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Abstract: It is necessary to develop a vehicle digital twin (DT) for urban air mobility (UAM) that
uses an accurate, physics-based emulator to model the statics and dynamics of a vehicle. This is
because the use of digital twins in the operation and control of UAM vehicles is essential for the
UAM operational digital twin infrastructure (UAM-ODT). There are several issues that need to be
addressed in this process: (i) the lack of digital twin engines for the digitalization (twinization) of the
dynamics and control of UAM vehicles at the core of UAM-ODT systems; (ii) the lack of back-end
system engineering in the development of UAM vehicle DTs; and (iii) the lack of fault-tolerant
mechanisms for the DT cloud back-end system to run uninterrupted operations 24/7. On the other
hand, software aging and rejuvenation are becoming increasingly important in a variety of computing
scenarios as the demand for reliable and available services increases. With the increasing use of
containerized systems, there is also a need for an orchestrator to support easy management and reduce
operational costs. In this paper, an operational digital twin (ODT) of a typical urban air mobility
(UAM) infrastructure is developed on a private cloud system based on Kubernetes using a proposed
cloud-in-the-loop simulation approach. To ensure the ODT can provide uninterrupted operational
control and services in UAM around the clock, we propose a methodology for investigating software
aging in Kubernetes-based containerized clouds. We evaluate the behavior of Kubernetes software
using the Nginx and K3S tools while they manage pods in an accelerated lifetime experiment. We
continuously execute operations for creating and terminating pods, allowing us to observe the
utilization of computing resources (e.g., CPU, memory, and I/O), the performance of the Nginx
and K3S environments, and the response time of an application hosted in those environments. In
some conditions and for specific metrics, such as virtual memory usage, we observed the effects of
software aging, including a memory leak that is not fully cleared when the cluster is stopped. These
issues could lead to system performance degradation and eventually compromise the reliability
and availability of the system when it crashes due to memory space exhaustion or full utilization of
swap space on the hard disk. This study helps with the deployment and maintenance of virtualized
environments from the standpoint of system dependability in digital twin computing infrastructures
where a large number of services are running under strict continuity requirements.

Keywords: operational digital twin; urban air mobility; cloud-in-the-loop simulation; software aging;
software rejuvenation; Kubernetes; Nginx; K3S
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1. Introduction

Digital twin (DT) technology is a cutting-edge innovation that has the potential to
revolutionize various industries. DT involves creating a virtual replica of a physical object
or system, and using data-driven analysis and decision-making to continuously update
and improve it. The virtual replica, or digital twin, is made up of computational models
that evolve and change over time, reflecting the structure, behavior, and environment
of the physical object or system they represent [1,2]. Digital twin systems are digital
representations of physical systems, such as vehicles, buildings, or manufacturing processes.
They are used to simulate the behavior and performance of the physical system, and to
predict its behavior or performance under different conditions. This can be useful for a
variety of applications, such as planning for maintenance, optimizing the operation of the
physical system, or analyzing the impact of changes to the system’s design or operation.

The development of an operational vehicle digital twin system for urban air mobility
(UAM-ODT) includes the following fundamental modules: (i) neural digital twin dynamic
engines (DTDE), (ii) neural digital twin control engines (DTCE), (iii) digital twin control
frame (DTCF), and (iv) digital twin cloud infrastructure (DTCI) as shown in Figure 1. The
DTDE module is responsible for creating a virtual replica of the aerodynamics of UAM
vehicles using learning-based techniques. The DTCE module performs control tasks, such
as robust control, optimal control, and adaptive control, to ensure the safety of the vehicle.
These two modules digitalize the dynamics and control of the vehicle to ensure that the
operations of the vehicle in the digital space are identical to those in the physical space.
The DTCF module serves as a bridge between the digital twin and the physical twin of the
vehicle. It can provide teleoperation services, fault-tolerant control, or traffic prediction
and management, with the belief that if the dynamics and control of the physical vehicle
are accurately captured in the digital space along with the digital environment (e.g., city,
region, country), the operations in the digital space can be effectively transferred to the
physical space. The DTCI module is the common computing platform that hosts the entire
UAM-ODT system, running constantly to create a virtual space of the real-world UAM
physical infrastructure. Due to the stringent requirements for the high availability of the
digital twin system, the DTCI must handle any failures and maintain constant digital
operations and services in the long run. Particularly, if a digital twin runs all day and
night, it can be subject to a phenomenon known as “software aging”. Software aging is
the gradual deterioration of the performance and reliability of software over time, due to
factors such as changes in the operating environment, errors and defects in the software,
or the accumulation of wear and tear on the software. If a digital twin runs continuously, it
can experience software aging more quickly than if it were run only intermittently. This
can cause the digital twin to become less accurate and less reliable over time, which can
affect the quality of the predictions and decisions it makes. In this work, we investigate the
software aging problems in the digital twin cloud infrastructure which is developed upon
Kubernetes-based cloud environment using a cloud-in-the-loop simulation approach.

Software aging is a phenomenon that occurs when software systems become less
reliable and less efficient over time. This can happen for a variety of reasons, such as
changes in the environment, changes in the software itself, or the accumulation of errors
and defects. When software ages, it can become less accurate and less reliable, which can
affect the performance and behavior of the systems that it is used to control or manage. The
software aging phenomenon occurs in operating software systems, causing sudden failures
such as crashes and continuous performance degradation, which can be circumvented by a
proactive strategy such as software rejuvenation to avoid abrupt system interruptions [3,4].
The relevance of such a phenomenon is remarkable, considering that the demand for
availability and reliability in the provision of services in practically all areas has increased
in order to have quality and competitiveness in each field of activity. Considering high
availability requirements, the services of computing, health, security, financial system,
geolocation, and routing are examples that can be cited. In order to meet such service
demands without the unwanted effects of software aging, it is necessary to use an architec-
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ture capable of maintaining its offer without huge operational costs of employing several
redundant servers with high computational power, requiring human resources for their
handling and management, and also incurring higher energy costs. Using virtual machines
in contexts such as these has been an alternative because they provide functionalities of
a physical server based on the same traditional computational architecture. Thus, it is
possible to create several virtual machines on a single server, and each virtual machine can
run different environments allowing the execution of heterogeneous systems [5]. The scala-
bility and flexibility of IT (Information Technology) can be increased through virtualization,
in addition to generating significant savings in operational costs. Thus, IT administra-
tion becomes easier to manage by obtaining better availability, operability, performance,
and greater workload mobility through virtualization [6].

Figure 1. Operational Digital Twin for Urban Air Mobility (UAM-ODT).

If the flight control software of an unmanned aerial vehicle (UAV) experiences software
aging, it can affect the performance and behavior of the UAV. As the software ages, it can
become less accurate and less reliable, which can cause the UAV to behave in unexpected
or unsafe ways. To address software aging in the flight control software of a UAV, it is
important to periodically update and maintain the software. This can involve installing
patches and updates, fixing errors and defects, and re-tuning or re-calibrating the software
to account for changes in the environment or the UAV itself. Regular maintenance and
updates can help to ensure that the flight control software remains accurate and reliable
over time, and can help to prevent or mitigate the effects of software aging. In some cases,
software aging can cause the flight control software to become unstable or unreliable. If this
happens, it may be necessary to take the UAV out of service temporarily in order to perform
maintenance or repairs. This can involve replacing or upgrading the flight control software,
or making other changes to the UAV in order to improve its performance and reliability.
So, software aging in the flight control software of a UAV can affect the performance and
behavior of the UAV. To address this problem, it is important to periodically update and
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maintain the flight control software, and to take the UAV out of service if necessary in order
to perform maintenance or repairs. This can help to ensure that the UAV remains safe and
reliable over time.

To create a digital twin, a mathematical model of the physical system is created using
data about the system’s behavior and performance. This model is then used to simulate the
behavior of the physical system under different conditions, and to make predictions about
its performance. In order to create a reliable and accurate digital twin, it is important to
use accurate and reliable software to create the model and simulate the system’s behavior.
However, software aging can be a problem for digital twin systems. As the software used
to create and simulate the digital twin ages, it can become less accurate and less reliable.
This can affect the accuracy and reliability of the digital twin, and can cause it to produce
incorrect or inconsistent predictions. In some cases, this can lead to incorrect or sub-optimal
decisions or actions based on the digital twin’s predictions. To address software aging
problems in digital twin systems, it is important to periodically update and maintain the
software used to create and simulate the digital twin. This can involve installing patches
and updates, fixing errors and defects, and re-tuning or re-calibrating the software to
account for changes in the environment or the system being modeled. Regular maintenance
and updates can help to ensure that the digital twin remains accurate and reliable over
time, and can help to prevent or mitigate the effects of software aging.

Digital twin systems can experience a variety of errors, depending on the specific
characteristics of the system and the software being used. Some common types of errors
that can occur in digital twin systems include:

• Data errors: Digital twin systems are typically based on data about the behavior
and performance of the physical system being modeled. If the data are incorrect or
inconsistent, it can cause errors in the digital twin. For example, if the data contain
missing or invalid values, or if the data are not properly pre-processed or cleaned, it
can affect the accuracy and reliability of the digital twin.

• Modeling errors: Digital twin systems are based on mathematical models of the physical
system being modeled. If the model is incorrect or incomplete, it can cause errors in the
digital twin. For example, if the model does not accurately represent the underlying
physical principles or behaviors of the system, or if the model is not properly calibrated
or validated, it can affect the accuracy and reliability of the digital twin.

• Software errors: Digital twin systems are implemented using software, and software
can contain errors or defects. If the software used to create or simulate the digital
twin contains errors, it can cause the digital twin to behave in unexpected or incorrect
ways. For example, if the software contains bugs or syntax errors, or if the software is
not properly designed or implemented, it can affect the accuracy and reliability of the
digital twin.

Overall, digital twin systems can experience a variety of errors, including data errors,
modeling errors, and software errors. To address these errors and improve the accuracy
and reliability of the digital twin, it is important to carefully collect and pre-process the
data, to create accurate and well-calibrated models, and to use high-quality software that is
free of errors and defects.

When using virtualization, it is possible to implement many servers in a smaller
number of hosts (physical servers), which consequently implies the gain of physical spaces
and energy cost reduction. However, once the virtual machine is initialized, all the hard-
ware on which the Operating System (OS) is running is loaded and not just a copy of the
OS, resulting in the consumption of many system resources, making virtualization very
expensive from a computational point of view [7]. The use of containerization mitigates
the operational cost of traditional virtualization, as stated by [5], in which the author ad-
dresses host-level virtualization known as container, which is another type of virtualization.
This type of virtualization acts on top of the physical server offering support to several
independent systems since the physical server already has an OS installed, not needing to
load all the host hardware or its copy. Container-based virtualization has recently gained
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much attention [8,9]. This virtualization makes an application run efficiently in the most
varied computing environments through its encapsulation and its dependencies [10]. This
virtualization technique is said by the author of [11] to be lightweight, as the system sig-
nificantly decreases workloads by sharing OS resources from host. Containers provide an
isolated environment for system resources such as processes, file systems and networks
to run at the host OS level, without having to run a Virtual Machine (VM) with its own
OS on top of virtualized hardware. By sharing the same OS kernel, containers start much
faster using a small amount of system memory compared to booting an entire virtualized
OS like in [10] VMs. Kubernetes is a widely used tool for managing containers, configure,
maintain and manage solutions that have containers as an approach to the detriment of
VMs. Thus, this work aims to evaluate the effects of software aging and the performance
of Kubernetes when undergoing a high-stress load, characterized by creating replicas of
pods to maintain service availability in the Nginx and K3S environments. Furthermore,
the aging problem on an unmanned vehicle refers to the degradation of the vehicle’s per-
formance over time, due to factors such as wear and tear, corrosion, and obsolescence.
As an unmanned vehicle ages, its components may become less reliable and less capable of
performing their intended functions, which can affect the vehicle’s ability to operate safely
and effectively. The aging problem can be particularly challenging for unmanned vehicles,
as they often operate in harsh or hostile environments, and they may be subjected to high
levels of stress and strain. For example, an unmanned aerial vehicle (UAV) may experience
high levels of vibration and air turbulence during flight, which can cause its components
to wear out faster. Similarly, an unmanned underwater vehicle (UUV) may be exposed
to corrosive saltwater, which can cause its components to corrode and deteriorate over
time. In this work, our focus is on the investigation of a digital twin cloud infrastructure
in which a Kubernetes-based cloud environment is investigated regarding software aging
phenomenon of the cloud if hosting the UAM-ODT with no downtime.

The study in this work extends the related research area on software aging in virtual-
ized environment through the following key contributions:

• proposed a cloud based simulation platform with provisioning for the development
of UAM-ODT infrastructures

• proposed a methodology for measurement and assessment of software aging in a
container-based environment with a Kubernetes cluster in the digital twin cloud.

• performed comprehensive test-bed experiments and observations of software ag-
ing phenomena along with software rejuvenation in Kubernetes clusters based on
Minikube and K3S environments.

• Findings and impacts:

– It is important to stress that aging events found in test-bed experiments indicate
the threats of system failures and performance degradation due to software
aging symptoms. However, the time that those events will occur depends on the
characteristics and intensity of the workload that the system needs to process,
as well as the hardware and software specification of that Kubernetes system.

– If the system has more resources available or less workload than those employed
in this experiment, the aging phenomenon would be slower, and subsequently,
the failures due to resource exhaustion would take longer to occur. This fact does
not reduce the importance of evaluating software aging in those systems as well
as planning actions for their mitigation.

To the best of our knowledge, this work contributes to the practical implementation
and maintenance of virtualized environment on the perspectives of system dependability
in digital twin computing infrastructures in which a huge amount of services are running
with a stringent requirement of continuity. The findings of this study bring about the
comprehension of software aging phenomena in digital twin computing infrastructures
developed on top of Kubernetes, which is at very early stage of current research on
software aging problems for a high level of dependability and fault-tolerance in digital
twin computing infrastructures.
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In order to facilitate the understanding of this work, the paper is organized as follows.
Section 2 addresses the related works that inspired this study on software aging assessment;
Section 3 presents the fundamental concepts and system design used in this work; Section 4
deals with the methodology used in the research; the objective and planning, covering
the context in which it was produced, the tools selected, variables involved, scripts for
reproduction and the hardware used are discussed in Section 5. The results are presented
and discussed in Section 6. In Section 7 are the remarks arising from our research results.

2. Related Work

The work described in [10] analyzes the performance of running containers with
services hosted on them, carrying out experiments with containers monitoring system
resources, including network, memory, disk, and CPU. The testbed environment consists
of a Kubernetes cluster manually deployed to carry out the evaluation, considering the
Microsoft Azure Kubernetes Service (AKS), Google Kubernetes Engine (GKE), or Amazon
Elastic Container Service for Kubernetes (EKS).

The authors in [12] evaluated the memory utilization, network overhead of containers,
storage, and CPU using Docker, comparing them with KVM hypervisors. They exposed
in their experiments that the containers obtained, in the worst case, similar or superior
performance when compared to the VMs.

The work presented in [13] conducted a similar study, however, comparing the perfor-
mance obtained from containers when monitoring the number of requests an application
server could handle in relation to the same application deployed in a VM and the results
showed that the VMs had significantly outperformed the containers.

The research reported in [14] performed application experiments for HPC (high-
performance computing), using benchmarking tools to evaluate memory, network, disk,
and CPU performance in Linux Container (LXC) related virtualization implementations,
along with OpenVZ and Linux VServer, showing that all containerized apps performed
similarly to a native system.

The authors of [15,16] showed improvements obtained related to performance isolation
for MapReduce workloads. However, when evaluating disk workloads, LXC failed to fully
isolate resources, opposite behavior to that of hypervisor-based systems.

Through memory, network, and disk metrics, the authors of [17] evaluated the per-
formance of LXC, Docker, and KVM running many benchmarking tools to measure the
performance of these components and concluded that the overhead caused by container-
based virtualization technologies could have its weight considered irrelevant, despite the
performance being compensated by safety.

Our main focus is on software aging investigation on a private cloud system hosting
an operational digital twin of an eVTOL vehicle flying in a virtualized urban air mobility.
Operational digital twins of vehicles in urban air mobility are digital representations of
real-world vehicles that can be used for a variety of purposes. Some potential uses of
operational digital twins in urban air mobility include:

• Performance modeling and simulation: Operational digital twins can be used to model
and simulate the performance of vehicles in urban air mobility systems, including their
flight dynamics, propulsion systems, and control systems. This can help to optimize
the design and operation of vehicles, to improve their performance and efficiency,
and to identify potential issues or risks.

• Fleet management and maintenance: Operational digital twins can be used to monitor
the condition and performance of vehicles in real time, and to provide information
about their current state and status. This can be used to support fleet management
and maintenance operations, by providing timely and accurate data about the health
and safety of vehicles, and by enabling proactive maintenance and repair.

• Traffic management and control: Operational digital twins can be used to support traffic
management and control in urban air mobility systems, by providing information
about the location, orientation, and velocity of vehicles. This can help to coordinate
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the movement of vehicles, to avoid collisions and other hazards, and to optimize the
flow of traffic in urban airspace.

• Emergency response and rescue: Operational digital twins can be used to support emer-
gency response and rescue operations in urban air mobility systems, by providing
real-time information about the location and status of vehicles. This can help to
quickly and accurately identify the location and condition of vehicles in distress,
and to coordinate rescue and recovery efforts.

Operational digital twins of vehicles in urban air mobility can be used for a variety
of purposes, including performance modeling and simulation, fleet management and
maintenance, traffic management and control, and emergency response and rescue. Due
to such constant operational services, the UAM-ODT cloud system is inevitable to suffer
software aging problems. In this study, we specifically investigate the software aging
problems of a UAM-ODT cloud system based on Kubernetes virtualization environment.

3. System Design
3.1. Cloud in the Loop Simulation (CILS):

The ability to simulate a wide range of heterogeneous personal aerial vehicles (PAV)
in the same virtual environment is critical and required to verify a variety of AI control
algorithms even before their practical implementation on physical twin vehicles in digital
twin infrastructures of future urban air mobility (UAM). One may deploy the AI control
algorithms on actual vehicles and train them through practical flight testing in actual sur-
roundings in order to improve the precision and calibre of neural network-based AI control
algorithms (for example, neural Lyapunov control [18], deep reinforcement learning [19]).
However, it frequently takes a lot of work and a considerable amount of time to collect
enough flight test data for developing a competent AI control model for autonomous PAVs.
As a result, one of the popular approaches is to develop an operational digital twin system
for UAM (abbreviated as UAM-ODT) to replicate the actions of UAM vehicles in real-world
settings within a shared virtual environment [20].

Inspired by the idea, we propose to adopt cloud-based solutions to develop a UAM-
ODT system for a specific eVTOL PAV, called eVTOL KADA-UAM vehicle, under develop-
ment by Konkuk Aerospace Design-Airworthiness Research Institute (KADA), Konkuk
University, Seoul, Republic of Korea as shown in Figure 2 and its virtual environment of
UAM-ODT as shown in Figure 3.

Figure 2. A digital replica of UAM vehicle in UAM-ODT infrastructure.
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(a) In Flight

(b) Landing

(c) Vertiport

Figure 3. A visualization of UAM-ODT infrastructure. (The figures are excerpts from a video at https:
//blog.naver.com/yy8661 provided by Hyeon Jun Lee, Konkuk Aerospace Design-Trustworthiness
Institute, Konkuk University, Seoul, Republic of Korea (rain9138@gmail.com)).

The proposal is the overall cloud-in-the-loop simulation (CILS) framework that can
simulate the operations of a multitude of heterogeneous UAM vehicles with completely
different aerodynamics in a UAM-ODT system, and thus can be used for verification
and training of AI control algorithms in virtual world before practical implementation.
The overall conceptual CILS architecture is designed as in Figure 4. To simulate multi-mode
operations of heterogeneous environment which consists of multi-vehicles with different
dynamics and configuration, we adopted the virtualization concept in cloud computing
paradigm to separate a multitude of SILS processes onto different VMs. A single SILS
process encompasses a PX4-based autopilot multi-mode AI control module (abbreviated as
PX4) and a JSBsim based aerodynamic module called Konkuk Flight Simulation-Digital
Twin Dynamics module (KFS-DT). The encapsulation of these two modules is called a
dynamics-control SILS package, which is deployed on a multitude of VMs. The KFS-DT
module guarantees the concept of digital twin framework for K-UAM vehicles in which
it captures a high-fidelity CFD dynamics model of each physical vehicle. The autopilot
control PX4 module transfer controls of each vehicle u to the dynamic module KFS-DT.
The KFS-DT module computes new vehicle states s and returns them to the PX4 module.

https://blog.naver.com/yy8661
https://blog.naver.com/yy8661


Drones 2023, 7, 35 9 of 22

The PX4 updates the current states s to a VM controller module. On the other hand, the PX4
receives updated sensor data from the VM controller module to generate new controls u.
On each VM, there is a VM controller module to handle the data transactions between the
VMs with a physical server for operational control management and for the visualization
of the virtual environment (called environment control center). The VM controller module
in each VM transmits vehicle states s receiving from a control PX4 module in the same VM
and receives sensor data or mission data to/from the visualization center using Airsim [21]
for AI application and Unity™for visualization. While an environment controller module
in the control center is designed to handle the operations of all vehicles in the simulated
environment upon the ground control module, AI module, Airsim server and Unity client
module. The scalability of this cloud-based simulation framework is guaranteed by an
auto-provisioning cloud system.

Figure 4. Cloud in the loop simulation framework.

In this work, our focus is on the digital twin version of an eVTOL vehicle to capture
flight operations in an urban air mobility for further studies on performance modeling
and simulation of vehicle, fleet management and maintenance, traffic management and
control, and emergency response and rescue. Thus, the detailed design of the overall cloud
in the loop simulation framework running on a private cloud platform is presented in a
comprehensive manner while the detailed design of the eVTOL vehicle in consideration
regarding circuit and IT problem in the individual engine control systems is out of scope of
the study. We consider how the dynamics of the vehicle and its corresponding control are
simulated in a virtualized environment of urban air mobility to mimic the real-world flight
operations for air traffic managements in urban areas.

3.2. Cloud Provisioning Hardware System:

The hardware infrastructure of CILS is designed as shown in Figure 5, consists of
main two components: one is virtual cluster (VC) disk image provisioning, and the other
is auto provisioning virtual instance creator. Virtual machines existing in the same VC
subgroup can be used by sharing the virtual disk image with homogeneous S/W as read-
only. The numerous existing cloud systems provides GUI where users can build instances.
It seems that this function simplifies the manipulation of creating instances on the cloud
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system whereas it just repeats useless operation to prepare requisites and build VMs.
The auto provisioning virtual instance creator based on infrastructure as a code (IaC)
provides a consistent CLI workflow to manage hundreds of cloud services and customize
simulation environments.

Figure 5. Cloud provisioning hardware system architecture.

Figure 6 shows the provisioning technology for virtual cluster images. The VC disk
image provisioning based on union mounting technique can integrates one instance with
diversified simulation virtual disk images depending on the simulation requirement such
as PX4-Autopilot, JSBSim, Airsim, FlightGear and so on. Due to the orchestration of the
cloud management, it can implement the communication via layer 2 or layer 3 between
instances. Thanks to the capabilities of cloud provisioning and orchestration as designed
in Figures 5 and 6, the UAM management can be maintained and stored on CILS Cloud
Compute System complying the CILS framework in Figure 3.

Figure 6. Virtual cluster image provisioning technology.

3.3. Software Aging and Rejuvenation

For urban air mobility (UAM), it is necessary to create a vehicle digital twin (DT) that
uses a precise, physics-based emulator to characterise a vehicle’s statics and dynamics. As a
result, the UAM operational digital twin infrastructures need the deployment of the digital
twin in vehicle operations and control (UAM-ODT). The problems are, (i) the absence of
digital twin engines for the digitalization (twinization) of dynamics and control of UAM
vehicles running at the core of UAM-ODT systems; (ii) the absence of back-end system
engineering in the development of UAM vehicles; and (iii) the absence of fault-tolerant
mechanisms for the DT cloud back-end systems running 24/7 uninterrupted operations.
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Unmanned vehicles, also known as drones, are a relatively new technology and there are
still many challenges and limitations associated with their use. One of the main causes
of errors in the management of unmanned vehicles is the lack of a reliable and robust
communication system. This can make it difficult for the operator to control the drone
and receive accurate information about its location and status. Additionally, the complex
algorithms used to control the drone’s movements can sometimes produce unexpected
or unpredictable behavior, leading to errors in the management of the vehicle. Other
potential causes of errors in the management of unmanned vehicles include software bugs,
hardware malfunctions, and interference from external sources such as radio waves or other
electromagnetic signals. Software aging refers to the gradual degradation of a software
system’s performance over time. In the context of unmanned vehicles, software aging
can be caused by a number of factors, including the accumulation of data, changes in the
operating environment, and the introduction of new features or updates. As the software
continues to be used, it may become slower, less reliable, and more prone to errors. This
can affect the performance of the unmanned vehicle and make it more difficult to manage.
Other potential causes of software aging in the management of unmanned vehicles include
the use of outdated or inefficient algorithms, inadequate testing and debugging, and the
lack of proper maintenance and support.

Software aging and rejuvenation has been an active line of research since 1995 when
it was proposed by Huang et al., then at AT&T Bell Labs [22]. The reasons that lead to
software aging include data loss, accumulated operating system error, resource consump-
tion, and sudden crashes, for example. These phenomena, which accumulate gradually
over time, can lead to software performance degradation, which can lead to a sudden
crash or shutdown of software systems [23]. A fault tolerance prevention strategy, called
software rejuvenation, aims at circumventing the negative effects of software aging, thus
making it an important issue for systems reliability by avoiding sudden system failures
caused by software aging, providing security and availability [24,25]. Companies such as
Amazon and Google have increased interest in adopting technology architecture based
on microservices (which usually rely on containerization) [26]. The reason for such an
adoption is that application systems based on microservices architecture have the advan-
tage of being easier to develop, deploy, and scale compared to monolithic architecture
systems [27]. Containerization systems allow the configuration of the environment for
software deployment in the shortest possible time, solving problems of integration of the
most diverse applications [28].

When using containers, the application code in any offered service is involved in
containerization along with its libraries, all dependencies, and configuration files necessary
for its execution in the most diverse types of environments. This containerization becomes
autonomous and portable, as it is abstracted from the host OS and can be executed on any
computing platform [29]. This approach has been widely applied in the computing industry
and demonstrated in several studies. Refs. [12,17] report overall cost reduction and overall
application performance optimization in containers. The applications’ microservices are
generated by dividing them into small units and independently, increasing the scalability
and portability of the services and the containers [10]. Nonetheless, the increase in the use
of containers implies the need for tools capable of managing, through the control of tasks
such as the operation of applications in containers throughout the infrastructure, scaling,
and automation of application deployment [30]. An example of a container orchestration
tool that is increasingly needed and widespread is Kubernetes, open-source and made
available by Google. Container management tools are at the peak of expectations in the
Hype Cycle for Cloud Computing from Gartner [31].

Such expectations give signs that the field in container orchestration technologies is
on the rise, attractive, and very competitive, and should continue at an increasing pace
as several organizations consider adopting the container-based approach [9,32,33]. A fair
amount of tools as solutions for the execution and orchestration of containers emerged and
quickly became solution standards in this context, among them Docker and Kubernetes.
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They enable the creation of new containers and pods (a computational unit in Kubernetes
comprising one or more containers) with their deployments in an agile way when an
increase in application workload is detected, or even a pod drops due to excessive con-
sumption of its resources, such as memory or CPU (Central Processing Unit), through
monitoring [34]. However, its various components and related complexity have a very
costly learning curve, which may not be easy to manage even with its proven efficiency in
scaling, configuring, and maintaining services. Therefore, managing a Kubernetes infras-
tructure is a complex task. This has given rise to a new market for managing Containers,
such as hosted Kubernetes solutions.

4. Methodology

The methodology adopted in this work followed the flow shown in Figure 7, which in
summary is based on an experimental evaluation applied by measuring the use of system
resources and performance in a container-based environment with a Kubernetes cluster.
The evaluation was carried out in different scenarios using the Nginx or K3S tool to manage
the cluster.

Definition of 
objectives

Requirements 
gathering 

Installation of 
environments

StatusPreparation and 
Testing of Scripts

OKExperiment 
execution

Collection and 
Analysis of 

Results
Validated Presentation of 

validated results

E
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E
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or

Selection  of 
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Figure 7. Methodology of the software aging measurement and assessment in Kubernetes environment.

Kubernetes is an open-source platform for managing and orchestrating containerized
applications. It allows you to deploy and manage multiple containers, such as those
created with Docker, across a cluster of machines, and it provides many features and
tools to help you automate, scale, and manage applications and their dependencies. One
of the main benefits of Kubernetes is that it helps to simplify and automate the process
of deploying and managing applications in a distributed environment. This can save
time and effort, and it can help to improve the reliability and scalability of applications.
Additionally, Kubernetes provides many features and tools that can help you manage and
monitor applications, such as: (i) Service discovery and load balancing: Kubernetes can
automatically assign unique IP addresses to each of containers, and it can automatically
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distribute incoming traffic across the containers in cluster. (ii) Configuration management:
Kubernetes allows you to define application’s configuration in a declarative manner, using
YAML files or other configuration formats. This can make it easier to manage and update
the configuration of applications. (iii) Health checking: Kubernetes can monitor the health
of containers and applications, and it can automatically restart or replace containers that
are not functioning properly. (iv) Self-healing: Kubernetes can automatically detect and
recover from failures in application, such as when a container crashes or when a node in
cluster goes down. Therefore, he benefits of Kubernetes include improved automation,
scalability, and reliability for applications, as well as a rich set of features and tools for
managing and monitoring applications in a distributed environment [35].

In this research, the experiments were carried out using scripts developed for these
scenarios to simulate a service’s distribution using a Kubernetes cluster, which can be
accessed externally through the Internet, receiving a high-stress load by performing re-
quests. We have also developed scripts to monitor software aging metrics, such as CPU
utilization, memory consumption, and disk utilization, among others, in order to mea-
sure the performance of a service hosted in Kubernetes by checking the time of requests
correctly fulfilled.

The environments of Nginx and K3S adopted in this experimental evaluation are com-
posed of a cluster containing 5 Pods and 1 Service—that allows communication between
the Pods. One of the Pods was configured as a Deployment of an Nginx web server, which
enabled testing the performance of an application hosted in Kubernetes, responding to
user requests from anywhere connected to the Internet.

CPU utilization, memory consumption, disk utilization, and total response time were
some of the metrics used for this study, based on the metrics used in [10,14]. The results of
these measures were captured by scripts developed for this purpose and, finally, evaluated
through analysis of their behavior.

The proposed methodology actually can be applied for typical operational digital
twin version of heterogeneous UAM vehicles including rotary aircrafts such as drones
or helicopters, fixed-wing aircrafts or hybrid aircrafts such as eVTOL vehicles. Since
the UAM-ODT platform is designed to run on a private cloud computing system based
on cloud-in-the-loop simulation paradigm with heterogeneous digital twin modules of
dynamics and controls as shown in Figure 4.

5. Experimental Planning
5.1. Goal Definition

To guarantee the mitigation of software aging emergence in the UAM-ODT platform
with proper operational management and maintenance, this work presents a developed
methodology for the investigation of software aging phenomenon by measuring the use
of system resources and performance. We use different tools for the measurement in
different experiments. The objective of this work was formally defined when using the
Goal Question Metric (GQM) method [36] to verify the emergence of the effects of Software
Aging as well as the performance of the Kubernetes Cluster in Minikube and K3S through
the response time of the service when responding to requests.

5.2. Planning

The independent variables in the experiment are the number of simultaneous pod
replication requests made to the service, overloading the Nginx application server, and em-
ulating Kubernetes’ autoscaling so that the service continues to be available under high
workloads. The dependent variables were: CPU utilization, memory consumption, disk
utilization, and average response time to requests.

Following the GQM method, the following research questions were designed to broadly
cover the scope of this work:

• Q1?: Have indicators of software aging been found?
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• Q2?: Which environment had the best performance in controlling the consumption of
resources related to software aging?

• Q3?: Was there a similarity in behavior between the results obtained with Minikube
and K3S?

In order to answer Q1 and Q2, the following metrics were evaluated: CPU utilization,
memory consumption, and disk utilization. In order to answer Q3, we conducted a com-
parative analysis of the results obtained from metrics that have been used to answer Q1
and Q2.

5.3. Object Selection

Samples of 125 h of monitoring in the Minikube environment and 95 h in the K3S envi-
ronment were considered to evaluate the system’s performance and verify the aging effects.

5.4. Experimental Design

The following steps were developed for the execution of the experiment:

• Step 1: Survey of the requirements for its realization in the Minikube and K3S envi-
ronment.

• Step 2: Development and analysis of monitoring scripts, execution of the environ-
ment and its stress.

• Step 3: The experiment execution script, both in Minikube and in K3S, followed the
following general script:

– Step 3.a: Execute the monitoring script for 2 h without any workload before
the cluster is started.

– Step 3.b: Run script that starts the cluster with the container orchestrator and
keeps monitoring for initial 2 h without stress.

– Step 3.c: Run the high workload emulating the auto-scaling 420 times in a loop.
– Step 3.d: After the end of stress, wait 2 h and execute a script that ends the

container orchestrator as a possible software rejuvenation action.
– Repeat steps 3.a, 3.b, 3.c, and 3.d until completing five cycles.

• Step 4: Generate graphs of the results obtained and analyze them.

To reinforce the understanding of our experiment, Figure 8 depicts a diagram that
represents the sequence of operations performed by the general script we just described.

Figure 8. Diagram for cycles of operations performed by the experiment script.
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Throughout all routines in step 3, another script sends client requests to the service
that is hosted in the cluster. Those requests are effectively serviced by any pods that might
have been created throughout the stress workload. Figure 9 illustrates the interaction be-
tween a client and the service in the Kubernetes cluster both in the Minikube environment
and in the K3S environment, in both, the infrastructure architecture is configured as in
Figure 2, which defines a logical set of Pods and enables exposure external traffic, load
balancing and service discovery for these Pods, which have Nginx as a lightweight HTTP
server, which is represented with Other App.

Figure 9. Cluster and Client Interaction Overview.

5.5. Instrumentation

The hardware used in this experiment was: a host with 8 GB of RAM, a Core i3
processor with a 3.1 GHz clock, a WiFi module, and Ubuntu Linux OS version 20.04 64
bits. The software used were: Shell script, for experiment implementation, monitoring and
collection of data generated as results through the bash command interpreter; K3S version
v1.22.5+k3s1; Minikube version 1.15.1 commit: 23f40a012abb52eff365ff99a709501a61
ac5876; Kubernetes v1.19.4 on Docker 19.03.13 for running the Kubernetes Cluster
and Pods.

Metrics were collected with an interval of 60 s for monitoring CPU utilization and
memory consumption, while for the disk usage metric the interval was 5 s, which we
considered necessary to have enough samples, avoiding interference from monitoring
activity. on actual system performance.

6. Experimental Results

In this section, the results collected from the experiment will be presented for both
Minikube and K3S environments, considering the metrics of CPU utilization, memory con-
sumption, disk utilization, and, finally, the requests made to the service. Each metric result
is described in the following subsections. These are metrics for continuity and performance
of the UAM-ODT cloud infrastructure. The data were collected from the cloud infrastruc-
ture rather than from the vehicle. The reason is we are investigating the software aging
problems in a private cloud to host 24/7/365 operational digital twin services for UAM
management.

It is worth highlighting that the experiments’ total time differs in Minikube and K3S
due to a difference in the average time to restart the pods within the auto-scaling process.
This information was also measured and is presented in Table 1, showing the fastest
execution of this action in the K3S environment, 25.4% faster than Minikube, evidencing
an improved efficiency in auto-scaling of K3S when compared to Minikube.

Table 1. Average Pod Reset Time.

Environment Time (s)

Minikube 97.56
K3S 72.80
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6.1. CPU Utilization

In the CPU utilization evaluation, data were collected from the following specific
metrics: USR, which is the percentage of CPU used by the task during execution at the
user level; SYS, which is the percentage of CPU used by the task during execution at the
kernel level of the OS; WAIT is the percentage of CPU spent by the task while waiting to
be executed; and finally, the CPU_TOTAL, which is the total percentage of CPU time used
by the task monitored by Pidstat tool, which provides statistics report for the tasks on
GNU/Linux systems.

Figure 10 shows a peak of 180% of CPU_TOTAL during the initialization of the Cluster,
but with an average slightly above 100% during the entire experiment in the Minikube
environment. It is also possible to notice in the graph a controlled behavior within Minikube
about the metrics limits since the limit is only exceeded when starting the environment.
Notice also that values of utilization higher than 100% in this context are related to the
usage of more than one core of the processor by this process.
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Figure 10. CPU utilization in Minikube.

Figure 11 shows a different behavior of K3S about Minikube regarding CPU utilization
when we look at the CPU_TOTAL metric, which, unlike Minikube, it shows an increase in
CPU_TOTAL utilization together with the USR metric over time, being interrupted when ap-
plying the cluster termination, which seems to act as a software rejuvenation technique for
this situation. Although, during the entire experiment, the CPU_TOTAL did not exceed 60%.
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Figure 11. CPU utilization on K3S.
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6.2. Disk-Related Metrics

In the evaluation of disk-related metrics, data were collected for the following metrics:
READ, which represents the amount of kilobytes per second that the task took to be read;
WRITE, which is the amount of kilobytes per second that the task sent to be written to
the disk; and finally CANCELLED, which is the amount of kilobytes per second whose disk
writing was canceled by the task, that can also occur when the task truncates some dirty
page cache. All these metrics were monitored by the Pidstat tool in both Minikube and K3S.

In Figure 12, the WRITE and CANCELLED metrics have their behavior unchanged through-
out the experiment, always walking close to 0 KB/s. Although, the READ metric had a
distinct behavior, holding the same value throughout a single cycle of the cluster stress,
and presenting a linear growth among cycles until the fourth execution cycle, being in-
terrupted abruptly when reaching about 4,000,000 KB/s due to the limiting factor of
the Minikube environment. Such behavior may be indicative of the software aging phe-
nomenon in this environment.
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Figure 12. Disk-related metrics in Minikube.

In Figure 13, the WRITE and CANCELLED metrics also remain close to 0 KB/s throughout
the experiment, similar to the execution in the Minikube environment. However, the be-
havior is different in the READ metric, which was not interrupted abruptly and had a linear
growth from one cycle to another until the end of the experiment execution in K3S. It is
important to mention that K3S presented smaller values of bytes read per second than
Minikube, which might have prevented it from the abrupt fall observed there.
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Figure 13. Disk usage in K3S.
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6.3. Memory Usage

In the evaluation of memory consumption, data were collected for the metrics:
MEM_USED, which represents the calculation of the total memory used; MEM_FREE, which is
the memory that is not being used; MEM_AVAILABLE, which estimates how much memory is
available to start new applications without swapping (it may include memory space that is
being used for buffers or cache); MEM_SHARED, which is the memory mainly used by TMPFS
which is the file system that keeps all files in virtual memory; MEM_BUFFERS_CACHED, which
is the sum of the memory buffers and cache; SWAP_USED and SWAP_FREE metric, which
represent respectively the used and free amount of virtual memory’s swap space, that
allows the system to use a part of the hard disk as physical memory. All these metrics were
monitored using the “free” tool in both the Minikube and K3S environments.

In the evaluation of memory utilization in Minikube, the MEM_USED metric in Figure 14
has its behavior mirrored with that of the MEM_AVAILABLE metric, while the MEM_USED
increases throughout the experiment, the MEM_AVAILABLE decreases in an inversely pro-
portional trend. MEM_USED has a consumption increase of around 70% at the end of the
experiment, even applying rejuvenation (i.e., cluster termination and restart between cy-
cles). Such an action drops the memory usage temporarily, but when the cluster is started
again, the system restores the same memory usage level observed at the end of the previous
cycle. The MEM_FREE metric has a drop close to 48%. The MEM_BUFFERS_CACHED metric has a
drop of around 41%. The SWAP_USED metric also behaves inversely to the SWAP_FREE metric,
while the SWAP_USED has a 20% increase at the end of the experiment and SWAP_FREE a drop
of 11%. The MEM_SHARED metric in both Minikube and K3S behave similarly, maintaining a
regularity between 48 to 179 MB of consumption.
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Figure 14. Memory consumption in Minikube.

In the evaluation of memory utilization in K3S, the MEM_USED metric in Figure 15
showed behavior similar to that observed in Minikube. MEM_USED has a consumption
increase of around 61% at the end of the experiment, even applying rejuvenation. The
MEM_FREE metric has a decrease of close to 79%. MEM_BUFFERS_CACHED has an increase of
around 12%, which differs from the behavior in Minikube. The SWAP_USED has an increase
of 8% when it reaches the end of the experiment and the SWAP_FREE a decrease of 8.5%.

For these memory consumption metrics, both in Minikube and in K3S, linear regression
calculations on MEM_USED were performed to estimate the moment when the system would
reach its upper limit for RAM usage, which in these cases is 8 GB. To confirm that estimate,
we also computed the linear regression for MEM_FREE, which is another way to indicate the
exhaustion of the resource, leading to system downtime and, consequently, the interruption
of service provision. Similar regression estimates were carried out for the swap space usage.
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Figure 15. Memory consumption on K3S.

Equation (1) of the linear regression was obtained for the MEM_USED metric in the
Minikube environment (MU_Minikube), shown in Figure 14. From this equation, it is possi-
ble to observe, as a function of MU_Minikube, that the 8 GB limit is reached after 170 h (i.e.,
7 days and 2 h) of continuous execution of the workload used in the experiment. For the
SWAP_USED metric, also exposed in Figure 14 for the Minikube environment, the linear
regression Equation (2) was obtained.

MUMinikube = 3900.84 + 23.98072 × Tstress (1)

In Equation (2), it is possible to observe that the upper limit of the SWAP_USED metric
of the Nginx environment (SU_Minikube), which in this case is 5.8 GB, is reached after
approximately 551 h of experiment, or 22 days of the same, so that the resource was
completely exhausted.

SUMinikube = −221.43413 + 10.37255 × Tstress (2)

For the MEM_USED metric of the K3S environment (MU_K3S), the linear regression
Equation (3) was obtained which, through it, it is possible to observe that the upper limit
of 8GB of resource for the MEM_USED metric is reached after 187 h (i.e., 7 days and 8 h) of
workload execution.

MUK3S = 2482.70 + 29.67105 × Tstress (3)

Finally, the SWAP_USED metric of the K3S environment (SU_K3S) had the linear regres-
sion Equation (4) obtained, which allows the visualization of resource exhaustion, which has
a total of 5.8GB, after 603 h (i.e., 25 days and 1 h) of workload performed in the experiment.

SUK3S = −120.24857 + 9.30782 × Tstress (4)

6.4. Evaluation and Discussions

When evaluating the results presented in Figures 10 and 11, it can be seen that most of
the CPU consumption happens through the USR metric in the K3S environment, while the
SYS metric does the highest consumption in the Nginx environment. This growth behavior
of the USR metric in K3S was recurrent even after applying Software Rejuvenation every
cycle, unlike the Nginx environment that maintains stability in the consumption of its CPU
utilization metrics.

The results presented in Figures 12 and 13 show similar behavior in the use of disk
usage metrics in the K3S and Nginx environment, differing only that in Nginx, the READ
metric presents an interruption when it reaches 4,000,000 KB/s, returning in the fifth
cycle with a total utilization close to 10%. In the K3S environment, this READ metric does
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not suffer an interruption but presents a linear growth from one workload cycle to another.
In both scenarios, the READ metric generally presents a linear growth representing a greater
need for reading from disk at each cycle.

Figures 14 and 15 show similar behavior related to memory consumption metrics in the
Nginx and K3S environments, respectively. In both, there is a linear growth of the MEM_USED
metric and in the SWAP_USED metric, and the opposite behavior of the MEM_AVAILABLE and
SWAP_FREE metrics. Thus, with Equations (1) and (2) obtained from linear regression,
it is possible to glimpse the effects arising from software aging related to memory con-
sumption even after the application of a potential software rejuvenation action, that is,
the cluster termination.

The results presented in this section are the observation of software aging phenomenon
for a private cloud system hosting a UAM-ODT platform for UAM management. It is
crucial to emphasise that those findings point to the dangers of system breakdowns and
performance declines brought on by signs of software ageing. However, the timing of
those events relies on the nature and volume of the workload that the system must handle,
in addition to the hardware and software requirements of particular Kubernetes system.
The ageing phenomena would be delayed and the failures caused by resource exhaustion
would follow if the system had more resources available or a lighter burden than that used
in this experiment. This reality does not lessen the significance of assessing the software
ageing in those systems and organising countermeasures. Evaluating these scenarios using
other software rejuvenation approaches and complementary metrics related to software
aging are the most promising steps that could be taken in future work.

Regarding how to avoid the observed software aging phenomenon in the UAM-ODT
infrastructure, in general, there are several strategies that can be used to avoid or miti-
gate software aging. These can include: (i) regularly updating and patching the software
to fix bugs and security vulnerabilities; (ii) monitoring the performance of the software
and identifying potential problems before they occur; (iii) implementing automation and
management tools to help manage the software and its dependencies; (iv) using modular,
microservice-based architectures to make it easier to update and maintain individual com-
ponents of the system; (v) using containerization technologies, such as Docker, to package
the software and its dependencies into a self-contained environment that can be easily
deployed and managed. These are just some examples of strategies that can be used to
avoid software aging in a cloud system. Currently, the technique to avoid software aging
is monitoring the performance of the software and identifying potential problems before
they occur. Further investigation on how to adopt the software rejuvenation techniques
in optimal and automatic manner will be an interesting extension for research into the
UAM-ODT system in which the services for UAM management using ODT are constant
and at zero downtime.

7. Conclusions

This paper presented a comprehensive study on the effects of software aging problems
on Kubernetes in container orchestration system in a digital twin cloud infrastructure
for UAM-ODT systems. The behaviours of Kubernetes software were analysed in an
accelerated lifespan experiment utilising both Nginx and K3S tools. The operations for
establishing and terminating pods were carried out in real time, allowing us to monitor
the usage of computational resources (such as CPU, memory, and I/O), the performance
of the Nginx and K3S environments, and the response time of an application hosted in
those environments. In particular settings and for specific metrics, such as virtual memory
utilisation, software ageing effects were detected, indicating a memory leak that is not
entirely cleansed when the cluster is halted. The study’s findings help to understand
the phenomenon of software ageing in digital twin computing infrastructures built on
Kubernetes, which is at the very beginning of current research on software ageing issues
for highly reliable and fault-tolerant digital twin computing infrastructures.
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