances s2
1 = 8.14 s2

2 = 31.13

The results show the 95% confidence interval for the risk mitigation effect (µ2 −
µ1)/x2 ∈ [0.6962, 0.7312]. In any urban environment, path planning with the cost-benefit
model proposed in this paper mitigates the average total risk by [69.62%, 73.12%] at the
95% confidence level and can effectively reduce the risk cost of path planning results for all
types of urban environments based on customer service completion.

5. Conclusions

Owing to the complexity of the urban environment, it is still a challenging task to
mitigate the security threats from drones while ensuring service completion in logistics
drone path planning. To address this issue, we propose a model that couples customers and
risk, and guides path planning in logistics drones by means of quantifying and balancing
the risk cost and service benefit. The results show that compared to traditional approaches
considering only obstacle avoidance, the model proposed in this paper can capture various
risks and customers dispersed in all types of urban patterns and mitigate the path risk
while ensuring customer service completion. In addition, the different risk and benefit
preferences would greatly affect the path planning results, which further demonstrates the
importance of our proposed model for balancing risk cost and service benefit. Furthermore,
the proposed path search rules with heuristic factors outperform the quality of results in
traditional algorithms in complex environments. It is well known that other customer
demands and risk areas also exist. For instance, convective weather also has a significant
influence on the integrated risk model. In addition, the customer demand model could also
consider some more conditions, such as the time window for acceptable service, customer
location movement, etc. Therefore, the present work would be further investigated in
subsequence research to build a more realistic logistics drone path planning model driven
by more customer demands and risk areas.
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