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Abstract: Due to the differences between simulations and the real world, the application of reinforce-
ment learning (RL) in drone control encounters problems such as oscillations and instability. This
study proposes a control strategy for quadrotor drones using a reference model (RM) based on deep
RL. Unlike the conventional studies associated with optimal and adaptive control, this method uses a
deep neural network to design a flight controller for quadrotor drones, which can map the drone’s
states and target values to control commands directly. The method was developed based on a deep
deterministic policy gradient (DDPG) algorithm combined with the deep neural network. The RM
was further employed for the actor–critic structure to enhance the robustness and dynamic stability.
The RM–DDPG-based flight-control strategy was confirmed to be practicable through a two-fold
experiment. First, a quadrotor drone model was constructed based on an actual drone, and the
offline policy was trained on it. The performance of the policy was evaluated via simulations while
confirming the transition of system states and the output of the controller. The proposed strategy
can eliminate oscillations and steady error and can achieve robust results for the target value and
external interference.

Keywords: reinforcement learning; quadrotor drone; deterministic policy; neural network

1. Introduction

Unmanned aerial vehicles (UAVs), which have great potential for military, industrial,
and civilian applications, have garnered significant attention in the last decade. The quadro-
tor drone is a type of UAV that was originally designed for military operations, but that
was deemed unsuitable and/or dangerous to personnel. Recently, it has received increas-
ing attention for its simple structure and small volume. After decades of development,
quadrotor drones are being deployed in civilian fields such as delivery services [1], power
line patrols [2], and agricultural services [3].

1.1. Related Work

The quadrotor drone, a classic type of UAV, has two pairs of propellers at diagonally
opposite ends. One pair of propellers rotates clockwise while the other rotates counterclock-
wise. This ingenious design allows the quadrotor to realize vertical take-offs and landings,
hovering, and other maneuvers. However, it moves nonlinearly and has an under-actuated
system. Its design is not aerodynamically efficient and its propellers generate a small
lift. Furthermore, quadrotor drones usually employ microelectromechanical systems as
motion sensors. These sensors cannot accurately measure the states and parameters of
drones, owing to the vibration of the propellers and airflow. Researchers have explored
and proposed several effective control theories to overcome these challenges.

A proportional–integral–derivative (PID) controller has a simple form and is used in
control systems such as servo systems, temperature control systems, and drones. However,
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the parameters of a PID controller are subjectively chosen based on experience. There-
fore, its performance depends on the level of expertise. In scenarios where the system
is more complex or has more requirements, the number of PID parameters can be large
and interdependent, rendering them difficult to optimize or causing the controller to fail.
Several model-based control methods were proposed to solve this challenge and improve
the controller’s performance. The effectiveness of the linear–quadratic (LQ) optimal control
algorithm [4] in controlling a nonlinear system by linearizing it within a certain range has
been proven. However, linearization cannot be ensured if the system state changes beyond
this range. Hence, the controller might perform worse when the drone is flying with high
mobility. The application of model predictive control (MPC) [5,6] is becoming common
in the control of complex systems such as robots because it can deal with multiple inputs
and outputs. With its robustness to model errors and capability of solving optimization
problems, MPC is a powerful approach to controlling complex systems through model
prediction and optimal action choosing, but the performance of MPC has a strong depen-
dence on the accuracy of the system model, which can be difficult to guarantee in some
environments. The robust finite-time stability (RFTS) and stabilization (RFTU) [7] proposed
a Cauchy-like matrix inequality method to handle the nonlinear terms of the system, which
caused inaccuracies in the mathematical model. Moreover, to enable drones to work in
complex environments such as tunnels, Elmokadem et al. [8] developed a computationally
light navigation algorithm to autonomously guide the vehicle through such environments.
Other advanced control strategies, such as the sliding mode control (SMC) [9,10], can
ensure convergence in finite time through a sliding surface and the estimation of the upper
bound of disturbances. Moreover, in [11], the adaptive barrier function was employed
to handle the uncertainties and input constrains in a non-singular terminal sliding mode
control (TSMC) method. In addition, Hoang et al. [12] introduced an adaptive twisting
sliding mode (ATSM) control method, which could adjust the control gain of the twisting
control law to control the attitude of quadrotors in harsh conditions. It showed strong
robustness against disturbances while being adaptable to parametric variations within a
fixed-time convergence. These model-based methods solved many problems in several
fields and further improved the performance of the controller. However, they suffered from
system nonlinearity and faced complex and dynamic environments. Hence, they are not
suitable for all drone types and working scenarios.

Artificial intelligence has been progressing rapidly over the past few decades. Its
application has significantly advanced image processing, simultaneous localization and
mapping, robot perception and control, and other fields. Reinforcement learning (RL)
networks, with the principle of reward and punishment, can learn and improve themselves
during interactions with the environment.

Differently from supervised learning, the key thought of RL is driving an agent to
interact with the environment and improve it according to the accumulated reward from the
environment. Watkins and Dayan [13] proposed Q-learning, a classical method to optimally
solve Markov decision process (MDP) [14] problems. This method maintains a Q-table to
record the value of actions in every state and updates the table according to the reward
during MDPs. This value-based approach provides the foundational “reinforcement”
concept, but it can only handle simple problems with limited and discrete states and
actions. To solve this problem, a study [15] used the deterministic policy gradient (DPG)
to generate actions according to the states. The actions were performed sequentially in an
environment to obtain the accumulated reward and optimize the policy. Moreover, with
the development of neural network technology in recent years, researchers found it to be
a powerful approach to approximate the state–action value function in RL. A deep DPG
(DDPG) [16], which combines DPG with a deep neural network, was proposed. Zhang
et al. [17] demonstrated a model-based RL control method for a virtual reality satellite. Liu
et al. [18] applied the method to an underwater vehicle.

Furthermore, some simplified optimization methods were proposed to make RL
algorithms more practical. Long et al. [19] introduced a single-critic NN-based RL method.
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Han et al. [20] proposed a guided RL method using double replay memory. Wang et al. [21]
used an integral compensator to eliminate the steady-state error of the DDPG method;
however, it was an external method that did not solve the problem in the controller. We
proposed to develop an off-policy RL method structure to improve the practicality of the
art of methods.

1.2. Contributions

At present, most of the proposed RL control methods show good performance in
virtual environments such as Atari games and the Open AI gym. Dooraki et al. [22]
proposed a bio-inspired flight controller (BFC) based on the PPO algorithm; they introduced
the jumping distribution (JD), controlled starting state (CSS), and time-dependent terminal
state (TDTS) methods to enhance the PPO algorithm to control a quadrotor drone, without
any knowledge about their dynamic model and mathematical or physical rules, and the
experiment showed that BFC performed significantly better than the classical DDPG,
TRPO, and PPO algorithms in the Gazebo simulation environment. This is an inspiring
achievement, but controlling the flight of a quadrotor drone in a real environment can
be critically different; the dynamic model of a drone is complex and nonlinear, and there
are many constraints on the mechanical properties of the power system. These properties
bring gigantic challenges to reinforcement learning-based control algorithms. Traditional
model-free RL methods are frequently concerned about the accumulated rewards that an
environment yields during the MDP, and the rewards only depend on the errors. Even
worse, a controller that is approximated by a neural network can choose the maximum
action to reduce errors as soon as possible, regardless of the mechanical property constraints.
By aiming at this problem, and compared with the proposed methods, the contributions of
this paper are summarized as follows:

(1) The method was to track the states of the reference model, which was designed
according to a real system model. The reference mode can be seen as a baseline of
actions to better direct the agent control quadrotor.

(2) A reward-calculating system based on a model of a real quadrotor drone was designed
to train the RL agent. At the same time, since the physical meanings and units were
different between the system state variables, several hyperparameters were employed
to adjust the weights of the state errors in the reward.

(3) An RL-based quadrotor control algorithm, RM–DDPG, was proposed to improve
the implementation performance, which can eliminate the steady-state error, reduce
controller saturation, and guarantee robustness. To the best of our knowledge, this
is the first time that the RL method has been applied to control a system with fast
dynamics, such as a quadrotor attitude system, and this is the first experiment to
demonstrate practical performance using an actual quadrotor drone.

The rest of the content of this paper is organized as follows. In Section 2, the dynamic
model of the quadrotor drone is analyzed and given; then, the policy gradient is calculated,
and the RM–DDPG algorithm is developed. In Section 3, the quadrotor model is verified,
and the results and details of the experiment are given and discussed. The conclusion and
further research goals are given in Section 4.

2. Problem Formulation
2.1. Dynamic Model of the Quadrotor Drone

Referring to the Newton–Euler formalism, an intact structure of the quadrotor drone
and its body-fixed frame is illustrated in Figure 1. We defined an earth-fixed frame on
earth and a body-fixed frame at the center of the drone to demonstrate the translation and
rotation of the quadrotor drone [23], respectively. Notably, the two coordinate systems
were coincident initially; however, during the flight, they diverged. In this process, the
earth-fixed frame remained unchanged, but the body-fixed frame moved and rotated. The
translation from the earth-fixed frame to the body-fixed frame was assumed to be the
position of the drone defined by P = [x, y, z]T . Its first and second derivatives

.
P and

..
P
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indicated the speed and dynamic acceleration of the drone, respectively. In the body-fixed
frame, a set of Euler angles ∅, ϕ, and ψ denoted the rotation about the x-, y-, and z-axes of
the drone, respectively.
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Figure 1. Coordinate system of the quadrotor drone.

As illustrated in Figure 1, four rotors were fixed on the four ends of the cruciform
frame of the quadrotor. L gives the half distance between the rotors on the diagonals. When
viewed from above, the rotors in front (No. 4) and back (No. 1) spun counterclockwise,
while those on the left (No. 2) and right (No. 3) spun clockwise. We controlled the rotation
speeds of the four rotors individually by transmitting pulse-width modulation (PWM)
signals to an electronic speed controller (ESC) separately. Furthermore, the rotation speed
was almost proportional to the duty cycle of the PWM signal:

Fi = Kui, i = 1, 2, 3, 4, (1)

where Fi (i = 1, 2, 3, 4) is the thrust generated by the rotors, K is the speed gain of the
PWM signal, and ui (i = 1, 2, 3, 4) repesents the normalized controller’s output, which
ranged between 0 and 1 depending on the ratio of the rotation speed to the maximum speed.
From a dynamic perspective, the difference in thrust between the propellers produced a
rotational motion of the drone, and the total thrust of the four rotors and the attitude angle
of the drone produced a translation motion. We analyzed the dynamic characteristics and
applied Euler’s rotation equations to the body-fixed frame; the equation of the model of
the quadrotor drone is:

M = Mτ + Mc + M f = I
.

ω + ω× Iω, (2)

where ω =
[ .
φ,

.
θ,

.
ψ
]T

indicates the angular rate about the x-, y-, and z-axes of the body-

fixed frame, respectively. I = diag
(

Ix, Iy, Iz
)

is the drone’s diagonal form of an inertial

matrix. M is the sum of the thrusts generated by the rotors. Mτ =
[
τφ, τθ , τψ

]T is the
rotational moment due to the differences between the lift thrusts:

Mτ =

τφ

τθ

τψ

 =

 L(T2 − T3)
L(T1 − T4)

Kψ(T2 − T1 + T3 − T4)

 (3)

In the body-fixed frame, τθ and τφ are the torques about the x- and y-axes, respectively.
τψ is the control torque about the z-axis in the body-fixed frame, which was generally
generated by the anti-torque force when the propellers rotated in the air. This torque
was the lowest among the three torques; therefore, the rotational motion about the z-
axis was the slowest. The reverse torque value was almost proportional to the lift thrust
and is denoted by Kψ. The spinning rotors produced a gyroscope effect, represented
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by Mc =
[
−Ip

.
θΩ, Ip

.
φΩ, 0

]T
, where Ω is the disturbance effect of the propellers and

Ip is the moment of inertia. The rotational dynamic-drag torques are represented by

M f =
[
−dφ

.
φ,−dθ

.
θ,−dψ

.
ψ
]T

, where dφ, dθ , and dψ are the rotational drag factors along the
three axes, respectively.

In the earth-fixed coordinate frame, the translational motion model can be obtained
from Newton’s second law:

Fe = RFl + Fd + G = m
..
p, (4)

where G is the gravitational force, Fd is the aerodynamic drag, and Fe indicates the resultant
force of all external force vectors. Fl = [0, 0, Fz] denotes the sum of the thrusts generated
by the rotors, where Fz = ∑4

i=1 Fi, with Fi(i = 1, 2, 3, 4) denoting the thrust generated by
the four rotors, respectively. According to the standard motor installation method, the
motor shaft should be parallel to the z-axis of the body-fixed coordinate. Therefore, the
directions of the thrusts should always be same as the positive z-axis. Meanwhile, the
velocity and position coordinates of the quadrotor are defined on the earth-fixed frame. We
also introduce the transformation matrix R to transform the thrusts and torques from the
body-fixed frame to the earth-fixed frame:

R =

CφCθ CφSθSφ − CφSψ SφSψ + CφCψSθ

SψCθ SφSθSψ + CφCψ CφSθSψ − CψSφ

−Sθ CθSφ CφCθ

, (5)

where S{·} indicates sin (·), and C{·} indicates cos (·). dx, dy, and dz are the drag coef-
ficients, and g is the acceleration due to gravity. Then, the aerodynamic drag will be
Fd =

[
−dx

.
x, −dy

.
y, −dz

.
z
]T , and the gravitational force of drone G = [0, 0,−mg]. Tz de-

notes the resultant thrust from the four rotors. Finally, we obtained the nonlinear differential
equations to express the quadrotor dynamics as follows:

..
φ =

(
τφ − Ip

.
θΩ− dφ

.
φ +

.
θ

.
ψ
(

Iy − Iz
))

/ Ix (6)

..
θ =

(
τθ − Ip

.
φΩ− dθ

.
θ +

.
θ

.
ψ(Iz − Ix)

)
/ Iy (7)

..
ψ =

(
τψ − dψ

.
ψ +

.
φ

.
θ
(

Ix − Iy
))

/ Iz (8)

..
x =

(
Tz
(
CφSθCψ + SφSψ

)
− dx

.
x
)
/m (9)

..
y =

(
Tz
(
CφSθCψ − SφSψ

)
− dy

.
y
)
/m (10)

..
z =

(
Tz
(
CφCθ

)
− dz

.
z−mg

)
/m. (11)

Due to the complexity of air dynamics and quadrotor components, some parameters
of the model were unavailable to be measured directly. We had to utilize the model
identification method to acquire the mathematical model, which was built and verified as
described in Section 3.

2.2. Policy Gradient Method of Reinforcement Learning

Figure 2 illustrates an agent–environment cyclic process. The agent, also called policy,
can directly map situations to actions. The RL algorithm aims to optimize the policy by
maximizing the accumulated rewards over the entire trajectory. Considering the formal
framework of Markov decision processes (MDPs), with S as the set of states or observer of
the system, in the proposed system, the states of the drone can be measured by sensors.
Hence, this was a fully observable MDP. A represents the actions the agent can perform; they
are real numbers in the quadrotor control problem. P denotes the state transition probability
function, which depends on the quadrotor model and environment. R represents the reward
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function of the environment. Finally, the cyclic process can be formalized by a four-tuple
(S, A, P, R).
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If we suppose that the environment is in the state st ∈ S at any timestep t, and it
selects an action at ∈ A according to the policy π, then the environment consequently tran-
sits to a new state st+1 ∈ S with a conditional probability P(st+1)|st, at) , simultaneously
outputting a reward rt ∼ R(st, at) to the agent. As an MDP problem, the transitions
must follow a stationary transition dynamic distribution with a conditional probability
P(st+1|s1, a1, . . . , st, at) for each trajectory s1, a1, . . . , sN , aN in the state–action space.
For any timestep t, we defined the total discounted reward as the return Rt = ∑N

t′=t γt′−trt′ ,
and the discount factor γ ∈ [0, 1] as a hyperparameter to control the weight of future
rewards. For a trajectory starting from the timestep t, the expected return can be gen-
erally denoted as Jπ = E

(
∑N

t=1 γt−1rt

∣∣∣ π
)

. The central optimization problem can then
be expressed by π∗ = argmax

π
J(π), where π∗ is the optimal policy. The action–value

function Qπ(st, at) = Eπ [Rt | st, at] denotes the expected return that the agent starts in
state st, takes an arbitrary action at (which may not have been obtained from the policy),
and then infinitely executes actions following the policy π. It has been proven that all
action–value functions obey the particularly consistent equation known as the Bellman
expectation equation:

Qπ(st, at) = Eπ

[
R(st, at) + γEat+1∼π [Qπ(st+1, at+1)]

]
. (12)

Over the years, several practicable RL methods have been developed to optimize the
policy, such as a policy gradient [24].

The main objective of the drone control problem is to find an optimal control policy,
which can be used to drive the quadrotor in a fast and stable manner to the desired state.
The policy gradient algorithm is an efficient way to solve this problem, as it can deal with
continuous states and actions. In an environment with a state transition probability ρ, a
parameterized stochastic policy πϑ(a|s) can generate the control actions directly. Action a
is executed with parameter ϑ while state s is given. Next, intuitively, the parameters can
be adjusted by finding the gradient of the performance measurement J(πϑ). The gradient
descent method can easily improve the policy. The principle of the policy gradient theorem
is given as follows:

∇ϑ J(πϑ) = Es∼ρπϑ, a∼πϑ
[∇ϑlogπϑ(a|s)Qπϑ (s, a)|a = πϑ(s)]. (13)

The policy gradient method demonstrates excellent performance in dealing with
complex continuous problems. However, it suffers from two problems that severely limit
its capabilities. The first problem is data efficiency. The full policy gradient can only be
calculated after completing a trajectory. Once the parameters of the policy are optimized
according to the calculated gradient, the trajectory data collected with the old policy will
become useless. Then, the new policy can only be used to interact with the environment
to generate trajectories and calculate the policy gradient. This reduces the efficiency of
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data utilization and extends the convergence time of the algorithm indefinitely. A more
serious problem is that the stochastic policy generates actions through random sampling,
which is impossible to predict and can be dangerous to actual drone control. Researchers
have employed deterministic policies to improve this method, and these were used as the
foundation of this study.

2.3. RM–DDPG Algorithm

The RM–DDPG algorithm was proposed based on the classical DDPG algorithm,
which uses a deterministic policy to approximate the actor function instead of the stochastic
policy in the original policy gradient method. In fact, the DDPG theory is a limiting case of
the stochastic policy gradient theory.

The policy gradient method is perhaps the most advanced algorithm to deal with
continuous-action problems using an RL algorithm. The basic idea of this algorithm is to
use an actor function πµ to present the policy with the parameter µ, and then continually
optimize the parameters µ along the direction of the performance gradient, given by:

∇µ J(πµ) =
∫

S ρπ(s)
∫

A∇µπµ(a|s)Qπ(s, a)dads

= Es∼ρπ ,a∼πµ

[
∇µπµ(s)∇aQπµ

(s, a)
]
,

(14)

where Qπµ
(s, a) is the action–value function. Notably, the distribution of state ρπ(s) de-

pends on the parameters of the policy, and the policy gradient does not depend on the
gradient of the state distribution.

The next issue to be solved is: how to estimate and evaluate the action–value function
Qπ(s, a)? The actor–critic architecture has been widely used to solve this problem. In
this architecture, the action–value function Qπ(s, a) is replaced by another action–value
function Qw(s, a) with parameter vector w, and a critic uses an appropriate policy eval-
uation method to estimate the action–value function Qw(s, a) ≈ Qπ(s, a). The off-policy
deterministic actor–critic method is applied to update the parameters of the actor and critic
function iteratively:

µt+1 = µt + αµ∇µπµ(st)∇aQw(st, at)
∣∣∣ a=πµ(s) (15)

This is a parameter “soft” update method, where αµ is the updating rate, which can
constrain the target values to change gradually, improving the learning stability. We also
introduced a critic network to approximate the action–value function. Figure 3 illustrates
this structure [20].
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Using the Bellman equation, we improved the accuracy of the critic function by
minimizing the difference between its two sides. Here, we define a temporal difference
error (TD error):

δt = rt + γQw(st+1, πµ(st+1))−Qw(st, at) (16)

The simple deterministic gradient decent policy to minimize the TD error is given by:

wt+1 = wt + αwδt∇wQw(st, at) (17)

As the quadrotor drone control is a complex nonlinear problem, the action and state
spaces can be very large and continuous. It is generally difficult to estimate the actor
function and action–value function (or critic function). Inspired by the DDPG algorithm,
we used neural networks to approximate the policy and action–value function. Moreover,
experience data replay [25] and target network methods were applied to improve the
efficiency and stability of training.

Most optimization algorithms frequently assume that the samples of experimental
data are independent and identically distributed; RL with neural networks is no exception.
However, this assumption no longer holds true when samples are obtained during the
continuous exploration of an environment. To address this issue, we used an M-sized replay
buffer D = {e1, e2, . . . , eM} to store the samples, where e = (st, at, rt, st+1) denotes the
transition experience data tuple of each timestep. The buffer works like a queue: its length
is curtailed, and the oldest samples are dropped when the buffer becomes full. At each
training episode, a miniature data batch is randomly sampled to update the actor and
critic neural networks. Through this method, the associations between experimental data
samples can be significantly reduced to satisfy the assumptions of independence and
identical distribution. The efficiency of data and stabilization of training are improved.
To further improve the learning stability, we designed target networks for both the actor
and critic networks, similar to the target network used in [26]. However, we modified the
networks for the actor–critic pair and only used a “soft” target update instead of directly
copying the weights. Before the learning process commenced, the target network was
created with parameters identical to those of the critic network. In each learning iteration,
the weights of the target network were optimized first and then synchronized with the critic
network through the “soft” update method, with an update rate η: w′ ← ηw + (1− η)w′ ,
where η � 1, and Qw′(s, a) denotes the target critic network and w′ the weight of the
network. As the changes in the target parameters are updated gradually, the learning
process becomes more stable. This method moves the problem of learning the action–value
function closer to supervised learning, such that a robust solution exists.

Next, we rewrote the updated equations of the target critic network using the expe-
rience replay method. During training, a batch of experience data tuples (si, ai, ri, s′ i),
i = 1, 2, . . . , N were randomly sampled from the replay buffer. We minimized the loss
function to update the critic network as follows:

Loss(w) =
1
N

N

∑
i=1

[yi −Qw(si, ai)]
2 (18)

yi = ri + γQw′(si+1, πµ
(
s′ i
))

(19)

where yi is the output of the target critic network with the reward of action. The gradient
decent method to update the critic network parameters is given as follows:

∇wLoss(w) =
1
N

N

∑
i=1

(yi −Qw(si, ai))∇wQw(si, ai) (20)

wt+1 = wt + αw∇wLoss(w) (21)
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Meanwhile, we also updated the actor network parameters following the DDPG algorithm:

∇µ J(µ) =
1
N

N

∑
i=1
∇µπµ(si)∇aQw(si, ai)| ai=πµ(si)

(22)

µt+1 = µt + αµ∇µ J(µ) (23)

The DDPG algorithm has been proven to be an effective method to learn a stable
and fast-responding policy for simulated control tasks in classic control and multi-joint
dynamics with contact or MuJoCo environments of the open-source gym library. However,
according to the results of the extensive experiments in this study, control saturation and
steady-state error were two glaring challenges in the application of the DDPG algorithm
with the neural network for quadrotor control.

Control saturation is a common problem among control algorithms for quadrotor
control or any other motion control. Preferably, the controlled object must be able to
respond to the target value at the earliest. This may fetch good results in simulation
experiments; however, in practical application scenarios, a rapid response requires the
support of strong hardware, which is generally unavailable. We examined this problem and
marked reward as the key reason, according to Equations (18) and (19). While updating
the critic network by minimizing the loss function, the reward was an important basis for
each iteration. The reward obtained by the current TD error algorithm is a simple scalar
quantity, such as attitude control of the quadrotor drone, which is the error between the
target and feedback attitude angles. This strategy of receiving a reward may work well for
simple control problems, such as CartPole. However, for complex tasks such as quadrotor
drone control, the controlled object has several significant state quantities, such as the angle,
angular velocity, and angular acceleration. The control goal of this study was not merely to
track the attitude angle of the target at the earliest, but also to stabilize and safeguard the
system. After introducing the reference model, we improved the reward function in the
following manner:

ri =
n

∑
k=1

λk(Re f (sk)− sk), k = 1, 2, . . . , n, (24)

where n represents the n-dimensional state variables in the controlled system, Re f (sk)
denotes the reference states, sk is the state variable, and λk is the weight set according
to experience.

Regarding the steady-state error, the results of the experiments demonstrated that
the learned controller in most scenarios cannot eliminate the tracking error, regardless of
the time, type of training strategy, or a number of iterations provided to the controller.
We offer two plausible reasons for this. As implied in [13], one reason can be inaccurate
function estimation value. Owing to limited sampling, accurate values of the actions could
not be obtained. The accurate estimation becomes more difficult for complex problems
such as quadrotor drone control. The most important reason is that the policy, which was
trained by the DDPG algorithm, is the optimal controller. It is not a servo system, as it
does not consider the error integral; for systems with damping and external disturbances, a
steady-state error cannot be eliminated by this method.

To design a control system for a quadrotor drone with excellent stability and dynamic
performance, we designed a reference model to generate the reference signals according
to the target and reanalyzed the quadrotor drone model. We formed the quadrotor drone
model by selecting the angle, angular velocity, angular acceleration, and angle error integral
as the state variables. The specified reference model, where the state variables directly
correspond to the identified model, was constructed as:

.
xm = Amxm + Bmur (25)

ym = Cmxm (26)
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Here, ur is the reference input. If Cm = C and e = x − xm, the state variable error
dynamics can be determined as follows:

.
e = Ame + (A− Am)x + Bu− Bmur (27)

To eliminate the steady-state error, a novel state εy was introduced:

.
εy = y− ym (28)

The expansion system is given as follows:

.
es =

[ .
e
.
εy

]
=

[
Am 0
Cm 0

][
e
εy

]
+

[
B
0

]
us = Ases + Bsus (29)

In the end, we obtained a three-order reference model with the state variables of
angular acceleration, angular velocity, and angle reference. The quadrotor model state
variables were angular acceleration, angular velocity, integral of angle error, and angle.
This standard servo system can remain stable and provide a rapid response.

2.4. Neural Network Structure

Contrary to the stochastic policy, the deterministic policy requires additional strategies
instead of naturally exploring the state–action space. As presented in the previous section,
we added Gaussian noise to the output actions to construct the exploration policy A(s):

A(st) = Aµ(st) + nt, nt ∼ N
(

0, σ2
)

(30)

Figure 4 illustrates the structure of the RM–DDPG algorithm. The green module on
the left is the actor network, which used the state

[ ..
θ,

.
θ, θ

]
and the reference model state[

R ..
θ
, R .

θ
, Rθ

]
as the input.
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Next, we considered the symmetry of the structure of the quadrotor drone. We used
the same controller to control its roll and pitch. This network was designed following
the procedure in [27], and the goal was to continuously approximate to an actor function
that had the best control performance and stability. We also considered that the output
of the actor network should be smooth. Hence, we designed it with two 128-dim fully
connected hidden layers and a tanh activation function. The actor network triggered an
action command that was relayed to the motor. In the control problem of a drone, the
action command is also the action space of the RL algorithm. In practical applications,
it is a continuous quantity in an interval and is limited to [−3 rad/s, 3 rad/s] by the
mechanical properties of the drone. For practical purposes, to limit the control signals
within a reasonable range, we also applied the tanh function to the output layer. The critic
network is depicted on the right-hand side of Figure 4; the inputs were the quadrotor
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and reference model states, and the control inputs were generated by the actor network.
Similar to the actor network, the output network also had two hidden layers and activation
functions. However, the activation function was changed to a linear function to better
approximate the action–value function. The center of Figure 4 illustrates the quadrotor
drone model, which is given in Equation (28), and the steady-state error was introduced
into the system as a state variable. The objective of this method was to ensure that the
actor network considered the steady-state error when generating the control input, and
more importantly, that the critic network considered the quadrotor state, the reference
model state, and the steady-state error of the quadrotor states. While optimizing the critic
network, the gradient policy changed this objective to keep the quadrotor states close to
the reference model states, instead of fast-tracking to the target angle, which can lead to
control saturation and the elimination of the steady-state error.

Next, we designed an algorithm in the episodic style. First, we created a target critic
network with parameters identical to those of the critic network and generated the initial
states within the prop range for each episode, following which the actor network relayed
control commands to the quadrotor drone model. For each step, the transition of model
states was temporarily stored in the replay buffer, and the training commenced if adequate
samples were provided. Finally, the offline RL is summarized in Algorithm 1.

Algorithm 1 Offline training algorithm of RM–DDPG.

Initialize:
Randomly initialize the weights of the actor network πµ and critic network Qw

Copy parameters from the actor network πµ and critic network Qw to the target actor network
πµ′ and target critic network Qw′ , respectively
Create an empty replay buffer D with length M
Load the quadrotor drone model and the reference model as the environment
Create a noise distribution N(0, σ2) for exploration
For episode = 1, M do
Randomly reset quadrotor states and target states
Initialize the reference model states by copying quadrotor states
Observe initial states s1
For t = 1, T do
If length of replay buffer D is bigger than mini-batch size, then
Choose action at = πµ(st) + nt based on state st and noise nt ∼ N
Else
Choose an arbitrary action from the action space
End if
Perform control command at in the environment
Calculate reward rt and new state st+1
Store transition tuple (st, at, rt, st+1) to replay buffer D
If the length of replay buffer D is bigger than mini-batch size, then
Randomly sample a data batch from D
Calculate the gradient and update the critic network following (20) (21)
According to the output of the critic network, update the actor network-following (22) (23)
Soft update the target network parameters following (18)
End if
If st+1 exceed the safe range then
break
End If
End For
End For
Save model or evaluate

3. Experiments and Analysis

In this section, we comprehensively evaluate the controller trained by the proposed
approach. First, the details of the implementation and learning progress are presented,
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and subsequently, the control input was compared with DDPG. Finally, we used the well-
trained controller on different drones with different dimensions to test the robustness of
the model. The results demonstrated the robustness of the algorithm. It greatly inhibited
control saturation and effectively eliminated the steady-state error.

3.1. Drone Model and Simulator

For the drone model, we selected a plant protection quadrotor drone with a brushless
power system; the drone parameters are listed in Table 1. Next, we identified the dynamic
model with the measured drone parameters. We tried several model types and parameters,
and the second-order processing model without a delay fit the angular rate model of the
quadrotor well. The model parameters were identified through sectional data, including
prop frequency signals (Figure 5a); then, the model was verified on the whole flying data
(Figure 5b). The ident tool gave an 80% similarity between the measured signal and model
output, and the delay and amplitude differences in several signal frequencies were also
within a narrow limit. For the convenience of simulation and RL training, we transformed
the continuous transfer function model into a discrete state space model; the angular
velocity response is illustrated in Figure 6.

Table 1. Parameters of the drone.

Parameter Description Value

L Diagonal length 1.1 (m)
m Take-off weight 6.8 (kg)
g Acceleration due to gravity 9.81

(
m/s2 )

K Thrust gain 9.01
Ix, Iy, Iz Moments of inertia of frame 0.04, 0.04, 0.05

(
kg·m2 )

Jp Moments of inertia of proper 0.00007
(
kg·m2 )
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(a) (b) 

Figure 5. (a) The angular rate model of the quadrotor was identified through sectional data;
(b) shows the fitting result on the whole flying data. Considering the safety of the experiment,
the time of the data did not start from 0 s.

According to the angular rate model and Equations (25) and (26), we extended the
state space model to the third order and designed an attitude reference model that could
acquire balance and stability and provide a fast response; the step response of this model is
illustrated in Figure 7.

The simulator was constructed based on the previous section and was extended to the
form of Equation (30). The experiments were run on an Ubuntu 16.04 operation system
powered by AMD Ryzen 7 5800X @3.8GHz with eight cores, and with Nvidia 2080Ti GPU
to accelerate the neural network computation. The neural networks and model simulation
were developed with Python and Pytorch. The training parameters are listed in Table 2.
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Figure 7. (a) Step response of the designed reference model. (b) The x−axis represents the time (s), 

and the y−axis represents the target angle, angular velocity, and angular acceleration in rad, rad/s, 
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Table 2. Parameters of training. 

Parameter Value 

Learning rate of critic network 𝛼𝑤 0.001 

Learning rate of actor network 𝛼𝜇 0.003 

Batch size N 256 

Replay buffer size M 100,000 

Figure 6. (a) Step response of the angular velocity model, and (b) extension of the attitude angle. The
SI units on the x- and y-axes are s and rad/s, respectively. As this is the step response of the angular
velocity, the angle in (b) is in the shape of a ramp.
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Figure 7. (a) Step response of the designed reference model. (b) The x-axis represents the time (s),
and the y-axis represents the target angle, angular velocity, and angular acceleration in rad, rad/s,
and rad/s2.

Table 2. Parameters of training.

Parameter Value

Learning rate of critic network αw 0.001
Learning rate of actor network αµ 0.003

Batch size N 256
Replay buffer size M 100,000

Discount factor γ 0.99
Soft update rate η 0.002
Noise variance σ 0.1

Simulation timestep 0.02 (s)
Maximum steps in an episode 500

The training followed Algorithm 1 using RM–DDPG with the parameters in Table 2.
Figure 8 illustrates the average accumulated reward in each training step.
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3.2. Performance Test

To test the performance of the RL controller, we designed comparative experiments
with classical DDPG and our method, through a step response and a sine wave response.
Figure 9 illustrates the transition of the system states and control inputs of the two methods.
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Figure 9. The transition of system states (angle, angular rate) and control input during the step
response (a) and sine wave response (b). The maximum control input was 3.0. It can be seen that
classical DDPG tended to provide the maximum control input, which was unacceptable to a real
quadrotor. By contrast, RM–DDPG was softer and could significantly eliminate steady-state errors.

Figure 9a,b illustrates the step response and sine wave response of classical DDPG
and RM–DDPG algorithms. As shown in the figure, the classical DDPG algorithm always
tended to choose the maximum control input to track the target value; the tracking speed
was very fast, such that it could drive the quadrotor to a 0.7 rad angle (about 40 degrees) in
0.25 s. This is a reasonable phenomenon; since the evaluation criterion of an actor neural
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network is the accumulated reward during the step response, the fastest tracking can
achieve more reward. However, as a consequence, the control input was too strong, so that
a little noise can lead to the oscillation of the system. Instead, the RM–DDPG responded
based on changes in the reference model, finding a good balance between the stability and
speed of the response. Furthermore, the process of neural network optimization cannot
strictly guarantee global optimality, so the steady error cannot be eliminated. We designed
an error integral section among the reward function and adjusted the weight to drive the
RM–DDPG algorithm to eliminate steady errors.

3.3. Robustness Test

For the robustness test, we changed the diagonal length of the quadrotor drone to
0.8 m (30% smaller), 1.3 m (20% larger), and 1.5 m (40% larger) while maintaining a constant
power system. Next, we applied the controller to drones of different sizes. Figure 10
displays the results of roll-angle control; the left graph demonstrates that the controller
could propel different sizes of drones with a consistent performance. The right graph
demonstrates that the controller accepted different control signals to maintain a consistent
performance. Furthermore, we designed a test to determine if the RM–DDPG controller
drives the quadrotor to return to the horizontal state from different initial angles. Figure 11
demonstrates that the controller could always drive the quadrotor to return to a stable
state placidly.
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Figure 10. Performance of the controller in drones with different diagonal lengths. The controller
implemented the control policy corresponding to the size of the drone to maintain a consistent
attitude control performance. (a) The attitude angle during the step response of drones with different
diagonal lengths; (b) control input during the step response of drones with different diagonal lengths.
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Figure 11. RM–DDPG method drove the quadrotor to return to the stable status from different
initial angles.

3.4. Real Flight Experiment

As a consensus, there are many great differences from the simulation and a real
environment. The mechanical properties, the noise of sensors, and external disturbances
can lead to the distinct performance of the controller. To verify the performance of the
classical DDPG method and our RM–DDPG method, we trained the two agents, one
for each method, on the same quadrotor model and in an environment with the same
hyperparameters. Figure 12 shows the performance of the two controllers; the classical
DDPG kept the quadrotor roughly stable. However, when the target angle changed to not
zero, due to the greedy characteristic of the classical DDPG algorithm to minimize errors as
soon as possible, the controller took too radical of an action, which led to divergence rapidly
in 3−5 s. On the other hand, our RM–DDPG method still maintained a stable performance
in the actual flight experiment, since the target state variables were given by the reference
model, which can generate a trajectory that conforms to the laws of the physical world and
the power system capabilities of the drone. In general, this approach improved the stability
by sacrificing the tracking speed, and the balance of these two metrics depended on the
considerations when designing the reference model.

Drones 2022, 6, x FOR PEER REVIEW 17 of 18 
 

  

(a) (b) 

Figure 12. Experimental results on a real quadrotor. (a) Flight experiment of classical DDPG on a 
real quadrotor drone; (b) flight experiment of our RM–DDPG on the same real quadrotor drone. 

4. Discussion and Conclusions 
With decades of development, immense progress has been made in RL, and its ap-

plication range has expanded from simple binary games to dealing with complex prob-
lems such as continuous states and actions. However, RL has always been limited by the 
virtual environment, because it must interact with the latter to acquire experience data. 
When applied to drone control, RL encounters several problems, including control satu-
ration and steady−state error, due to the differences between the virtual environment and 
the real world. 

To solve these problems, we proposed a deep deterministic policy gradient for quad-
rotor control based on a reference model. We performed an in−depth analysis of the drone 
model and solved the problems by designing reference models and system state variables. 
The proposed algorithm successfully improved the stability of reinforcement control and 
eliminated the steady−state error. Notably, this study proposed an accessible and robust 
method for applying RL to practical quadrotor control. The simulation and actual flight 
experiment demonstrated that the RM–DDPG method performs with better stability and 
robustness than the classical DDPG method in the control of quadrotors. 

For further research, an online training process requires powerful hardware, which 
may not fit the small form factor of a drone; hence, we had to train the network offline 
and then upload it to the drone. Although we constructed the drone model with the high-
est possible accuracy, the algorithm’s performance was limited by the difference between 
the simulated environment and the real world. Future research should utilize distributed 
training methods or downsize the network to reduce computations for the on−drone com-
puter. 

Author Contributions: Conceptualization, H.L. (Hongxun Liu); methodology, S.S. and W.W.; soft-
ware, H.L. (Hongxun Liu); validation, H.L. (Hongxun Liu) and Q.W.; formal analysis, H.L. 
(Hongxun Liu); investigation, H.L. (Hongxun Liu); resources, S.S.; data curation, H.L. (Hongxun 
Liu); writing—original draft preparation, H.L. (Hongxun Liu); writing—review and editing, H.L. 
(Hao Liu); visualization, H.L. (Hongxun Liu); supervision, S.S. and W.W. All authors have read and 
agreed to the published version of the manuscript.  

Funding: This research received no external funding. 

Institutional Review Board Statement:  Not applicable. 

Informed Consent Statement: Not applicable. 

Data Availability Statement: Not applicable. 

Acknowledgments: The authors would like to thank the Graduate School of Science and Engineer-
ing, Chiba University, Chiba, Japan, for the resources provided by them. 

Figure 12. Experimental results on a real quadrotor. (a) Flight experiment of classical DDPG on a real
quadrotor drone; (b) flight experiment of our RM–DDPG on the same real quadrotor drone.

4. Discussion and Conclusions

With decades of development, immense progress has been made in RL, and its appli-
cation range has expanded from simple binary games to dealing with complex problems
such as continuous states and actions. However, RL has always been limited by the virtual
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environment, because it must interact with the latter to acquire experience data. When
applied to drone control, RL encounters several problems, including control saturation
and steady-state error, due to the differences between the virtual environment and the
real world.

To solve these problems, we proposed a deep deterministic policy gradient for quadro-
tor control based on a reference model. We performed an in-depth analysis of the drone
model and solved the problems by designing reference models and system state variables.
The proposed algorithm successfully improved the stability of reinforcement control and
eliminated the steady-state error. Notably, this study proposed an accessible and robust
method for applying RL to practical quadrotor control. The simulation and actual flight
experiment demonstrated that the RM–DDPG method performs with better stability and
robustness than the classical DDPG method in the control of quadrotors.

For further research, an online training process requires powerful hardware, which
may not fit the small form factor of a drone; hence, we had to train the network offline
and then upload it to the drone. Although we constructed the drone model with the
highest possible accuracy, the algorithm’s performance was limited by the difference
between the simulated environment and the real world. Future research should utilize
distributed training methods or downsize the network to reduce computations for the
on-drone computer.
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