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Abstract: This study delves into the application of the U-Net convolutional neural network (CNN)
model for beach wrack (BW) segmentation and monitoring in coastal environments using multi-
spectral imagery. Through the utilization of different input configurations, namely, “RGB”, “RGB
and height”, “5 bands”, “5 bands and height”, and “Band ratio indices”, this research provides
insights into the optimal dataset combination for the U-Net model. The results indicate promising
performance with the “RGB” combination, achieving a moderate Intersection over Union (IoU) of
0.42 for BW and an overall accuracy of IoU = 0.59. However, challenges arise in the segmentation of
potential BW, primarily attributed to the dynamics of light in aquatic environments. Factors such as
sun glint, wave patterns, and turbidity also influenced model accuracy. Contrary to the hypothesis,
integrating all spectral bands did not enhance the model’s efficacy, and adding height data acquired
from UAVs decreased model precision in both RGB and multispectral scenarios. This study reaffirms
the potential of U-Net CNNs for BW detection, emphasizing the suitability of the suggested method
for deployment in diverse beach geomorphology, requiring no high-end computing resources, and
thereby facilitating more accessible applications in coastal monitoring and management.
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1. Introduction

Beach wrack (BW), also known as shore algal deposits or marine debris, is an important
component of coastal ecosystems that can provide various ecological, economic, and social
benefits [1]. BW is often used as a habitat for a variety of organisms, such as birds and
invertebrates, and can serve as a source of food and shelter for these organisms, as well as a
source of nutrients for plants [2]. In addition, BW can play a role in protecting the shoreline
from erosion and storm waves [3]. It also has economic value, as it can be used as a source of
organic matter for soil enhancement and fertilization, and in some cases, can be converted
into biogas, a renewable energy source [4]. BW also has cultural and recreational value,
as it is often used in traditional practices such as amber collecting and can attract tourists
to coastal areas [5]. However, the degradation of BW and the accompanying unpleasant
odors may disrupt recreational activities and pose health risks due to the habitation of fecal
bacteria, which may thrive in such environments [6].

A complex interplay of meteorological conditions influences the deposition of BW,
particularly wave action and storm events. Hydrodynamic measurements have indicated
that BW is mostly formed during high sea level and wave events [7]. Furthermore, the mor-
phological evolution of foredunes, which can impact wrack deposition, is driven by wave
energy [8]. Storms not only induce deposition but also cause erosion, affecting the equilib-
rium of beach gradients [9]. These factors collectively contribute to the marine–terrestrial
transfer of BW, with significant ecological implications for nearshore environments.
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For the monitoring of BW, it is important to understand BW dynamics and the factors
that influence its distribution and abundance [10]. However, the detection of BW can be
challenging due to its variability in distribution and abundance, its accessibility, particularly
in remote or difficult-to-reach areas, and the limitations of traditional methods for mapping
it [11,12]. The traditional methods for monitoring BW have been described as labor-
intensive and reliant on manual field surveys. A study by Suursaar et al. [7] indicates
that BW sampling can be considered a tool for describing the species composition of
macrovegetation in near-coastal sea areas. This method involves the physical collection
and analysis of BW samples, and while effective, it is subject to human error. Although
variable in their applicability, empirical models offer another avenue for monitoring [13].
An integrated framework combining multiple techniques is advocated for comprehensive
and effective management [14].

Advanced remote sensing methodologies such as aerial photography, satellite imaging,
and light detection and ranging (LiDAR) show potential in identifying BW [15]. Widely
recognized spectral indices such as the normalized difference vegetation index (NDVI) and
the normalized difference red edge index (NDRE) are pivotal in this domain, exploiting
the reflectance attributes inherent to diverse vegetation classes [16]. Furthermore, object-
oriented image analysis constitutes another robust strategy to delineate and spatially
represent beach zones within the remotely sensed data [17].

According to Yao et al. [18], in many instances, unmanned aerial vehicle (UAV) results
outperformed satellite-based techniques. A study by Pan et al. [15] demonstrated that
RGB aerial imagery captured with UAVs could be segmented with up to 75% accuracy
using machine learning algorithms such as K-nearest neighbor, support vector machine,
and random forests. A subsequent study by the same authors employed a camera trap for
the continuous monitoring of detached macrophytes deposited along shorelines, offering
an efficient and pragmatic method for tracking ecological dynamics [19]. Concurrently,
Karstens et al. [20] utilized supervised machine learning methods to map and segment
images acquired with UAVs to predict the locations of BW accumulation. Despite these
advancements, the studies mentioned limitations, particularly in the number of images
utilized for both segmentation and validation, and an imbalanced sample size of classes.
While these methods showed promise in terms of their transferability to other areas, they
still require additional real-world applications for comprehensive evaluation.

The efficacy of convolutional neural networks (CNNs) in segmenting remote sensing
data is contingent on multiple variables, such as the nature and volume of image data.
Several limitations to mapping BW should be considered when interpreting the segmen-
tation results. One limitation is the availability and quality of the remote sensing data,
which may affect the accuracy and resolution of the BW segmentation. Equally significant
is the choice of the CNN model and the accompanying image processing techniques; these
parameters directly impact the reliability and accuracy of the results. While the CNN model
and image processing techniques are central to achieving high accuracy, the object-specific
and environmental variables cannot be overlooked, as they may significantly affect the
results’ applicability across different locations and times; therefore, a careful selection and
optimization of data composition for training and ongoing monitoring are essential for
achieving reliable and generalizable outcomes [21]. Research by Lu et al. [22] demonstrated
that multispectral images, particularly those with five bands (blue, green, red, red edge,
and NIR), yielded accuracy levels comparable to hyperspectral images for vegetation map-
ping. Concurrently, a study by Wang et al. [23] enhanced landslide detection efficiency by
integrating NDVI and near-infrared spectroscopy features, thereby augmenting four-band
pre- and post-landslide images to create nine-band composite images.

In the field of remote sensing, digital surface models (DSMs) have shown their utility
in complex terrain mapping and analysis, specifically in the context of BW identification
and monitoring. For example, Tomasello et al. [24] examined the utility of UAVs for both
the volume estimation and segmentation of BW through machine learning techniques, and
endorsed this approach for future monitoring initiatives. Moreover, this height information
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can be integrated with multispectral imagery captured by UAVs to increase the feature set
for the CNN models, thereby enhancing segmentation accuracy for BW mapping.

This study aims to evaluate the U-net model’s performance when using six distinct
combinations of spectral and height data, to assess the BW area using multispectral imagery
from UAV. Additionally, the study aims to compare the performance of this model across
different areas of interest (AOIs), by proving the transferability of the model. This research
utilizes an extensive dataset, comprising over 150 multispectral 5000-pixel square image
tiles. We tested whether the U-Net model’s performance in distinguishing BW will not
significantly differ across AOIs, thereby demonstrating the model’s transferability. We
hypothesize that incorporating all available data (multispectral and height) would improve
the U-Net model’s performance for BW area detection. Also, we tested if the inclusion of
height data would have a measurable impact on the final results, contributing to a more
comprehensive representation (i.e., volume) of the BW. This study will contribute towards
creating a workflow that would not require high-end computing power for CNNs and can
facilitate fast, accurate BW estimation without the need for many on-site visits.

2. Materials and Methods
2.1. Study Area

The study area is located on the exposed coast of the southeastern Baltic Sea (Figure 1).
This region is subject to a wind fetch exceeding 200 km, and experiences average wave
heights of ~2 m. However, during extreme storm events, wave heights can reach up to
6 m [25]. Four areas of interest (AOIs) were selected along the Lithuanian coastline for
monitoring over a year from December 2020 to January 2022. These AOIs represent the four
most visited and easily accessible beaches on the continental part of Lithuania. Distinct
features, including the proximity to urban areas, the presence of shipping and tourism,
dunes, and other coastal features, characterize each of these AOIs (Table 1).

Specifically, Melnrage is located in an area intensively used for shipping and is also
close to Klaipeda—the largest city in the western Lithuanian region. Karkle beach is
distinguished by the presence of boulders, favorable for the growth of algae, and is far from
urban areas, surrounded by many trees; it is the narrowest of the four researched beaches
with around 11 m in width [26]. Palanga beach, a popular tourist destination during the
summer season, is often cleaned by the municipality, removing larger litter from the sand
as well as BW. Sventoji, featuring a fishery port and a popular tourist destination, has the
widest sandy beach of all AOIs, measuring around 107 m. All studied beaches have sand
dunes, with Karkle beach also featuring clay cliffs. The total length of the beaches in the
study area was approximately 39 km, with all coasts exposed to the Baltic Sea.
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Table 1. Description of AOIs according to different attributes.

Attribute Melnrage Karkle Palanga Sventoji

Proximity to urban area Close to the port city Far from urban areas Close to resort city Close to resort city

Beach cleaning No No Frequently Frequently

Coastal features Sand dunes Sand dunes, boulders,
and clay cliffs Sand dunes Sand dunes

Reefs (hard substrate
overgrown by
macroalgae)

Breakwater Natural reefs Natural reefs, groyne,
and scaffoldings of pier Scaffoldings of pier

Beach width by
Jarmalavičius et al. [26] ±45 m ±11 m ±76 m ±107 m

The BW on the Lithuanian Baltic coast is primarily composed (85% of the total relative
BW biomass) of perennial red algae (mainly Furcellaria lumbricalis and Vertebrata fucoides)
while filamentous green algae (mainly Cladophora glomerata, C. rupestris) and brown algae
(mainly Fucus vesiculosus and Sphacelaria arctica), respectively, comprise 14% and 1% of
the total relative BW biomass [27]. Red algae species dominate on stony bottoms within
depths of 3–16 m, while filamentous green algae densely cover stones in shallower depths
(<6 m). Filamentous brown algae such as Sphacelaria arctica usually cover hard substrate
in deeper parts (>9 m), while overgrowths of Pylaiella/Ectocarpus sp. can be found on
natural and artificial hard substrates (boulders, piers, scaffoldings) at depths of 1–5 m [28].
Stands of Fucus vesiculosus have not been recorded on the hard bottom habitats along
the south-eastern Baltic Sea coast, suggesting its transport from other more sheltered
coastal areas.

2.2. UAV-Based Remote Sensing of BW

A DJI Inspire 2 multirotor UAV equipped with a MicaSense RedEdge-MX multispec-
tral (MicaSense Inc., Seattle, WA, USA) camera was used to acquire the images. The
RedEdge-MX camera has 5 bands: Blue (475 nm ± 16 nm), Green (560 nm ± 13 nm),
Red (668 nm ± 8 nm), Red edge (717 nm ± 6 nm), and Near-infrared (842 nm ± 28 nm),
with 1.2 MP each, and a 47.2◦ horizontal and 34.4◦ vertical field of view (micasense.com
accessed on 30 October 2023). The RedEdge-MX, with its higher sensitivity (compared to
conventional RGB cameras) due to 16-bit image capture, was used for U-Net models. The
RedEdge-MX also has additional bands and a global shutter that reduces the risk of blurred
images. In addition to multispectral mosaics, RGB mosaics were acquired solely for BW
heights, using Zenmuse X5S (DJI, Shenzhen, Guangdong, China) camera (see Section 2.4).

Flights were conducted approximately every 10 days at locations where BW was
present and under suitable weather conditions to ensure the quality of the data collected:
wind gust speeds of less than 10 m/s, no precipitation, and temperatures above 0 ◦C (lower
temperatures could shorten flight times due to battery performance limitations). If these
conditions were not met, the nearest suitable day was chosen for the flight. A flight time
was typically scheduled just after sunrise (between 6 a.m. and 10 a.m. local time) to reduce
sun glint effects on the water and to minimize the presence of people on the beach, as flights
must comply with European regulations prohibiting flying over crowds. The PIX4Dcapture
app was used to plan the flights, with a flight height of 60 m. An additional buffer transect
was also added to the flight plan to reduce distortions in the center of the final mosaics.

The multispectral camera images had a ground sampling distance (GSD) of ~3.5 cm
per pixel, while RGB camera images had a GSD of approximately 1.5 cm per pixel. The
mosaics ranged from 0.20 to 1.70 km of beach length, depending on the size of the BW.
For U-Net training, 29 multispectral images were mosaiced and partitioned into 163 tiles
(Figure 2) of size 5000 × 5000. Out of 75 total flight missions, multispectral images consisted
of 7 in Melnrage, 4 in Karkle, 3 in Palanga, and 15 in Sventoji, while the rest were RGB
images (see Section 2.4).
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Figure 2. Processing workflow for UAV images. Arrows represent image processing from one stage to
another. Green squares represent the finished results. Processing workflow for UAV images, including
the data augmentation step employing rotations, flips, and other transformations to mitigate spatial
location bias and enhance model robustness (see Section 2.3.2).

The PIX4Dmapper 4.6.4 software was used to process the UAV images both from
Zenmuse X5S and RedEdge-MX. This software was chosen for its ability to create high-
quality image mosaics and generate digital surface models (DSMs) and digital terrain
models (DTMs), which are used for calculating the height of BW (see Section 2.4). The
mosaics were georeferenced to a Lithuanian orthophoto map with a 0.5 m spatial resolution
using QGIS georeferencing tools. At least three ground control points were chosen each
time during the georeferencing process, selecting known objects that do not change location,
ideally situated in the corners of the final UAV orthophoto.

2.3. Machine Learning Methods
2.3.1. Labeling

The multispectral images were mosaiced into three band image files for visual labeling,
using the green, blue, and near-infrared bands. The final product of the labeling process is
a TIFF file with each pixel assigned to one of five classes: 0 for BW, 1 for potential beach
wrack (that is still underwater), 2 for water, 3 for sand, and 4 for other objects (such as
buildings, bushes, trees, wooden paths, etc.). It is worth noting that the image background,
with a value of Nan, had a large number of pixels in all images, and these were labeled as
“other”. The labeled images were then opened in ImageJ and exported as TIFF files. Classes
were masked by experts, with the main goal of marking the areas of BW accumulations. In
some cases, the labeling was done roughly, where BW was spread out in many pieces at a
small scale (Figure 3).
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Figure 3. Example of manual labeling and its rough mask of BW in some areas at a pixel level, where
(a) is a single red band with color pallet and (b) are the labeled areas of the same image. X and y
coordinates show the locations of pixels (256 × 256) equal to around 8 m2.

The accurate labeling of the mosaic tiles allows the U-Net CNN model to distinguish
BW from other classes in the scene, such as sand, water, or other objects. It provides
data against which the model’s predictions are evaluated, enabling the assessment of
its effectiveness in BW identification and quantification. Labeling was performed on
orthomosaic tiles with a maximum size of 5000 by 5000 using the “Labkit” [29] plugin
in ImageJ FIJI. This plugin uses traditional supervised machine learning to assist with
labeling using given samples, which were manually reviewed, and any incorrect labels were
corrected by an expert. The near-infrared band was particularly useful in distinguishing
between small rocks and BW, which can be challenging to differentiate in RGB images, as
BW consists of algae that have chlorophyll-a, which is more reflective in the near-infrared
band spectrum.

2.3.2. Data Pre-Processing

The model training was performed on a computer equipped with 32 GB RAM, an Intel
Core i7 8th gen (Intel Corporation, Santa Clara, CA, USA) CPU, and an NVIDIA GTX 1070
(NVIDIA Corporation, Santa Clara, CA, USA) GPU (8 GB vRAM). To accommodate the
memory constraints inherent to deep learning approaches, high-resolution tiles were parti-
tioned into smaller 256 × 256 pixel segments. These reduced dimensions were sufficient to
maintain the visibility of the objects relevant to the study’s context.

Out of 163 tiles generated from the partitioning, 17 were selected by expert judg-
ment for inclusion in the model training set (Table 2). The selection aimed to include at
least one tile from each date and AOI, to ensure a comprehensive representation of all
segmentation classes.

For basic image manipulation (merging, selecting bands, augmentation processes,
etc.), Python with GDAL 3.4.3 [30] library was used. Six different combinations from
multispectral data were used to train the final models to assess the impact of different
data types on the model’s performance. The combinations included the use of RGB
bands, RGB and heights, 5 bands, 5 bands and height, augmented, and the band ratio
indices merged into one TIFF, and will each be detailed later in this section to explain their
combination process.



Drones 2023, 7, 670 7 of 22

Table 2. The partitioning of training data for the U-Net CNN model. Images corresponding to each
AOI and date. Check marks (3) indicate tile of AOI and data and multiple check marks (33) show
that multiple tiles were used from the same date and AOI.

Date/AOI Melnrage Karkle Palanga Sventoji

25 August 2021 3 33

8 September 2021 3

15 September 2021 3 3

17 September 2021 33 3

22 September 2021 3 3

29 September 2021 3

1 October 2021 3

26 October 2021 3 3

4 March 2022 3

22 March 2022 3

The indices included the normalized vegetation index (NDVI) (1), the normalized dif-
ference water index (NDWI) (2), and the normalized difference red edge index (NDRE) (3):

NDVI =
NIR − Red
NIR + Red

(1)

NDWI =
Green − NIR
Green + NIR

(2)

NDRE =
NIR − Red edge
NIR + Red edge

(3)

where each remote sensing reflectance (Rrs) band is represented by a band name.
The choice of NDVI, NDWI, and NDRE over other indices was based on their specific

spectral sensitivities relevant to BW identification. NDVI leverages red and NIR spec-
tral bands, which are well established in vegetation studies, offer robust data on plant
health [31,32], and are directly relevant to BW mapping, as it mostly consists of macroalgae.
NDWI, which computes reflectance from the green and NIR spectral regions, helps distin-
guish water and land areas, and is useful in detecting potential underwater BW. NDWI is
important in delineating water features and is crucial for identifying submerged or partially
submerged vegetation [33,34]. However, NDWI may be impacted by shadows and surface
roughness, necessitating its use alongside other indices. Lastly, the NDRE index helps to
measure the amount of chlorophyll-a in the plants, and it can also be used for biomass
estimation [35], which is also related to BW and the amount of it.

Data augmentation was undertaken as an exploratory measure to investigate potential
spatial location bias related to class pixel locations within the dataset, rather than as a
strategy for genuine model improvement. It was implemented solely on a single dataset
that incorporated all spectral bands and the heights (see Section 2.4). Data augmentation
was implemented by manipulating images through specific transformations: random
rotations of images at defined angles (0◦, 90◦, 180◦, and 270◦), and horizontal and vertical
flips, each with an equal probability of 50%. This methodological approach ensures a
diverse dataset, enhancing the robustness of the subsequent analyses.

2.3.3. U-Net Semantic Segmentation

The U-Net architecture, introduced by Ronneberger et al. [36], was selected for this
study due to its precision in localization and its ability to effectively handle smaller datasets
for complex image segmentation tasks. The distinguishing attribute of CNNs lies in their
capacity to master spatial feature hierarchies, effected through the use of convolutional
strata that scrutinize the input image, consequently deploying filters to abstract features
across various scales. In this paper, a similar architecture (Figure 4) was used to the one
described in the original U-Net paper, with the addition of extra layers for the multispectral
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images and a reduced input image size. Also, padding and a dropout of 20% was used,
which is a regularization technique that involves randomly dropping a certain percentage of
the neurons in the model during training, which helps to prevent the model from becoming
too complex and overfitting the training data [37].
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Figure 4. U-Net architecture (modified from Ronneberger et al. [36]).

The training itself was conducted in Python 3.9 using Keras version 2.3.1 [38] for
model construction, with custom operations implemented in TensorFlow 2.1.0 [39]. The
U-Net model was trained using a batch size of 16 patches (i.e., in each iteration of an
epoch, 16 images were processed together), as it was the maximum limit for the computing
power used in this study. The training was set to run for 100 epochs, but an early stopping
mechanism was implemented to prevent overfitting. The training was halted if the model’s
performance did not improve after 6 consecutive epochs. This approach ensured that
the model was not overtrained on the data, which could lead to a poor generalization of
the testing data. The training models showed that all datasets around the first 20 epochs’
results improved the most (Figure 5) for validation and training loss. After the 20th epoch,
training and validation loss still decreased, but at a slower pace, while validation loss did
not improve near epoch 40.
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training was all 5 bands and height.

The workflow for image segmentation began by assigning labeled TIFFs to the final
pre-processed images. All classes were given equal weight, and the loss function was
defined as the combination of dice loss and focal loss. The dice loss measure [40] quan-
tifies the overlap between classes on a scale from 0 to 1, with higher values indicating
better performance. The focal loss [41] helps to address the issue of unbalanced class
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distributions by decreasing the contribution of well-trained pixels and focusing on poorly
trained ones.

To eliminate the edge effect when patching images, the Smoothly-Blend-Image-Patches [42]
package was used, which employs a U-Net for image segmentation and blends predicted
patches smoothly through 2D interpolation between overlapping patches.

2.4. BW Heights

In addition to multispectral mosaics, 16 RGB mosaics were acquired for assessment of
BW heights in Melnrage, 11 in Karkle, 6 in Palanga, and 13 in Sventoji using the Zenmuse
X5S RGB camera that has an RGB lens with 20.8 MP and a 72◦ field of view (dji.com
accessed on 30 October 2023).

To validate the UAV-derived height of BW deposits, a total of 16 in situ sampling
missions were carried out concurrently with UAV flights (Table 3). The height of BW
deposits was initially assessed using a plastic ruler at the study site. To ensure accuracy,
the ruler was placed gently on the deposits to prevent penetration into the underlying
sand, and was aligned vertically to measure at around every 10 m of BW, in a transect
line of three points: the start of the BW (near the water), middle point selected by expert
judgement, and the end of the BW (furthest from the water). They comprised a total of
177 points within each site, covering areas of BW deposits and reference areas without BW.

Table 3. In situ sampling of BW on the coast and in the water at four study sites from December
2020 to January 2022. Bolded dates indicated when the RGB camera was used and not bolded when
the multispectral camera was used. The number of height measurements per sampling is provided
in brackets.

Melnrage Karkle Palanga Sventoji

2021.04.20 (3) 220.12.05 (1) 2020.12.05 (2) 2020.12.05 (4)
2021.06.02 (20) 2021.07.27 (3) 2021.07.29 (3) 2021.07.07 (10)
2021.06.18 (11) 2021.09.17 (23) 2021.08.27 (3)
2021.08.10 (8) 2021.09.17 (58)
2021.09.16 (25)
2022.01.24 (3)

The estimation of the BW height from the UAV images involved subtracting the DSM
from the DTM using GDAL.

2.5. Performance Metrics

To validate the model’s performance during training, the data were randomly split
into two sets, 80% for training and 20% for validation, according to common practice to
avoid overfitting and test the model’s ability to generalize. This split ensured that the model
was trained on a large enough dataset to learn the necessary features, while also having a
separate set of data to test its performance [43]. A separate validation set, consisting of all
tiles, was used to assess the model’s ability to generalize to new data and ensure that it was
not overfitting to the training data.

Several metrics were employed to assess the model’s performance: precision, recall,
F1 score, and Intersection over Union (IoU). Precision quantifies the proportion of correctly
predicted positive values to the total predicted positives, while recall measures the fraction
of correctly predicted positive values to the total actual positive values. The F1 score
harmoniously combines precision and recall, providing a balanced performance metric [44].
The IoU, also known as the Jaccard index, offers a comprehensive assessment of the model’s
performance, going beyond pixel accuracy to measure the similarity between the predicted
and ground truth labels [45]. In general, models trained on specific datasets will have a
higher IoU than models trained to be more general, but the latter will have a wider range
of applicability [46]. The effectiveness of the selected models was evaluated on testing data
by comparing the IoU metric. The IoU was also compared for each AOI and each class. No
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single IoU threshold fits all use cases; however, it is common practice to use a threshold
of 0.5 for accurate segmentation [47]. Therefore, IoU values above 0.7 were considered as
high, from 0.5 to 0.7 as moderate, and below 0.5 as low.

In addition, the IoU between labeled and segmented BW for tiles in the whole mosaic
BW areas were calculated and compared with each other as well. Furthermore, for the
comparison of IoU between AOIs, the normality and homogeneity of variance assumptions
were tested, using the Shapiro–Wilk and Levene’s tests, respectively. Given the violations
of normality and homogeneity of variance assumptions, the Dunn’s test post hoc pairwise
comparisons of IoU between the AOIs was utilized. The p-values were adjusted using
the Bonferroni correction to control for multiple comparisons. The comparison between
averages was performed with a one-way ANOVA test. All statistical analyses were per-
formed using numpy [48], scipy [49], statsmodels [50], and sklearn [51] Python packages,
at a significance level of 0.05.

In situ measured heights and heights calculated from UAV were assessed for corre-
spondence using Pearson’s correlation coefficient (r). The precision of these measurements
was further quantified by the root mean square error (RMSE) and mean absolute error
(MAE). This was also tested for separate AOIs.

3. Results
3.1. Performance of Various Input Training Data

In training the U-Net model’s performance across various data combinations, the
“band ratio indices” combination consistently showcased the best results (Table 4), espe-
cially for the segmentation of BW. With this combination, the model achieved an F1 score
of 0.86 and an IoU of 0.75 for BW. Notably, the “5 bands” combination also delivered good
results, particularly for potential BW, with an F1 score of 0.57 and an IoU of 0.40. However,
when examining the potential BW class, all combinations presented relatively lower IoU
scores. The “augmented data” combination displayed the least promising outcomes across
the metrics.

Table 4. IoU, precision, recall, and F1 scores for different classes resulting from a convolutional
neural network U-Net model’s training set, on various data combinations. The columns in the table
represent different datasets, while the rows contain the performance scores for each class. These
results were obtained after 100 epochs of training. Best performing values for average, BW, and
potential BW are marked with the * symbol.

Dataset Type 5 Bands and
Height 5 Bands RGB RGB and

Height
Augmented

Data
Band Ratio

Indices

IoU avg. 0.67 0.71 * 0.69 0.69 0.66 0.67
Beach wrack 0.72 0.73 0.71 0.66 0.67 0.75 *

Potential beach wrack 0.35 0.4 0.35 0.38 0.3 0.39 *
Water 0.68 0.73 0.69 0.73 0.7 0.65
Sand 0.75 0.81 0.76 0.78 0.74 0.71

Other 0.86 0.89 0.93 0.92 0.88 0.86
F1 score avg. 0.87 0.9 * 0.88 0.89 0.87 0.86

Beach wrack 0.83 0.84 0.83 0.79 0.8 0.86 *
Potential beach wrack 0.52 0.57 * 0.51 0.55 0.46 0.56

Water 0.81 0.85 0.82 0.84 0.83 0.79
Sand 0.86 0.89 0.86 0.88 0.85 0.83

Other 0.94 0.96 0.97 0.97 0.96 0.94
Precision avg. 0.88 0.90 * 0.89 0.9 * 0.88 0.87

Beach wrack 0.76 0.87 0.87 0.89 * 0.83 0.79
Potential beach wrack 0.51 0.54 0.5 0.48 0.37 0.8 *

Water 0.77 0.83 0.79 0.82 0.79 0.77
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Table 4. Cont.

Dataset Type 5 Bands and
Height 5 Bands RGB RGB and

Height
Augmented

Data
Band Ratio

Indices

Sand 0.87 0.89 0.88 0.91 0.89 0.79
Other 0.99 0.98 0.98 0.97 0.98 0.98

Recall avg. 0.87 0.89 * 0.88 0.89 * 0.87 0.86
Beach wrack 0.93 0.81 0.79 0.72 0.77 0.94 *

Potential beach wrack 0.53 0.6 0.53 0.66 * 0.58 0.43
Water 0.86 0.87 0.86 0.86 0.87 0.8
Sand 0.85 0.9 0.84 0.85 0.82 0.88

Other 0.9 0.95 0.97 0.97 0.93 0.91

The post hoc test revealed that none of the pairwise comparisons were statistically
significant (p ≥ 0.74), suggesting that different data combinations did not significantly
impact the IoU scores.

The “5 bands” combination yielded the best results for the sand and water classes,
achieving the highest F1 scores and IoU values among the combinations. In contrast, the
“RGB” combination was the most effective for the other class, showcasing exemplary F1
scores and IoU values. The precision and recall rates for each of these optimal combinations
were also notably high, confirming the findings.

3.2. Validation of Trained U-Net Model for Testing Data

In the segmentation of BW, the combination that used “RGB” bands yielded the
best performance with an IoU of 0.42 (Figure 6) and further demonstrated an F1 score of
0.54. Following closely, the combination utilizing “augmented data” had an IoU of 0.41,
supported by an F1 score of 0.55. The “5 bands and height” combination also showcased
notable performance with an IoU of 0.39 and an F1 score of 0.54. Conversely to training
data, for validation the “band ratio indices” combination yielded the lowest IoU of 0.37 for
BW classification, alongside an F1 score of 0.50.
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by individual points.
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The “5 bands and height” combination emerged as the most effective for potential BW
segmentation, recording an IoU of 0.20 and 0.38 for the F1 score. The “RGB” and “5 bands”
combinations followed closely, with an IoU of 0.20. While the “RGB” combination achieved
an F1 score of 0.46, the “5 bands” combination had an F1 score of 0.38. The “augmented
data” combination exhibited the least efficacy in segmenting potential BW, with the lowest
IoU of 0.16 and accompanying F1 score of 0.34.

Regarding the additional classes, in the water class, the “RGB” combination emerged
superior with an IoU of 0.64 and an F1 score of 0.76. In contrast, the “band ratio indices”
combination exhibited the lowest performance, securing an IoU of 0.45 and an F1 score of
0.58. In the sand class, the “RGB” combination outperformed the rest with an IoU of 0.70
and 0.82 for the F1 score, while the “band ratio indices” combination trailed with an IoU of
0.48, alongside an F1 score of 0.61. For the class of other, the “RGB and height” combination
achieved the highest IoU of 0.95, supported by an F1 score of 0.97, whereas the “5 bands
and height” combination had the lowest IoU of 0.87, with an F1 score of 0.91.

For the overall average performance of all combinations, there was no significant
difference between them (f = 0.10, p > 0.05). The “5 bands” combination achieved an F1
score and IoU of 0.88 and 0.54, respectively. When height was incorporated, the “5 bands
and height” combination demonstrated a slight dip in performance, with average metrics
for the F1 score at 0.85 and an IoU of 0.51. The “augmented data” combination showcased
metrics closely resembling the “5 bands” combination, with 0.88 for F1 score and 0.54 for
IoU. A noticeable decrease in average performance was observed with the “band ratio
indices” combination, yielding 0.84 and 0.47 for the F1 score and IoU, respectively. The
“RGB” combination recorded the highest average metrics among all combinations: F1 score
of 0.92 and IoU of 0.58. Lastly, the “RGB and height” combination mirrored the “RGB”
combination in precision and recall, but displayed a slightly lower average F1 score and
IoU of 0.92 and 0.57, respectively.

Comparing the segmentation results of BW between AOIs, Dunn’s post hoc tests for
IoU showed significant differences between Karkle and the rest of the AOIs (p < 0.05),
while no significant differences (p > 0.05) were observed between Melnrage, Palanga, and
Sventoji (Figure 7).

Specifically, in Sventoji, the “5 bands and height” combination yielded the highest IoU
at 0.48 ± 0.26, while in Palanga, the “RGB and height” combination was most effective with
an IoU of 0.46 ± 0.22. For the class of potential BW, the “RGB and height” combination
in Karkle registered an IoU of (0.29 ± 0.22), and in Melnrage, the “RGB” combination
yielded (0.26 ± 0.19).
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For the water class, the “RGB” combination in Melnrage produced an IoU of (0.63 ± 0.23),
followed by the “RGB and height” combination in Karkle with (0.50 ± 0.19). In the sand
class, the “RGB and height” combination in Karkle led with an IoU of (0.65 ± 0.25), closely
followed by the “RGB” combination in Melnrage, having an IoU of 0.68 ± 0.15. Lastly, for
the other class, the “RGB and height” combination in Karkle achieved the highest IoU at
(0.93 ± 0.06), while Melnrage scored (0.94 ± 0.09) using the “RGB” combination.

3.3. Heights and Areas of BW

The labeled areas of BW were from approximately 235.55 m2 to 11193.33 m2, while
the area of BW derived from the U-Net model using the “RGB” combination exhibited a
wider range, from 8.83 m2 to 3710.01 m2 (Figure 8). While the relationship was generally
linear between the labeled BW areas and areas retrieved using the U-Net model with the
“RGB” combination, there was a relatively large average with standard deviation, namely,
a labeled area of 1887.94 ± 2198.93 m2, corresponding to the area of 1217.80 ± 939.90 m2

derived from the U-Net model using the “RGB” combination.
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Figure 8. The areas of BW coverage in the investigated AOIs retrieved from UAV after the application
of the U-Net model with the “RGB” combination and labeled BW areas.

Palanga had the best agreement comparing labeled to RGB areas, with an aver-
age of 39.09 ± 39.43 m2. For Karkle, all areas were overestimated with an average of
−572.05 ± 427.17 m2. As for Sventoji, it had the largest average, 3005.83 ± 2603.98 m2 of
BW area, and the differences were also the largest, 1295.03 ± 2118.10 m2. In Melnrage, most
of the values were underestimated except for one on 8 September 2021, and the average
overestimation was 315.66 ± 238.01 m2.

While comparing labeled to segmented areas of BW, the “RGB” combination exhibited
the highest correlation coefficient (r = 0.87) among all tested approaches for agreement
with the area, followed closely by the “RGB and heights” combination with an r of 0.86.
Additionally, both these models had the lowest MAE and RMSE values, 562.27 and 783.59
for “RGB”, and 658.28 and 897.08 for “RGB and height”, respectively.

Other data combinations (Table 5) had lower correlation coefficients ranging from
0.46 for “5 bands” to 0.73 for “augmented data” combinations. The MAE and RMSE were
also worst for “5 bands” at 825.54 and 1377.34, respectively, and for the “augmented data”
combination, that was the next best combination after “RGB” and “RGB and height”, with
a MAE of 575.91 and an RMSE of 902.87.

The average calculated height of BW (0.46 ± 0.40 m) from UAV overestimated the in
situ measured height by five-fold (0.09 ± 0.11 m) from a sample size of 177 (Figure 9). The
maximum BW height calculated was 2.37 m, while the maximum in situ measurement was
only 0.52 m, with a standard deviation of calculated height—0.03 and in situ—0.01 m. The
correlation between modeled and in situ heights was 0.44 (p < 0.05).
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Table 5. Statistics between labeled and segmented areas of BW. Pearson’s correlation coefficient—r,
MAE—mean absolute error, RMSE—root mean square error.

Data Combinations r MAE RMSE

5 bands and height area 0.48 807.99 1512.91
Augmented data area 0.73 575.91 902.87
Band ratio indices area 0.68 648.42 1097.48
5 bands area 0.46 825.54 1377.34
RGB area 0.87 562.27 783.59
RGB and height area 0.86 658.28 897.08

From the example of the visual representation of all AOIs (Figure 10), it is evident
that the model’s performance is adequate in accurately classifying the majority of the BW.
In these examples, Melnrage is overestimated by 455.10 m2, Karkle underestimated by
251.59 m2, Palanga overestimated by 56.75 m2, and Sventoji overestimated by 934.70 m2.
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This precision captures the expected locations and distribution patterns of all classes,
confirming the model’s robustness. Specific regions, such as Palanga and Melnrage, present
minor challenges, with a few discrepancies in detecting the potential BW. However, these
instances are more the exception than the norm. The sand and water classes have the best
visual results with few minor variations. Similarly, the class of other is also excellent, with
just a few objects, mainly in Palanga, misclassified as sand.
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Figure 10. Examples of BW spatial distribution in each AOI after UAV image processing with the
U-Net model using the “RGB” combination. RGB (left), labeled BW (middle), and modeled BW
(right) maps are provided for (a) 16 September 2021 in Melnrage, (b) 17 September 2021 in Karkle,
(c) 15 September 2021 in Palanga, and (d) 1 October 2021 in Sventoji. The colors of BW in Sventoji
and Karkle are different because they are combinations of green, blue, and NIR bands, making them
easier to distinguish visually. The different colors near and above the water are noise (see Section 4.2).
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4. Discussion
4.1. Assessment of U-Net Model Performance in BW Segmentation

The U-Net CNN model exhibited commendable results in BW segmentation, particu-
larly when utilizing the “RGB” combination. The segmentation accuracy not only allowed
the delineation of BW but also enabled the estimation of its total area across the selected
AOIs, ranging from 8.83 m2 to 3710.01 m2. This capability to accurately segment and
subsequently estimate the BW area reaffirms the efficiency of U-Net models in semantic
segmentation tasks, especially for high-resolution remote sensing images [52].

To the best of the authors’ knowledge, only two studies [15,20] were carried out in the
context of UAV monitoring of BW. Both of them performed object-based image analysis
(OBIA) and achieved relatively high accuracy (producer accuracy > 80%) in classification.
In contrast, our research primarily employed the IoU metric, which is suggested as a
superior method, especially when combined with other measures like the F1 score. It is
also more reliable as it takes into account the whole area rather than a random sample
of points or polygons [53], achieving more reliable ML model performance evaluation.
However, the labeling process is time-consuming to achieve metrics that include an entire
image, especially for large datasets, as in this study (29 mosaiced orthophotos), but after
the first training, the U-Net model can be run on new images and instead of labeling
all images, the results can just be adjusted as labels for the new round of training, this
way reducing the labeling time and overtime, and improving the model’s accuracy and
generalizability. While recognizing that the absence of producer accuracy calculations
precludes a direct statistical comparison with the referenced OBIA studies, it is suggested
that future research should incorporate producer accuracy or equivalent measures to enable
such direct comparisons.

Some of the images captured during sunrise featured substantial shadow coverage
on the beach due to the westward orientation of the AOIs. Such shadows may influence
the CNN model’s segmentation precision; however, investigating shadow impacts would
entail a controlled experimental design that would distract from the study’s core objectives.
Future research should factor sun position in to minimize shadow occurrence during UAV
imagery collection for BW segmentation. External elements like cloud cover and sun
angle significantly impact UAV imagery quality [54]. Moreover, accurately pinpointing
the waterline in UAV imagery remains a persistent challenge due to the sea surface’s
ever-changing nature, as noted by Long et al. [55] and Brouwer et al. [56].

The training duration can be extensive, especially with large datasets and intricate
models. In our scenario, with 17 tiles measuring 5000 × 5000 each and more than four
encoder layers, the “5 bands and height” took roughly 4 h for 100 epochs. Nonetheless,
predicting an individual image tile only takes about 5 min, which is important for manage-
ment tasks that need to estimate quickly whether the amount of BW should be removed.
The processing time is also essential, especially as monitoring scales increase. One way to
improve it could be the employment of architectures that merge an anchor-free detector
with a region-based CNN, which has demonstrated superior precision and faster inference
speeds, which is advantageous for smaller datasets [57].

4.2. Model Transferability

In general, the IoU values for BW were consistently moderate using all combinations,
suggesting that the model’s generalizability and transferability in time are possible, con-
sidering that the dataset encompassed images captured during varied seasons and under
diverse weather conditions, and ensuring a comprehensive representation, contrary to
previously mentioned studies. Such results resonate with the broader understanding that
UAVs are potent tools for monitoring diverse beach aspects, from mixed sand and gravel
to litter [58,59].

The transferability to unseen AOIs could be complicated, as good results were achieved
for three AOIs (Sventoji, Melnrage, and Palanga) with relatively homogenous surfaces, char-
acterized by sedimentological uniformity with minimally varying geomorphic attributes
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and objects, ensuring a predictable substrate across the examined terrain. Differently from
other AOIs, surface conditions were heterogenous in Karkle, which could explain in the
low performance of combinations that included heights (BW IoU = 0.37) compared to other
data combinations (BW IoU from 0.39 to 0.56), suggesting that heights acquired using the
methods in this study should be used carefully. Additionally, the diminished IoU results
after incorporating height in both RGB and multispectral data indicate potential errors in
the derived heights, or that an overload of layers might be confounding the model; this
aligns with the observations of Pichon et al. [60] and Gruszczyński et al. [61]. The accuracy
of height could be improved by taking images with oblique angles in addition to nadir,
increasing the information available for DSM calculations using structures from motion
algorithms [62].

Additionally, the “augmented data” combination did not exhibit a significant diver-
gence from the “5 bands and height“ combination. This observation suggests that the
model does not exhibit a bias towards the spatial localization of objects within the image.
Consequently, this reinforces the notion of the model’s transferability across varied scenar-
ios where objects and areas may be positioned differently within the AOI, indicating the
model’s adaptability in handling them effectively.

4.3. Data Combination Influence on the Results

The model’s effectiveness varies with different data combinations and classes. Notably,
the “5 bands” combination had decent results for the potential BW segmentation, achieving
an F1 score of 0.57 and an IoU of 0.40. However, this was inconsistent across the classes of
sand, water, and other. The performance inconsistencies across data combinations, such as
the superior results of the “RGB” in the BW class but not universally, signal the need for
future exploration. While the IoU results for BW were anticipated to be the best with the
“5 bands and height” combination due to its comprehensive data, the outcomes were the
opposite (IoU = 0.38), and the “RGB” combination IoU was 0.42; however, the difference
between combinations was not significant. This suggests that for the segmentation of
chosen classes, simpler sensors (such as RGB cameras) could be employed as the accuracy
is not worse than with multispectral ones, and the training and prediction time for fewer
bands is also shorter. This finding contradicts other studies that found that for multispectral
combinations, segmentation accuracy is improved [63].

In this study, equal weights were used for different bands; however, a potential need
for different weight distributions in the initial U-Net model for various bands and classes
could improve the results of multispectral combination, as hinted by Amiri et al. [64] and
Matuszewski et al. [65]. Therefore, the “RGB” combination’s surprising efficacy further
stresses the need for model adjustments, such as the depth and complexity of CNN models.
Rao et al. [66] noted that deeper models can achieve higher detection accuracies but demand
more parameters and longer training and inference times.

Data pre-processing and augmentation are equally impactful on CNN performance.
As pointed out by Rodrigues et al. [67], CNNs generally fare better with non-pre-processed
images when trained from scratch. Thus, the pre-processing and augmentation approach
for various combinations could be responsible for the disparities observed across different
classes. Moreover, selecting activation functions and optimization methods can also lead to
differentiated results. For example, S. Dubey et al. [68] observed that the diffGrad optimizer
excels when training CNNs with varied activation functions.

To find the relative importance of each spectral band in the U-Net model, it is sug-
gested to perform a feature ablation analysis, where bands are individually omitted to
observe the effect on segmentation accuracy [69]. Additionally, feature permutation im-
portance could be employed, shuffling band values to quantify their impact on model
performance [70]. Furthermore, Grad-CAM could provide insight into which bands most
influence the predictions of model through gradient-based importance mapping [71]. These
methodologies could enable a precise understanding of each band’s role in the model’s
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functionality. In this study, these techniques were not employed, but it would be beneficial
for future work to test these techniques to optimize the model’s spectral band selection.

Exploring the U-Net model’s synergy with other technologies or data sources could
be beneficial. Thomazella et al. [72] documented the efficacy of drone imagery merged
with CNNs for environmental monitoring. Given the promising results of the “RGB” and
“RGB and height” combinations, integrating them with resources like satellite images could
create a more comprehensive system for coastal environment monitoring.

4.4. Class Influence on the Results

The model’s challenges become particularly discernible in its capacity to detect poten-
tial BW. The complexities in detecting this class are largely due to the inherent complexities
of aquatic environments and underwater light behavior. A primary challenge stems from
how water impacts light absorption and reflection [73], with optical complexities in water
bodies rendering some remote sensing algorithms less effective. Light shifting at varying
water depths can modify the spectral characteristics of reflected light, affecting the model’s
capability to accurately segment potential BW. Furthermore, the sun’s glint can overshadow
the upwelled water-leaving radiance during elevated solar angles. As Gagliardini et al. [74]
noted, this leads to noise in the image information. Overstreet and Legleiter [75] further
demonstrated that sun glint might induce over-corrections in shallow areas of water in
the imagery, producing unreliable data. Factors such as wave activity and sea surface
roughness add complexity to the water’s optical properties, affecting the quality of remote
sensing reflectance, as described by Zhang et al. [76]. Improving the segmentation of
potential BW could be achieved by adding further pre-processing steps that would correct
for water depth [77] and the sun glint effect [78,79].

The limitation of potential BW detection in shallow coastal waters holds significant
implications. The deposition of potential BW, especially in vast amounts under intense
heat, requires its prompt removal to uphold the beach’s ecological equilibrium, smell, and
visual appeal. Overlooked potential BW might lead to significant underestimations of BW
deposition on beaches, thereby affecting beach management.

This study recommends prioritizing the use of “RGB” data configurations for U-
Net CNN applications in BW segmentation due to their moderate accuracy and lower
computational demand. It is recommended to re-evaluate the inclusion of height data from
UAVs, as it did not significantly improve and sometimes even reduced model precision.
Beach managers should consider these findings to optimize BW monitoring workflows,
ensuring that methods remain cost-effective and suitable for various beach types without
the need for high-end computing resources. This approach will help in scaling up coastal
monitoring efforts while maintaining efficiency and accuracy.

While this study has laid important groundwork in applying U-Net CNN models for
BW segmentation using UAV imagery combinations, there remain areas for enhancement.
Future studies could benefit from incorporating a wider range of environmental conditions
and beach morphologies to strengthen the model’s generalizability. Moreover, integrating
advanced data pre-processing techniques to reduce the effects of variable water reflectance
could further refine segmentation accuracy. Additionally, employing a systematic ap-
proach to evaluate the impact of individual spectral bands on the model’s performance
could provide deeper insights into the model’s interpretability and guide more efficient
feature selection.

5. Conclusions

The U-Net model showed promising results using a model trained only on the “RGB”
combination for validation data, where the accuracy of BW segmentation was moderate
(IoU = 0.42 and F1 score = 0.54), while a relatively better accuracy (F1 score = 0.92 and
IoU = 0.59) was achieved for the overall model (the segmentation of all classes). The
achieved segmentation accuracy enabled a consistent estimation of BW across the studied
AOIs, and BW was found to be in a range of 8.83 m2 to 3710.01 m2. However, the model



Drones 2023, 7, 670 19 of 22

underperformed in the segmentation of potential BW, influenced by the inherent challenges
presented by variable water reflectance, which might be modulated by factors such as wave
patterns, turbidity, transparency, depth, and sun glint. The empirical evidence confirmed
a notable degree of transferability in the deployment of the U-Net model across other
locations with similar geomorphology of beaches (e.g., sandy or pebble beaches) to those
utilized in the training data.

Contrary to the initial hypothesis, incorporating all spectral bands did not improve the
model’s performance across all classes. Interestingly, the inclusion of height data, acquired
from UAV DSM that were only acquired using nadir-facing images, should be reconsidered
as the heights will not have accurate information.

Finally, this study underscores the utilization of U-Net CNNs for BW detection, demon-
strating that effective model training and analysis can be conducted without the reliance
on high-end computing resources, thereby allowing for more accessible and scalable appli-
cations in BW monitoring and management.
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