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Abstract: Understanding the causal impacts among various parameters is essential for designing
micro aerial vehicles (MAVs). The simulation of computational fluid dynamics (CFD) provides us
with a technique to calculate aerodynamic forces precisely. However, even a single result regularly
takes considerable computational time. Machine learning, due to the advance in computer hardware,
shows another approach that can speed up the analysis process. In this study, we introduce an
artificial neural network (ANN) framework to predict the transient aerodynamic forces and the
corresponding energy consumption. Instead of considering the whole transient changes of each
parameter as inputs, we utilised the technique of Fourier transform to simplify the ANN structure
for minimising the computation cost. Furthermore, two typical activation functions, rectified linear
unit (ReLU) and sigmoid, were attempted to build the network. The validity of the method was
further examined by comparing it with CFD simulation. The result shows that both functions are able
to provide highly accurate estimations that can be implemented for model construction under this
framework. Consequently, this novel approach makes it possible to reduce the complexity of analysis,
study the flapping wing aerodynamics and enable a more efficient way to optimise parameters.

Keywords: micro aerial vehicle; flapping wing; neural network; aerodynamics

1. Introduction

While a human can fly into the sky with a machine, the mechanism of insect flight
remains yet a mystery of sorts. Unlike conventional artificial aircraft, an insect exhibits
its fascinating aerial manoeuvrability by repeatedly flapping its wings. This particular
mechanism has recently been extensively investigated to develop an improved micro aerial
vehicle (MAV). Furthermore, aerodynamics at a small Reynolds number provides a more
efficient flight [1], which allows a MAV to cruise at a low speed to execute examination
tasks [2]. As MAVs can overcome terrain constraints, they are expected to search for victims
in narrow buildings or explore dangerous environments by employing various sensors [3,4].
However, as the flapping wing system is a relatively novel concept compared with other
aircraft, its mechanism has not been fully revealed yet. Considerable time is therefore
required to examine the impact of various variables.

Among various methods, some studies have reported their findings through biological
observations. Ellington [5] claimed that wing paths had no consistent patterns among
numerous insects. Wakeling and Ellington [6] displayed exceptional steady-state aerody-
namic property of dragonfly wings and utilised it to predict the parasite drag. Josephson
and Stevenson [7] measured the oxygen consumption from insects to evaluate the energy
efficiency of various flight patterns; Dial et al. [8] also presented the measured power con-
sumption of birds that flew at different speeds by examining the electromyograms (EMGs).

As it is tough to reproduce the same experiment due to the individual differences
and the uncontrolled environmental variables, some studies consequently built flapping
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wing mechanisms to clarify the relationship between various parameters. By utilising a
rack-pinion mechanism, T.A. Nguten et al. [9] investigated the effect of parameters such
as wing aspect ratio and flapping frequency; Sato et al. [10] built a flapping wing robot
and discussed the control strategy of altering the flapping amplitude of wings. Miyoshi
et al. [11] found that the asymmetric wingbeat amplitude only affects the pitch and roll
moments. These mechanism-based approaches enable us to regenerate the same flying
condition readily. Furthermore, by controlling the variables, we can figure out the impact
of each parameter on flight performance.

On the other hand, without utilising the technique of particle image velocimetry
(PIV), aerodynamic information such as the leading edge vortex (LEV), which produces
high transient lift [12], can be directly visualised by computational approaches. From the
simulation, we can further obtain precise details such as vorticity to explain the mechanism
behind it [13]. Zou et al. [14] and Lai et al. [15] unveiled impacts caused by phase lag
and the wing–wing interaction through computational fluid dynamics (CFD) simulation;
Johansson and Henningsson [16] compared the effect of the clap mechanism between
rigid and flexible wings. This numerical approach allows researchers to simulate how the
airflow interacts with various objects without spending extensive time and effort creating
experimental environments [17–19]. To obtain precise aerodynamic outputs, building a fine
mesh of calculation field is necessary. Nevertheless, it takes several days or weeks for a
machine to complete the calculation.

With the advances in computer hardware, machine learning shows another approach
for modelling. Unlike conventional computation, related mechanisms are not required
(e.g., governing equations). Recently, some studies have shown that machine learning
methods can be implemented in aerospace science, including flight pattern recognition [20]
and aeroelastic estimation [21]. In the study of flapping mechanics, some researchers
have tried to adopt this new technique into control systems [22–24]. Nevertheless, the
application for flapping flight aerodynamic analysis has not yet been fully developed. Two
studies [25,26] utilised this method to predict the net forces produced in a single flapping
cycle, but the transient analysis has not been completed yet. Therefore, researchers still
relied on conventional approaches to obtain details, such as the changes during upstroke
and downstroke, to explain the impacts of different flight modes.

In this study, we introduce a neural network approach accompanied by CFD simula-
tion to shorten the considerable computational time of transient analysis. We first collected
flapping kinematics by biological observations and utilised them to build a model for
CFD simulations. Afterwards, the data were split into training, validation and testing
groups. We utilised the first two groups of data to create neural network models and
evaluated them with the testing data. As reports [27,28] have shown that wing and body
kinematics are the main parameters affecting butterfly flight performance, we considered
wing rotation and body oscillation as inputs and utilised them to predict the corresponding
changes in aerodynamic forces and power consumption. The effectiveness of the method
was examined by comparing it with the results obtained by CFD simulation afterwards.

2. Data Collection
2.1. Biological Experiment

To record the flapping motion, we utilised the blue tiger butterfly (Tirumala septentrio-
nis) as a reference (Figure 1a). Before the measurement, objects were frozen at −7 °C for
24 h. The morphological parameters were then measured (N = 4), including mass, body
length and wing area, span and mean chord (see Table 1). Afterwards, we calculated the
aspect ratio AR of a single wing with the equation:

AR =
S
c̄

, (1)

in which S and c̄ represent the wingspan and mean chord, respectively. These parameters
were considered a reference to build a simulation model later.
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(a) (b)

Figure 1. Experimental setup. (a) Photograph of a blue tiger butterfly (T. septentrionis). (b) Measure-
ment method. Two synchronised high-speed cameras were mounted onto a transparent chamber
orthogonally along the y- and z-axis. By utilising the photographed images, a butterfly’s position
could be determined.

Table 1. Measured (N = 4) and simulation model’s morphological parameters of the butterfly.

Parameters Measurement Simulation

Mass (mg) 379.93± 72.99 350
Wing Area (mm2) 923.67± 42.55 925
Wingspan (mm) 46.00± 1.23 46.04

Mean Chord (mm) 20.07± 0.39 20.11
Aspect Ratio 2.29± 0.02 2.29

To capture the details of a butterfly’s body action, we utilised two high-speed cameras
(Phantom v7.3 and v310, Vision Research, Wayne, NJ, USA). Both cameras were operated at
1000 frames per second with a resolution of 1024 × 1024 and placed outside a transparent
chamber (size: 1 m × 0.35 m × 0.35 m) in which a butterfly could fly inside freely. As
these cameras were placed orthogonally, we defined the direction from the chamber to the
two cameras as y- and z-axis (see Figure 1b); the synchronised photographed films were
examined to determine the angles between various body parts. To attract a butterfly to fly
forward, we placed a light source on one side of the chamber. As the study focused on the
flapping motion of forwarding flight, we abandoned the data for which the butterfly flew
with turning. On counting the number of frames, we deduced the wingbeat frequency to
be around 11.020 ± 1.076 Hz (N = 15).

To obtain the flapping kinetic equations, we utilised the coordinates measured from
the experiments to rebuild them. Figure 2a shows the heading direction~b was determined
by the body from B0 to B1. The angle between the x-axis and~b was defined as the body
pitching angle θ. Still, the vector ~w1 was determined by the root W0 and the wingtip W1;
the sweeping angle η was obtained by calculating the complementary angle of the angle
between ~w1 and ~b. Additionally, the wing plane was constructed with ~w1 and ~w2 (the
direction pointing from W0 to W2, with W2 located on the trailing edge of the hindwing).
Lastly, the wing rotation angle α was computed from the normal vector of the wing ~wN (i.e.,
the direction of ~w2 × ~w1) and~r×~b; the angle between the latter and the negative z-axis
was defined as its flapping angle, where~r represents the axis of rotation. These parameters
were utilised to describe the flapping flight behaviour of a butterfly.
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(a) (b)
Figure 2. Angle parameters of a flying butterfly. (a) Definitions of angles. From the coordinates of
each feature’s points, body pitching angle θ, sweeping angle η, rotation angle α and flapping angle φ

were obtained. (b) Angles measured from the experiments (N = 15). The solid lines indicate four
feature angles; the surrounding shaded areas represent the 95% confidence intervals. The abscissa
axis denotes the normalised time in a flapping period; the blue area (from T = 0 to 0.6) indicates the
downstroke phase, and the rest (from T = 0.6 to 1) is upstroke.

Figure 2b shows the variation of the four angles in a flapping period measured from
the experiments (N = 15) with 95% confidence intervals (shaded areas). These curves were
recognised as input parameters for subsequent simulation afterwards.

2.2. Computational Fluid Dynamics Simulation

To deduce the aerodynamic interactions that were hard to observe directly, we chose
CFD simulation to generate highly accurate datasets. The obtained morphological parame-
ters and kinematic equations were further utilised to build a butterfly model and regenerate
the flight behaviour through a commercial solver (Fluent, Ansys, Canonsburg, PA, USA).
The SIMPLEC algorithm was applied to resolve pressure and velocity fields [29]. To re-
duce the computational cost, we simulated the flow field under a relative condition frame.
Therefore, the butterfly was flying at the centre of a sphere (see Figure 3a). The butterfly
would thus encounter an incoming airflow with a virtual acceleration a created by its flight.
To avoid inaccurate outcomes affected by the wall effect, the diameter of the spherical
flow domain was set to 20S (around 900 mm). As the Reynolds number of a natural flying
butterfly is around 103–104 [30], the medium was considered an incompressible Newtonian
laminar airflow, with a density of ρ = 1.23 kg/m3 and viscosity of µ = 1.79× 10−5 Pa·s.
Furthermore, we utilised the following governing equations for computation:

∇ · u = 0 (2)

ρ
Du
Dt

= −∇p + µ∇2u + ρ(g + a) (3)

in which u, t, p and g represent the velocity, time, pressure and gravity, respectively.
The entire domain was split into two for giving different boundary conditions [29,31,32].
The front of the butterfly was considered to be the velocity inlet with an incoming flux
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accompanied by a. As a result, the stream fluctuated with the flight at each time step. The
rear sphere was the pressure outlet. These conditions were defined as:

u = −âx ẋ− âyẏ (4)

p = −ρgy, (5)

in which âx and ây indicate the unit vector along the x- and y-axis, respectively.

(a) (b)
Figure 3. Conditions of the simulation. (a) Boundary conditions (inlet: velocity, outlet: pressure).
(b) Grid convergence test.

The grid size of the butterfly’s surface was 0.5 mm with a no-split condition (the air
had zero velocity relative to the boundary), whereas its surroundings were set to 1 mm.
This setting can enhance the precision of the simulation results [31,33]. We also utilised
the lift force to do the grid convergence test. The result converged as the number of grids
increased. Figure 3b illustrates the comparison among three different settings: the coarse
grid (blue solid line, 7 million), the medium grid (red dashed line, 8 million) and the fine
grid (amber dotted line, 12 million). From the result, we found that the maximum value
difference between the coarse and fine settings was about 0.5% merely. Considering the
balance between accuracy and computational cost, we hence selected the medium setting
for the following computation.

We also chose the method of dynamic mesh (smoothing and remeshing) to prevent a
negative mesh volume [34]. A flapping cycle was divided into 250 calculation time steps.
The simulation outputs were the horizontal force Fh, vertical force Fv, normal force acting
on a single wing Fw and power consumption P at the 10th flapping cycle (stable flight). All
these values were nondimensionalised by the following equation:

Fh

Fv

Fw

P

 =
1

1
2

ρV2(2Sc̄)


f ∗h
f ∗v
f ∗w

p∗/V

, (6)

in which the wingtip velocity V = 4φ f S; f ∗h , f ∗v , f ∗w and p∗ were the corresponding untrans-
formed forces and power. The Reynolds number of the simulation result was 6130, which
was close to the experimental result of 6050.

As the study focused on the influence caused by amplitudes of body oscillation and
wing rotation, we altered the simulated conditions of body pitching angle and wing rotation
angle by multiplying them with scalers b and w. In total, 25 flapping data were collected
(see Figure 4).
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Figure 4. Generated datasets. The data were randomly separated into training (64%, blue markers,
N = 16), validation (16%, red markers, N = 4) and testing (20%, amber markers, N = 5) groups. The
testing data were merely utilised for evaluation and did not participate in the training processes.

3. Artificial Neural Network

An artificial neural network (ANN) is constructed by several connected computing
cells (artificial neurons) inspired by the human brain as shown in Figure 5. The output y of
the cell n can be calculated by the following equation:

yn = σ(
m

∑
i=1

wnixni + bn), (7)

in which xn1, xn2, ..., xnm are the input signals; wn1, wn2, ..., wnm are the respective weights;
bn is the bias; and σ is the activation function (transfer function) [35]. The inputs were
the scalers b and w. To increased the training performance, we normalised the values in
the interval of [0, 1] [36]. On the other hand, instead of predicting 250 time steps for each
aerodynamic property, we simplified it by fitting each parameter by a Fourier series:

F(t) = A0 +
m

∑
n=1

An cos 2πn f t + Bn sin 2πn f t, (8)

where m is the order of the Fourier series. When choosing m = 5 to fit the data, each
aerodynamic property could be described by a vector formed by 11 parameters. We hence
considered these 44 parameters (four aerodynamic properties, Fh, Fv, Fw and P) as the
output of an ANN model. As the number of outputs was shrunk from 1000 to 44, we
could consider utilising a smaller number of hidden cells for the following calculation. The
training process hence can be curtailed at the same time.
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Figure 5. Structure of an ANN model. The inputs were b and w, and the outputs were Fourier
coefficients of Fh, Fv, Fw and P.

Figure 6 shows two common activation functions utilised for neural networks. Re-
cently, Rectified Linear Unit (ReLU) has been chosen as the activation function in various
applications [37]. The function is defined by the formula:

ReLU(x) =
{

0 if x < 0,
x otherwise.

(9)

Although the vanishing gradients problem is a critical issue when training an ANN,
ReLU has a constant gradient of 1 when the input is greater than 0. Therefore, it is widely
applied to ANNs. However, previous flapping wing studies chose the sigmoid function
to estimate the mean values of aerodynamic coefficients [25,38]. The function can be
described by:

Sigmoid(x) =
1

1 + e−x . (10)

As the s-shaped output of the sigmoid varies continuously in the interval of [0, 1],
the activation values hence do not disappear. Because we aimed to predict transient
aerodynamic statuses rather than their mean values, we need to evaluate which function
can provide precise estimations. We consequently constructed two models based on these
functions and compared the results afterwards.

Figure 6. Two types of activation functions.

To train the model, we utilised Adam optimiser [39], an advanced backpropagation
method [40], with the loss function of mean square error (MSE) to minimise the error.
Although many studies [41–45] had proposed their rules of thumb to select the number
of hidden units, the main idea is to improve the prediction accuracy and minimise errors.
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Therefore, we randomly picked up 80% of the data to train two types of models through
a various number of hidden units iteratively. Among these datasets, 80% (i.e., 64% of the
entire data) were utilised for tuning weights and bias; 20% (i.e., 16% of the entire data)
were for validation. Considering the balance between accuracy and computational time,
we have examined the loss when the number of hidden neurons was between 20 to 40. To
avoid the setting merely benefiting specific cases, each training was repeated 30 iterations
with the same settings but different training data selections. Figure 4 shows one of the
random states that we have utilised. The learning rate and the epoch size were set to 0.001
and 60,000.

Figure 7 depicts the mean convergent curves of each case during the training process.
From the testing result, we found that though the training loss of ReLU model kept
decreasing when epoch size was greater than 10,000, the validation loss of it remained
around 10−3. We further found that as the number of hidden units was 40, which had
the smallest loss, its validation loss was 8.28× 10−4 and 8.05× 10−4 when epoch sizes
reached 30,000 and 60,000. As the difference between these two values was less than 3%,
we considered the 40 hidden neurons and 30,000 epochs to be an adequate setup. On the
other hand, the training and validation loss of sigmoid model plots reveal that a larger
number of hidden neurons did not promise a smaller loss. When the number of hidden
units was 30, the validation loss difference between epochs 50,000 and 60,000 was less than
3% (epoch 50,000: 8.12× 10−6, epoch 60,000: 7.93× 10−6). Consequently, we considered
the number of hidden units and epochs to be 30 and 50,000, respectively.

(a)

(b)
Figure 7. Loss, the MSE of the 44 output parameters, of ReLU- (a) and sigmoid- (b) based ANN
training processes.

It was unsure if the accuracy of the ReLU activation function was sufficient to predict
the four aerodynamic properties, though the validation loss of the sigmoid-based model
was even lower. We hence utilised both models for the following analysis. To avoid
overfitting, the unused 20% of the data were assigned as testing datasets. As all the data
generated by the CFD simulation were from the same system, the model that fits one group
should fit the other as well. Because these cases were not utilised for previous training,
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they were considered to be unseen data for the following model evaluation. If the number
of datasets is sufficient, we can utilise a large number of cases to evaluate our models.
However, it is not easy to collect hundreds of results as it generally takes about 4 to 7 days to
complete a single simulation. To deal with a limited amount of data, k-fold cross validation
was implemented for obtaining a reliable evaluation [46]. To implement this method, the
database needs to be randomly split into k groups first so that we can evaluate a model k
times. In each iteration, we only utilise k− 1 groups to train our network. As there is one
group that does not join the training process, it can be utilised for testing. Therefore, this
can be utilised to protect our models from overfitting as the model will be examined by k
different combinations. To keep 20% of the entire data for testing, we chose k to be 5 in this
study (see Figure 8).

Figure 8. k-Fold cross validation (k = 5).

4. Results and Discussion
4.1. Model Comparison

As the outputs of our models were coefficients of the four aerodynamic parameters, we
converted the signal back by utilising Equation (8). The prediction can hence be compared
with the original curves by calculating the coefficients of determination R2. The mean and
standard deviation (SD) of the two models are given in Table 2. We first checked if the
overtraining occurred on our model. Since the training and testing R2 values are all close
to 1, the models encountered neither underfitting nor overfitting problems. Although the
MSE loss of the sigmoid-based model was smaller than the other one, as they both have
mean values greater than 0.99, the differences were not obvious. However, the SD values of
the ReLU-based model were slightly higher. The result implies that the sigmoid activation
function generally provided higher precise estimations.

Table 2. Statistics of the ReLU- and sigmoid-based models (mean ± SD).

Parameters
ReLU Sigmoid

R2
Train R2

Test R2
Train R2

Test

Fh 0.995± 0.018 0.989± 0.025 0.999± 0.003 0.998± 0.005
Fv 0.998± 0.007 0.995± 0.012 0.999± 0.003 0.999± 0.003
Fw 0.999± 0.004 0.997± 0.006 0.999± 0.002 0.999± 0.002
P 0.996± 0.016 0.989± 0.034 0.999± 0.003 0.997± 0.009

As it is difficult to understand the difference between the two models by just viewing
the R2 values, we picked up a case from the testing group, which had a maximum R2

test value
difference of 0.005, for comparison. Figure 9 presents the output aerodynamic properties
as the b and w were assigned to 1 and 0, respectively. By comparing these curves, we can
find that the red dashed line (sigmoid) almost overlaps with the black solid line (CFD
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simulation). On the other hand, the blue dashed line (ReLU) is slightly off in the peaks. By
way of illustration, the blue dashed line shifted marginally to the right at T = 0.3 in the
Fh-T plot. Nevertheless, the trends of four aerodynamic properties can still be identified.

Figure 9. Validation of the two models in comparison with the CFD simulation. The black solid lines
were calculated by CFD simulation; the blue and red dashed lines were obtained from the ReLU- and
sigmoid-based ANNs, respectively.

4.2. Aerodynamic Performance

While the traditional CFD simulation takes several days to complete a single compu-
tation, these two ANN models take less than a second merely. Due to the high R2, both
methods achieve elevated estimation accuracy and can be implemented to accelerate the
analysis process. The networks hence can be utilised to investigate the interactions between
body oscillation and wing rotation behaviours. Owing to the limited payload, a MAV
cannot carry a battery of substantial volume. Consequently, how to efficiently generate
lift is a critical issue. We can hence utilise this neural network approach to optimise the
flapping motion, such as searching the efficient flying kinematics.

In our study, the mean lift efficiency Ēv can be defined by:

Ēv =
F̄v

P̄
, (11)

where F̄v and P̄ are the mean values of Fv and P in a single flapping period, respectively.
We could hence obtain a quick result by utilising the ANN method. Figure 10 depicts the
corresponding F̄v and Ēv when b and w are in the interval of [0, 2]. Because the two models
presented similar outcomes, we only display the sigmoid-based calculation in Figure 10.
The result illustrates that the maximum F̄v appears at

[
b, w

]
=
[
2, 2

]
. Nevertheless,

the lift efficiency can still be improved by reducing w to 1.2. To verify if it fits the actual
circumstance, we ran the simulation and compared the results (see Figure 11). The MSEs
of Fv and P were 5.19× 10−4 and 8.35× 10−4, respectively. Considering the high R2 and
low MSE values, we believe this neural network approach can provide precise estimations
which can be utilised for studying the flapping wing system.

Although it is still challenging to provide details such as flow fields with the current
framework, we can utilise it to make a quick analysis and perform full CFD simulations
of specific cases to clarify abnormal phenomena. This technique hence will be a great
advantage when dealing with a complex system. Moreover, as we verified that the network
could successfully estimate transient aerodynamic properties, we can extend the framework
to include more complicated flapping motions as inputs in the future.
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Figure 10. Net vertical force F̄v and corresponding efficiency Ēv in a single flapping period.

Figure 11. Optimal aerodynamics obtained by the ANN in comparison with CFD simulated result.

5. Conclusions

In this study, we introduce a novel neural network approach to speed up the transient
analysis of flight mechanics. For evaluation, we analysed the butterfly’s flapping motions
by CFD simulation and trained the model with these datasets. To simplify the model, we
further utilised Fourier transform to reduce the number of neural cells. Through a series of
tests, we found that both ReLU- and sigmoid-based models can accurately predict these
coefficients, which can be utilised to obtain the original transient results. This enables us to
rapidly estimate the corresponding aerodynamic properties with the given inputs.

The series of work conducted in this study aims to reduce the computational time
cost. As the complex structure of flapping motion aerodynamics is non-linear, conventional
approaches take excessive effort to analyse the unsteady system. With the aid of neural
networks, we do not need to stick to CFD simulation for each case but can still obtain
precise results without spending plenty of time. The technique reported here sheds new
light on the development of flapping wing systems. This is a great advantage when a large
amount of computing is required and provides us with a more efficient way to discuss
the interactions among various parameters. Prior to this study, it was difficult to verify
that the selected parameters were optimal. The technique introduced in the study makes it
possible. We believe the framework will provide an efficient way to delve deeper into the
flight mechanism and design a more efficient MAV.
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Nomenclature

a Virtual acceleration
AR Aspect ratio
b Scaler of the body pitching angle
c̄ Mean chord
Ēv Mean lift efficiency
f Frequency
Fh Nondimensionalised horizontal force
f ∗h Horizontal force
Fv Nondimensionalised vertical force
f ∗v Vertical force
Fw Nondimensionalised normal force acting on a single wing
f ∗w Normal force acting on a single wing
g Gravity
k Consecutive fold number
P Nondimensionalised power consumption
p Air pressure
p∗ Power consumption
R2 Coefficient of determination
S Wingspan
T Normalised time
t Time
u Airflow velocity
V Wingtip velocity
w Scaler of the wing rotation angle
α Rotation angle
η Sweeping angle
θ Body pitching angle
µ Air viscosity
ρ Air density
σ Activation function
φ Flapping angle
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