
Citation: Dong, Z.; Wu, Q.; Chen, L.

Reinforcement Learning-Based

Formation Pinning and Shape

Transformation for Swarms. Drones

2023, 7, 673. https://doi.org/

10.3390/drones7110673

Academic Editor: Oleg Yakimenko

Received: 9 October 2023

Revised: 6 November 2023

Accepted: 8 November 2023

Published: 13 November 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

drones

Article

Reinforcement Learning-Based Formation Pinning and Shape
Transformation for Swarms
Zhaoqi Dong 1,†, Qizhen Wu 2,† and Lei Chen 1,3,*

1 Advanced Research Institute of Multidisciplinary Sciences, Beijing Institute of Technology,
Beijing 100081, China; dongzhaoqi@bit.edu.cn

2 School of Automation Science and Electrical Engineering, Beihang University, Beijing 100191, China;
wuqzh7@buaa.edu.cn

3 Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing 314000, China
* Correspondence: bit_chen@bit.edu.cn
† These authors contributed equally to this work.

Abstract: Swarm models hold significant importance as they provide the collective behavior of
self-organized systems. Boids model is a fundamental framework for studying emergent behavior in
swarms systems. It addresses problems related to simulating the emergent behavior of autonomous
agents, such as alignment, cohesion, and repulsion, to imitate natural flocking movements. However,
traditional models of Boids often lack pinning and the adaptability to quickly adapt to the dynamic
environment. To address this limitation, we introduce reinforcement learning into the framework
of Boids to solve the problem of disorder and the lack of pinning. The aim of this approach is to
enable drone swarms to quickly and effectively adapt to dynamic external environments. We propose
a method based on the Q-learning network to improve the cohesion and repulsion parameters in
the Boids model to achieve continuous obstacle avoidance and maximize spatial coverage in the
simulation scenario. Additionally, we introduce a virtual leader to provide pinning and coordination
stability, reflecting the leadership and coordination seen in drone swarms. To validate the effectiveness
of this method, we demonstrate the model’s capabilities through empirical experiments with drone
swarms, and show the practicality of the RL-Boids framework.

Keywords: reinforcement learning; Boids model; virtual leader; obstacle avoidance; drone swarms

1. Introduction

In recent years, swarm intelligence emerges as a promising approach to solve com-
plex problems by harnessing the collective behavior of multiple autonomous agents [1–5].
Swarms consist of many relatively simple individuals interacting with each other and their
environment to achieve self-organized behavior and accomplish tasks collectively [6,7].
Formation adjustment in response to dynamic task requirements or environmental condi-
tions is crucial for maintaining efficiency and adaptability. Based on the Boids model [8],
Vicsek investigates the conditions for reaching an agreement on the direction of motion
of individuals in a swarm from a statistical mechanics perspective. He also proposes a
model that simulates and explains the swarming, transport, and phase transition in a
non-equilibrium system (Vicsek model) and finally implements a swarm of 30 UAVs in an
outdoor environment flight [9]. Reference [10] proposes a predictive model that describes
swarming based on the Boids model, which merges the local principles of the potential
field model into an objective function and optimizes these principles with knowledge of
the dynamics and environment of the agents.

One of the critical challenges in swarm systems is to optimize their size dynamically,
based on the environmental conditions and task requirements. Traditional approaches
to swarm transformation often rely on predefined rules or centralized control, limiting
their flexibility and adaptability. Moreover, reinforcement learning demonstrates its

Drones 2023, 7, 673. https://doi.org/10.3390/drones7110673 https://www.mdpi.com/journal/drones

https://doi.org/10.3390/drones7110673
https://doi.org/10.3390/drones7110673
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/drones
https://www.mdpi.com
https://orcid.org/0000-0002-1859-384X
https://doi.org/10.3390/drones7110673
https://www.mdpi.com/journal/drones
https://www.mdpi.com/article/10.3390/drones7110673?type=check_update&version=1

Drones 2023, 7, 673 2 of 16

power as an approach for training agents to make intelligent decisions in complex and
dynamic environments.

Reinforcement learning offers a promising avenue for addressing the challenge by
enabling swarm agents to learn and adapt their behaviors autonomously. Through interac-
tions with the environment, agents can acquire knowledge and refine their decision-making
processes based on feedback received as rewards or penalties. This iterative learning pro-
cess empowers the agents to navigate intricate scenarios, optimize their swarm size, and
efficiently fulfill given tasks.

There are three types in the academic community of reinforcement learning algorithms
based on dynamic programming: (1) Value iteration. Ref. [11] adopts Q-learning networks
to implement behavioral decision making in robots to improve the analysis and prediction
capabilities of agents. However, Q-learning networks can not solve the problem of discrete
actions in continuous states. Therefore, Ref. [12] proposes a framework for adaptive
formation control of multiple robots based on Deep Q-learning networks; (2) Policy iteration.
Policy iteration can solve the problem of continuous states and continuous actions. Ref. [13]
uses a robust policy gradient algorithm to optimize a fully decentralized sensor-level
collision avoidance policy; (3) The Actor–Critic algorithm. Due to the use of the Monte
Carlo method, the gradient estimation variance of the algorithm is large. Therefore, the
following reinforcement learning algorithm emerged. Ref. [14] develops a MAPPO-based
distributed formation and obstacle avoidance approach in which agents use only their
local and relative information to make motion decisions. Moreover, Ref. [15] uses a two-
stage training scheme of imitation learning and reinforcement learning to propose a fused
reward function to guide the agents. One fascinating application of RL is of simulating
collective behavior, where groups of autonomous agents interact to achieve coordinated
objectives [16–18].

In addition to reinforcement learning, we also introduce a virtual leader. The multi-
robot control often uses the virtual leader approach due to its high robustness [19–21].
Olfati-Saber [22] has significantly contributed to advancing scalable flocking algorithms via
a comprehensive theoretical and computational framework. Within this framework, there
are three distinct flocking algorithms. The first algorithm adheres to the three fundamental
rules outlined by Reynolds, while the third algorithm incorporates obstacle avoidance
capabilities. Central to this framework is the second algorithm, designed as the primary
flocking mechanism for agents navigating open space. In this second algorithm, the
objective is to ensure that the agent group seamlessly follows the trajectory of a virtual
leader. Therefore, a sophisticated navigational feedback mechanism is integrated into each
agent. Crucially, it is presupposed that every agent within the group possesses information
about the virtual leader, thereby qualifying as an informed agent. This assumption is
pivotal, ensuring the entire group maintains cohesiveness and converges to the same
velocity. The agent responds to the virtual leader like its actual neighbors. Its purpose is to
introduce the task of directing, gathering, or manipulating the behavior of agents.

Therefore, this paper proposes a method to select the cohesive and repulsive parame-
ters in the Boids model based on the Q-learning network. Our prescribed states, actions,
and the development of special environmental interaction rules can filter the optimal combi-
nation of cohesion and repulsion parameters. By changing the parameters of cohesion and
repulsion in the algorithm, we can achieve a simulation scenario with continuous obstacle
avoidance and maximum coverage of space. At the same time, we introduce virtual leaders
to facilitate stable coordination among intelligent agents and trigger the expansion and
contraction of formations [23,24].

To tackle the problem, we also conduct experiments using meta-heuristics approaches
such as genetic algorithms [25], ant colony optimization [26], and particle swarm opti-
mization [27]. They achieve similar results with RL in the experimental results. However,
they cannot handle the issue of the dynamic environment, and its time complexity is high
due to its need for a large number of iterations. In some real-time planning scenarios, the
environment could change rapidly. Although RL is computationally expensive in training

Drones 2023, 7, 673 3 of 16

(known as learning offline), once the policy is well trained, the decisions can be made
quickly (known as planning online).

Experimental results demonstrate that the RL-Boids method exhibits good perfor-
mance. The utilization of reinforcement learning offers a promising avenue for allowing
Boids to adapt autonomously and make intelligent decisions. By allowing Boids to learn
and optimize their behaviors via interactions with the environment, we achieve more
robust and flexible collective behaviors.

The rest of this paper is organized as follows. In Section 2, we describe the Boids
model and formulate the problem. In Section 3, we introduce the basic principles of the
Q-learning network. In Section 4, we outline simulation scenarios, train parameters with
Q-learning, and present the simulation results. In Section 5, we apply the algorithm in real
robot experiments and confirm its feasibility with three drones. Finally, in Section 6, we
draw some conclusions and prospects.

2. Model Description and Problem Formulation
2.1. Creation of Boids Model

To facilitate easy referencing, Table 1 provides the definitions for the essential symbols.

Table 1. Key Symbol Definitions.

Symbol Definitions

i, j ∈ {1, · · · , n} The indexes of drones

pi The position of drone i
vi The velocity of drone i
ui The control input of drone i
dij The distance between drones i and j
G = (V, E) The undirected perceptual graph

V = {1, · · · , n} The set of vertices

E ⊆ V ×V The set of edges

Ni The neighboring drones of drone i
k The proportional coefficient

dcom The communication distance among the drones

d0 The boundary distance where repulsion and cohesion

kcoh The cohesive parameter

krep The repulsive parameter

wij
The weight associated with the communication link between drone i and
drone j

Dvl The desired direction towards the virtual leader

Rn The repulsion from a neighboring drone

s, s′ The state

a The action

r The reward

S The state space

γ The discount factor

π(a|s) The probability of taking action a in state s under a probabilistic policy π

P(s′|s, a) The probability of taking action a from state s and transitioning to state s′

In this paper, we consider a swarm of n agents labelled as i, j ∈ {1, · · · , n}. The
position, velocity, and control inputs of the i-th agent are denoted by pi, vi, ui ∈ R3,
respectively. Let dij = ‖pj − pi‖ denote the central distance between agent i and agent j,
where ‖·‖ denotes the Euclidean norm. We model the swarm with an undirected perceptual
graph G = (V, E), where the set of vertices V = {1, · · · , n} represents the agents and the

Drones 2023, 7, 673 4 of 16

set of edges E ⊆ V × V indicates that the agents (i, j) ∈ E can communicate with each
other. Ni = {j ∈ V | (i, j) ∈ E} denotes the neighbor set G of the agents i, and |·| denotes
the cardinality of the set.

We define the set of neighbors using the topological range, that is, the set Ni con-
tains the neighbors |Ni| in the vicinity of the agent i. This choice conveniently keeps the
cardinality of the set of neighbors constant, and the above definition holds for biologi-
cal swarms [28].

In the simulation, the dynamics of the agents are reproduced in discrete time. Let
pi(k), vi(k), ui(k) ∈ R3 be the position, velocity, and control inputs of the i-th agent at the
moment k = bt/Tc, respectively. We can simplify the model appropriately based on the
rules of repulsion and cohesion. At this point, the agents in the swarm can be forced to
converge to different points and produce the expansion and contraction of the formation
by altering the cohesion and repulsion algorithmic parameters. Set the communication
distance among the agents as dcom and the boundary distance where repulsion and cohesion
occur as d0(dcom > d0). Set the cohesive parameter as kcoh and the repulsive parameter as
krep. When the distance d0(k) < dij(k) < dcom(k), cohesion occurs between agent i and
neighbor j. The effect of neighbor j on the velocity of agent i can be expressed as

vij(k) =
kcoh(d0(k)−dij(k))

dij(k)
pj(k)− pi(k) (1)

Repulsion occurs between agent i and neighbor j when the distance dij(k) < d0(k).
The effect of neighbor j on the velocity of agent i can be expressed as

vij(k) =
krep(dij(k)−d0(k))

dij(k)
pi(k)− pj(k) (2)

When the distance dij(k) > dcom(k) , there is no communication between agent i and
neighbor j. The control input ui(k) for any agent i can be denoted as

ui(k) = ∑
j∈Ni

vij(k) (3)

The position pi(k + 1) of any agent i at the next moment can be denoted as

pi(k + 1) = pi(k)+ u(k) (4)

2.2. Virtual Leader-Based Pinning Algorithm

At the same time, we employ a virtual leader-based clustering pinning algorithm,
which plays a crucial role in achieving coordinated behavior among multiple drones. The
virtual leader is positioned within the space and migrates along a predetermined trajectory
line. The virtual leader serves as a reference point for the cluster, enabling seamless
coordination and synchronization among individual units. This migration of the virtual
leader serves a dual purpose: it provides both forward pinning and restriction for the
formation of the swarm simultaneously (as depicted in Figure 1). This dynamic interaction
with the virtual leader facilitates on-the-fly decision making for drones, enhancing their
ability to navigate and perform tasks effectively.

Moreover, the pinning algorithm not only calculates the optimal position of the virtual
leader, but it also dynamically adapts the positions of the entire agents. This algorithm
considers multiple factors, including environmental conditions, obstacles, and desired
objectives, to ensure the efficient operation and adaptability of the cluster in response to
changing circumstances. By continuously computing and adjusting these positions, the
algorithm optimizes the overall performance of the cluster, thereby enhancing its ability to
accomplish complex tasks. This dynamic approach enables the swarm to navigate challeng-
ing environments and effectively respond to evolving situations, ultimately improving its
overall effectiveness and efficiency.

Drones 2023, 7, 673 5 of 16

• Initialization: Set the initial positions and velocities of all drones in the swarm, en-
suring a suitable distribution across the desired workspace and define the desired
trajectory or path for the swarm to follow, considering any specific objectives or
constraints. We also need to determine the parameters for communication and coordi-
nation among the drones, such as the range and frequency of wireless communication
and the method for exchanging information between drones. These parameters facili-
tate practical cooperation and synchronization within the swarm.

• Virtual Leader Update: Assuming that there are N drones forming a swarm, where
the position of each drone is represented by (xi, yi) and the position of the virtual
leader is represented by (xv, yv). The traction algorithm can calculate the position of
the virtual leader using the following formula [29]:

xv = (1/N)∑(xi) (5)

yv = (1/N)∑(yi) (6)

The above formula calculates the position of the virtual leader by taking a weighted
average of the coordinates of all drones. By continuously updating the position of
the virtual leader, other drones can adjust their behavior based on the motion of the
virtual leader, enabling coordinated movement within the drones.

• Communication and Coordination: We need an information exchange that allows
drones to adjust their trajectory and align with virtual leaders. One commonly used
algorithm is the Distributed Average Consensus algorithm. This algorithm enables
the drones to converge towards a typical trajectory by iteratively updating their own
trajectory based on the information received from neighbors.
Each drone maintains a local estimate of the desired trajectory, denoted as xi(k), where
i represents the index of the drone and k denotes the iteration step. The update
equation for each drone’s local estimate can be expressed as:

xi(k + 1) = ∑
j∈Ni

wij
(
xj(k)

)
− (xi(k)) (7)

Here, Ni represents the set of neighboring drones of drone i, wij represents the weight
associated with the communication link between drone i and drone j, and the term
(xj(k)− xi(k)) represents the difference between the trajectory estimates of drone j
and drone i.
The weights wij can be determined based on different criteria, such as distance, con-
nectivity strength, or predefined weights. Common weight assignment strategies
include uniform weights, distance-based weights, or dynamically adjusted weights.
The consensus algorithm iteratively updates each drone’s local estimate by considering
the differences between its estimate and the estimates of its neighbors. This iterative
process allows the drones to converge towards a common trajectory.

• Trajectory Adjustment: Let Pd be the position of the drone and Pvl be the position of
the virtual leader. The desired direction towards the virtual leader is given by:

Dvl =
Pvl−Pd
‖Pvl−Pd‖ (8)

Considering the influence of neighboring drones, where each drone tries to avoid
collisions while coordinating its movement, let Pn be the position of a neighboring
drone. The repulsion from a neighboring drone is:

Rn = Pd−Pn
‖Pd−Pn‖2 (9)

and the total repulsion from all neighboring drones is:

R = ∑ Rn (10)

Drones 2023, 7, 673 6 of 16

The overall direction can be calculated by combining the desired direction towards
the virtual leader and the repulsion from neighboring drones. This can be a weighted
sum depending on the importance of aligning with the virtual leader versus avoid-
ing collisions.

D = w1 × Dvl + w2 × R (11)

where w1 and w2 are weights that can be adjusted based on requirements.

By following this algorithm, the traction drones can move in a coordinated manner,
effectively pulling or moving objects as a team. The virtual leader acts as a central point of
reference, guiding the group towards the desired trajectory.

Figure 1. Diagram of the cohesion and repulsion control model.

3. Value-Based Reinforcement Learning Methods

In general, the process of reinforcement learning involves two objects: the environment
and the agents. It also contains four basic elements, which are states, actions, rewards,
and state transfer functions. To build a model for the swarm system and train it using
Q-learning, we need to define the state space, action space, and reward function:

• State Space: The state space represents the current state of the swarm system, which
includes relevant information about the environment and the swarm’s configuration.
It can include parameters such as the positions and velocities of individual drones,
the position and velocity of the virtual leader, the distances between drones, and any
other relevant variables.

• Action Space: The action space represents the available actions that the swarm system
can take at each state. In this case, the action space consists of different combina-
tions of the cohesion parameter kcoh and repulsion parameter krep. Each combination
represents a potential configuration for the swarm system.

• Reward Function: The reward function quantifies the desirability or quality of a
particular state–action pair. It provides feedback to the swarm system on the goodness
or badness of its actions.

Using Q-learning, the swarm system can learn to select the optimal cohesion and
repulsion parameters based on the current state and learn from the feedback via reward
signals. Q-learning is a reinforcement learning algorithm that uses a Q-table to store and
update the expected rewards for each state–action pair. Through an iterative process of
exploration and exploitation, the swarm system learns the optimal policy that maximizes
the cumulative rewards over time.

To evaluate the performance of the proposed method, extensive simulation experi-
ments can be conducted. The swarm system can be trained using Q-learning with various

Drones 2023, 7, 673 7 of 16

combinations of parameters and reward functions. The performance metrics, such as the
coverage efficiency and collision avoidance rate, can be measured and compared across
different parameter settings. By analyzing the results, the optimal value of k can be deter-
mined, which maximizes the performance of the swarm system in achieving its objectives.

In reinforcement learning, the interaction among the agents and the environment
can be summarized as follows: (1) The environment generates the state s ∈ S of the
environment at the current moment and passes it to the agents, of which S represents the
state space. The state s describes the features of the current environment and contains the
relevant information to support the decision making by the agents; (2) the agents generate
corresponding actions a ∈ A based on the state s and their own decision-making strategy
π(a|s), where A denotes the action space of the agents. Based on the states and actions,
the environment generates the state of the environment at the next moment s′ according
to their own state transfer function P(s′|s, a). At the same time, the agents will receive a
reward signal r back from the environment, reflecting the gain obtained from the agents’
decisions. This complete interaction process is known as a Markov Decision Process (MDP),
and its characteristic is reflected in the fact that the state s′ is determined by the state and
action of the previous moment only, independent of the earlier state action. The goal of
reinforcement learning is to maximize the cumulative rewards of the interaction between
the agents and the environment [30,31]

max
∞
∑

t=0
γtrt (12)

where γ is the discount factor. To achieve the goal, it is necessary to define the state-value
function V(s) to evaluate the goodness of the current state, which is expressed as the future
expected cumulative reward from the current state s under strategy π

V(s) = Eπ

[
∞
∑

k=0
γkrt+k|s

]
(13)

The larger the expectation value, the more advantageous the current state is for
completing the task. Similarly, considering the action a performed in the current state
according to policy π, the above state-value function can be written in the form of a
state-action-value function as follows

Q(s, a) = Eπ

[
∞
∑

k=0
γkrt+k|s, a

]
(14)

The value function-based reinforcement learning approach estimates values (12) and (13)
based on interaction experience. Decisions are made based on the value function estimates.
For example, based on obtaining an action-value function estimate Q(s, a), the ε-greedy
algorithm can be adapted for obtaining an implicit strategy for selecting the action with the
largest action-value function

π(a|s) = argmax
a

Q(s, a) (15)

To obtain an estimate of the value function, the state-value function can be written in
the following form

V(s) = Eπ [r + γV(s′)|s] (16)

Correspondingly, the state-action-value function can be written as

Q(s, a) = Eπ [r + γQ(s′, a′)|s, a] (17)

The above equation is known as the Bellman equation and expresses the relationship
between the value of the state (state-action) and the subsequent state (state-action). Assuming

Drones 2023, 7, 673 8 of 16

that there exists an optimal estimate of the value function V∗(s), then the Bellman equation in
the form of the state-value function can be written as the Bellman optimal equation

V(s) = max
a∈A
{Eπ [r + γV(s′)|s]} (18)

Similarly, the expression for the Bellman optimality equation in the form of a state-
action-value function is

Q(s, a) = Eπ

[
r + γmax

a∈A
Q∗(s′, a′)|s, a

]
(19)

The optimal strategy can be solved based on (15), which is expressed as follows

π∗(a|s) = argmax
a

Q∗(s, a) (20)

To obtain the optimal value function estimate, the idea of dynamic programming is
usually used. The value function of the previous step is estimated from the value function
of the current step, thus transforming the Bellman optimality equation into an iterative
update in the form of

Vk+1(s) = max
a∈A

{
r + γ ∑s′ ,r [P(s′|s, a)Vk(s′)]

}
(21)

Correspondingly, for the state-action-value function, the updated expression is

Qk+1(s, a) = r + γ ∑s′ ,r

[
P(s′|s, a)max

a∈A
Qk(s′, a′)

]
(22)

Theoretically, it can be shown that Q(s, a) eventually converges to the optimal form
after the above value function iterations [32]. Researchers have proposed a class of Temporal
Difference (TD) methods using Markov properties that allow for the update of the value
function estimate to be performed at each new moment of state entry. The iterative update
strategy for this class of methods is shown in the following equation

V(st) + αr[rt + γV(st+1)−V(st)]→ V(st) (23)

where rt + γV(st+1) − V(st) is referred to the TD error for a single-step decision. The
Q-learning algorithm takes the TD objective rt + γmax

a∈A
Q(st+1, a) as an estimate of the

optimal state-action function, so the flow chart of the Q-learning algorithm can be shown in
Algorithm 1, where the strategy used for evaluation and updating is the ε-greedy algorithm.

Algorithm 1 Q-learning algorithm

Input: Environment(E); Action space(A); Initial state(s0);
Discount factor(γ); Learning rate(α).

Output: Policy(π)
1: Q(x, a) = 0, π(x, a) = 1

|A(x)| ;
2: x = x0;
3: for all t = 1, 2, · · · do
4: a = πε(x)→ r, x′;
5: a′ = π(x′);
6: Q(x, a) = Q(x, a)+

α(r + γ max[Q(x′, a′)]−Q(x, a));
7: π(x) = arg maxa′ Q(x, a′′);
8: x = x′;
9: end for

Drones 2023, 7, 673 9 of 16

The provided pseudocode outlines the Q-learning algorithm, which is a model-free
reinforcement learning algorithm used to learn the value of an action in a particular state.
Below is a detailed explanation of the pseudocode.

Inputs:

• Environment (E): The setting in which the agent operates.
• Action space (A): All possible actions the agent can take.
• Initial state s0: The starting point of the agent in the environment.
• Discount factor γ: The degree to which future rewards are diminished compared to

immediate rewards.
• Learning rate α: How much new information overrides old information.

Output:

• Policy π: A strategy that the agent follows, mapping states to the best action to
perform in that state.

Algorithm Steps:

1. Initialization: Q(x, a) = 0: The Q-value for all state–action pairs is initialized to zero.
π(x, a) = 1

|A(x)| : The policy is initialized to be a uniform distribution, where each
action is equally probable if there are |A(x)| actions possible in state x.

2. Set initial state: x = x0: The agent starts at the initial state x0.
3. Learning Loop: This loop continues indefinitely, iterating over each time step t.

• Action Selection:
a = πε(x): An action a is chosen using the ε-greedy policy from the current
policy π. This selects the best action most of the time, but occasionally a random
action to explore the environment.
The agent performs action a, receives a reward r, and transitions to a new state x′.

• Action Value Update:
The Q-value of the current state–action pair (x, a) is updated using the Bellman
equation incorporating the learning rate α, the received reward r, the discount
factor γ, and the maximum Q-value of the subsequent state x′.

• Policy Update:
π(x) = arg maxa′ Q(x, a′′): The policy is updated to choose the action with the
highest Q-value for state x.

• State Transition:
x = x′: Update the state to the new state x′.

The loop represents the process of the agent interacting with the environment, receiv-
ing feedback in the form of rewards and updating its policy to maximize those rewards over
time. As the algorithm proceeds, the Q-values converge towards the optimal values and
the policy π converges towards the optimal policy, balancing exploration and exploitation.

For some simple tasks where the state and action spaces are low-dimensional discrete
spaces, Q(s, a) can be represented as a two-dimensional table. The rows of the table
represent certain states and actions, and each cell of the table stores the value under the
corresponding state and action. Based on the idea of dynamic programming, the values in
the table can converge to an optimal value in the above-mentioned value iteration. In each
decision, the action with the highest value in the current state is selected. However, for more
complex tasks with a higher dimensional state and action spaces, the table structure is no
longer applicable but requires a parametric model such as a neural network to characterize
the value function and then adjust the model parameters using parametric optimization
methods such as gradient descent with the objective of minimizing the TD error, so that it
gradually approximates the optimal value function estimate.

In this paper, we can describe the simulation scenario and the different combinations
of parameters as the state space S and the action space A, respectively.

Drones 2023, 7, 673 10 of 16

4. Simulation Scenarios and Results

In this paper, our primary focus is on studying a swarm system consisting of 32 agents.
Our investigation centers around the dynamic manipulation of cohesion and repulsion
algorithm parameters. By dynamically adjusting these parameters, we create a versatile
simulation scenario that enables continuous obstacle avoidance and maximizes spatial
coverage. The effectiveness of this approach is visually depicted in Figure 2, where the
swarm adeptly navigates through obstacles while efficiently covering the available space.

To facilitate the learning process and decision making of the agents, we employ a
Q-table as a critical component of our methodology. The Q-table, as illustrated in Figure 3a,
serves as a tabular representation of the state–action pairs and their corresponding Q-values.
It enables the agents to make informed decisions based on the accumulated knowledge
and experiences gained during the learning process.

Figure 2. Improved Boids model based on Q-learning network.

Figure 3. Q-table (a) State and Action (b) Value.

Drones 2023, 7, 673 11 of 16

The reward function in our approach is designed to incentivize desirable behaviors
and penalize undesirable ones. Specifically, we have defined two components of the
reward function:

• Obstacle avoidance reward: This component rewards agents for successfully navi-
gating past obstacles. The reward is computed as the sum of the distances among
agents when they successfully avoid obstacles. By encouraging agents to maintain a
safe distance from obstacles, this component promotes effective obstacle avoidance
behavior. Conversely, if agents fail to surmount obstacles, a penalty of −1 is incurred,
discouraging collision or unsuccessful navigation attempts.

• Diffusion reward: This component focuses on maintaining a safe distance from walls
and adhering to the expansion criteria. When agents maintain a safe distance from
walls and meet the expansion criteria, the reward is calculated as the cumulative
inter-agent distance. This encourages agents to spread out evenly within the swarm
and avoid clustering near walls. On the other hand, if agents make contact with
walls or do not meet the expansion criteria, a penalty of −1 is imposed, discouraging
undesired behavior such as wall collisions or failure to achieve the desired expansion.

Our strategy for implementing the ε-Greedy algorithm is carefully designed to opti-
mize learning efficiency throughout 100 training sessions, with the current training session
denoted as num. We employ the following approach:

• Exploration in Early Stages: During the initial training phases when num is small, we
prioritize exploration by assigning a relatively high value to ε. This exploration-centric
approach allows the algorithm to thoroughly explore and understand the environment,
facilitating the discovery of potentially optimal solutions.

• Exploitation in Later Stages: As the training progresses and the rewards associated
with different combinations of cohesion and repulsion parameters become well esti-
mated, excessive exploration becomes unnecessary. Therefore, we gradually reduce
the value of ε as the number of training sessions increases. To achieve this, we utilize
the floor function denoted as b·c, which ensures a smooth reduction in ε. By decreas-
ing ε, we shift the focus towards exploiting the learned knowledge, enabling more
informed and optimal decision making.

This strategic adjustment of ε strikes a balance between exploration and exploita-
tion throughout the training process. It allows the algorithm to effectively explore the
solution space in the early stages, while gradually transitioning towards exploiting the
acquired knowledge in later stages. This approach maximizes the learning efficiency of
the ε-Greedy algorithm, leading to an improved performance and convergence towards
optimal solutions,

ε = 1− 0.1b num
10 c (24)

where b·c denotes the floor function. It is defined by bxc = max{m ∈ Z|m ≤ x}, where x
is a real number and Z denotes a set of integers.

By using the Q-table values depicted in Figure 3b and by training the Q-learning
network, we can determine the optimal action for each state corresponding to the optimal
parameters of cohesion and repulsion under different obstacle scenarios. These parameter
(The real training parameters are in Appendix A) sets are subsequently incorporated
into the Boids model for simulation. The performance of the Q-learning algorithm can
be highly sensitive to its hyperparameters, such as the learning rate, discount factor,
and policy exploration parameters. Tuning these can be non-trivial and may require
extensive experimentation.

The simulation results, as shown in Figure 4, serve as compelling evidence of the
effectiveness of our approach. The agents adeptly navigate through obstacles while simul-
taneously maintaining an optimal inter-agent distance and strategically maximizing their
spread within the given spatial constraints. This demonstrates the successful mastery of
our agents in tackling complex navigation tasks.

Drones 2023, 7, 673 12 of 16

Figure 4. Framework of RL-Boids. In the above part of the algorithm described the workflow, the
following part of the simulation results. The dots in (a–i) represent drones. (b,d,f,h) show the virtual
leader moving the drone forward through traction. (a,c,g) show the contraction of the drone swarms.
(e,i) show the expansion of drone swarms.

In simulation experiments, Q-learning typically requires discretizing the state and
action spaces. This discretization can lead to a loss of fidelity, as continuous nuances in
agent behavior and environment states may not be captured. We also compare the use of the
Deep Q-learning method [33,34]. Deep reinforcement learning can provide adaptive and
intelligent decision-making capabilities for optimizing the network performance. But, it
may not directly address swarm behavior or coordination among drones, which is different
from the RL-Boids approach.

5. Real Robot Experiments

The experimental section of this research aims to validate the efficacy of the proposed
reinforcement learning-based approach for drone swarms. Therefore, a real-world experiment
is conducted utilizing three drones in a controlled environment. The overarching objective of
this experiment is to convincingly demonstrate the capability of drone swarms to navigate a
predefined space adeptly, concurrently avoiding obstacles and optimizing coverage.

In this experiment, three identical drones are used as the robotic agents. These drones
have various sensors, including wireless communication modules and inertial measurement
units (IMUs). These sensors are pivotal in enabling the drones to perceive their surround-
ings accurately. They are of a quadcopter design, ideal for stability and maneuverability in
various directions.

Drones 2023, 7, 673 13 of 16

Figure 5. Schematic diagram of indoor real machine experiment.

A central computer system monitors the drones’ movements and handles heavy
computation if the drones’ onboard computers are not capable of real-time processing. The
RL algorithm is pre-trained in simulations with similar obstacle configurations to bootstrap
the learning process. Hyperparameters are adjusted based on preliminary tests to balance
exploration and exploitation.

The experimental environment consisted of an open indoor space with five strategically
placed obstacles composed of non-reflective material to avoid sensor distortion. These
obstacles are strategically placed to emulate real-world scenarios where the drones must
deftly navigate around static objects, mirroring challenges encountered in practical settings
such as urban environments or complex terrains. The experiment area is rigged with a
motion capture system to provide external validation of the drones’ movements and the
system’s internal measurements. The primary mission for the drones is to seamlessly
arrange themselves in a circular formation while adeptly circumventing potential collisions
with the obstacles. A schematic diagram depicting the experimental setup is visually
represented in Figure 5.

To achieve the desired circular formation, the drones utilize a virtual leader–follower
approach. The clustering pinning algorithm calculates the optimal position, which serves
as the virtual leader. Moreover, the others follow its movements while maintaining the
desired distance and angles. This formation control is crucial for successfully executing
expansion and contraction maneuvers.

The core of the experiment revolves around the integration of reinforcement learning
(RL) techniques and the body model of the drones. RL algorithms enable the drones to
learn and adapt their behaviors based on environment interactions. They learn to apply
the right direction to avoid obstacles and maintain the circular formation.

Simultaneously, the drones aim to maximize the coverage of the available space. They
expand and contract their formation dynamically, adjusting their positions relative to the
virtual leader and obstacles. This dynamic adaptation allows them to explore and cover
the entire space efficiently.

The experimental results demonstrate the effectiveness of the proposed approach.
As shown in Figure 6, the drones successfully form a circular swarm, avoid obstacles,
and maximize coverage of the experimental space. The RL-based control system exhibits
adaptability and responsiveness in real-time, ensuring smooth navigation.

Drones 2023, 7, 673 14 of 16

Figure 6. Simulation and indoor real-world experiments for expansion and contraction scalability.
(a,d) are composed of real-world experiments and simulations. The part circled in red in the top half
is the drone, and the following is the simulation experiment of its current state. (a,d) show the con-
traction of the drone swarm. (b,c) show the expansion of drone swarms. The experimental video link
is as follows: https://www.bilibili.com/video/BV1YN411H7K6 (accessed on 20 September 2023).

Throughout the experiment, the drones consistently avoid collisions with the obsta-
cles. The reinforcement learning algorithms enable them to learn from their interactions,
improving their obstacle-avoidance capabilities.

The swarm of drones effectively covers the entire experimental space, demonstrating
the potential for such intelligent expansion and contraction strategies in various applica-
tions, such as surveillance, search and rescue, and environmental monitoring.

6. Conclusions

This paper has proposed a Q-learning network training method to optimize cohesion
and repulsion parameters for the simplified Boids model. This optimization has aimed
to achieve continuous obstacle avoidance and maximum space coverage of drones in the
simulation environment. Based on this method, we train the theoretical optimal value of

https://www.bilibili.com/video/BV1YN411H7K6/?spm_id_from=333.999.0.0

Drones 2023, 7, 673 15 of 16

the given parameters in the set scenario. The RL-Boids method proposed in this paper has
provided analogies and references for related research in the drone swarms field. In future
research, our group will explore better reinforcement learning methods based on the Boids
model and carry out experimental validation work with drones.

Author Contributions: Conceptualization, Z.D. and Q.W.; methodology, Q.W.; software, Q.W.;
validation, Z.D., Q.W. and L.C.; formal analysis, Z.D.; investigation, Q.W.; resources, Z.D.; data
curation, Z.D.; writing—original draft preparation, Z.D.; writing—review and editing, Q.W. and L.C.;
visualization, Z.D. and Q.W.; supervision, L.C.; project administration, L.C. All authors have read
and agreed to the published version of the manuscript.

Funding: This work was supported by the National Science Foundation of China under Grants
62088101 and 62003015.

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare no conflicts of interest.

Appendix A

Table A1. The Q-table is a matrix where each row corresponds to a state (S1 through S5) and each
column corresponds to an action (A1 through A11). Each cell in the table contains a numerical value,
which represents the learned value of taking a given action in a given state, with the objective of
maximizing the cumulative reward.

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11

S1 81 97 113 124 133 265 173 256 867 647 345

S2 159 130 106 88 84 217 1014 −1 −1 −1 −1

S3 32 58 65 72 102 124 156 221 268 391 215

S4 85 100 127 164 245 630 −1 −1 −1 −1 −1

S5 −1 −1 −1 −1 −1 −1 −1 −1 79 397 −1

References
1. Han, C.; Yin, J.; Ye, L.; Yang, Y. NCAnt: A network coding-based multipath data transmission scheme for multi-UAV formation

flying networks. IEEE Commun. Lett. 2020, 25, 1041–1044. [CrossRef]
2. Li, S.; Fang, X. A modified adaptive formation of UAV swarm by pigeon flock behavior within local visual field. Aerosp. Sci.

Technol. 2021, 114, 106736. [CrossRef]
3. Zhang, B.; Sun, X.; Liu, S.; Deng, X. Adaptive differential evolution-based distributed model predictive control for multi-UAV

formation flight. Int. J. Aeronaut. Space Sci. 2020, 21, 538–548. [CrossRef]
4. Nakagawa, E.Y.; Antonino, P.O.; Schnicke, F.; Capilla, R.; Kuhn, T.; Liggesmeyer, P. Industry 4.0 reference architectures: State of

the art and future trends. Comput. Ind. Eng. 2021, 156, 107241. [CrossRef]
5. Hu, B.; Sun, Z.; Hong, H.; Liu, J. UAV-aided networks with optimization allocation via artificial bee colony with intellective

search. EURASIP J. Wirel. Commun. Netw. 2020, 2020, 40. [CrossRef]
6. Kim, J.; Oh, H.; Yu, B.; Kim, S. Optimal task assignment for UAV swarm operations in hostile environments. Int. J. Aeronaut.

Space Sci. 2021, 22, 456–467. [CrossRef]
7. Pham, Q.V.; Huynh-The, T.; Alazab, M.; Zhao, J.; Hwang, W.J. Sum-rate maximization for UAV-assisted visible light communica-

tions using NOMA: Swarm intelligence meets machine learning. IEEE Internet Things J. 2020, 7, 10375–10387. [CrossRef]
8. Reynolds, C.W. Flocks, herds and schools: A distributed behavioral model. ACM SIGGRAPH Comput. Graph. 1987, 21, 25–34.

[CrossRef]
9. Vásárhelyi, G.; Virágh, C.; Somorjai, G.; Nepusz, T.; Eiben, A.E.; Vicsek, T. Optimized flocking of autonomous drones in confined

environments. Sci. Robot. 2018, 3, eaat3536. [CrossRef]
10. Soria, E.; Schiano, F.; Floreano, D. Predictive control of aerial swarms in cluttered environments. Nat. Mach. Intell. 2021,

3, 545–554. [CrossRef]
11. Wang, M.; Zeng, B.; Wang, Q. Research on motion planning based on flocking control and reinforcement learning for multi-robot

systems. Machines 2021, 9, 77. [CrossRef]
12. Bai, C.; Yan, P.; Pan, W.; Guo, J. Learning-based multi-robot formation control with obstacle avoidance. IEEE Trans. Intell. Transp.

Syst. 2021, 23, 11811–11822. [CrossRef]

http://doi.org/10.1109/LCOMM.2020.3039846
http://dx.doi.org/10.1016/j.ast.2021.106736
http://dx.doi.org/10.1007/s42405-019-00228-8
http://dx.doi.org/10.1016/j.cie.2021.107241
http://dx.doi.org/10.1186/s13638-020-1659-y
http://dx.doi.org/10.1007/s42405-020-00317-z
http://dx.doi.org/10.1109/JIOT.2020.2988930
http://dx.doi.org/10.1145/37402.37406
http://dx.doi.org/10.1126/scirobotics.aat3536
http://dx.doi.org/10.1038/s42256-021-00341-y
http://dx.doi.org/10.3390/machines9040077
http://dx.doi.org/10.1109/TITS.2021.3107336

Drones 2023, 7, 673 16 of 16

13. Long, P.; Fan, T.; Liao, X.; Liu, W.; Zhang, H.; Pan, J. Towards optimally decentralized multi-robot collision avoidance via deep
reinforcement learning. In Proceedings of the 2018 IEEE International Conference on Robotics and Automation (ICRA), Brisbane,
Australia, 21–25 May 2018; pp. 6252–6259.

14. Yan, Y.; Li, X.; Qiu, X.; Qiu, J.; Wang, J.; Wang, Y.; Shen, Y. Relative distributed formation and obstacle avoidance with multi-agent
reinforcement learning. In Proceedings of the 2022 International Conference on Robotics and Automation (ICRA), Philadelphia,
PA, USA, 23–27 May 2022; pp. 1661–1667.

15. Sui, Z.; Pu, Z.; Yi, J.; Wu, S. Formation control with collision avoidance through deep reinforcement learning using model-guided
demonstration. IEEE Trans. Neural Netw. Learn. Syst. 2020, 32, 2358–2372. [CrossRef] [PubMed]

16. Buşoniu, L.; Babuška, R.; De Schutter, B. Multi-agent reinforcement learning: An overview. In Innovations in Multi-Agent Systems
and Applications-1; Springer: Berlin/Heidelberg, Germany, 2010; pp. 183–221.

17. Nguyen, T.T.; Nguyen, N.D.; Nahavandi, S. Deep reinforcement learning for multiagent systems: A review of challenges,
solutions, and applications. IEEE Trans. Cybern. 2020, 50, 3826–3839. [CrossRef] [PubMed]

18. Canese, L.; Cardarilli, G.C.; Di Nunzio, L.; Fazzolari, R.; Giardino, D.; Re, M.; Spanò, S. Multi-agent reinforcement learning: A
review of challenges and applications. Appl. Sci. 2021, 11, 4948. [CrossRef]

19. Leonard, N.E.; Fiorelli, E. Virtual leaders, artificial potentials and coordinated control of groups. In Proceedings of the 40th IEEE
Conference on Decision and Control (Cat. No. 01CH37228), Orlando, FL, USA, 4–7 December 2001; Volume 3, pp. 2968–2973.

20. Droge, G. Distributed virtual leader moving formation control using behavior-based MPC. In Proceedings of the 2015 American
Control Conference (ACC), Chicago, IL, USA, 1–3 July 2015; pp. 2323–2328.

21. Saska, M.; Baca, T.; Hert, D. Formations of unmanned micro aerial vehicles led by migrating virtual leader. In Proceed-
ings of the 2016 14th International Conference on Control, Automation, Robotics and Vision (ICARCV), Phuket, Thailand,
13–15 November 2016; pp. 1–6.

22. Olfati-Saber, R. Flocking for multi-agent dynamic systems: Algorithms and theory. IEEE Trans. Autom. Control. 2006, 51, 401–420.
[CrossRef]

23. Rooban, S.; Javaraiu, M.; Sagar, P.P. A detailed review of swarm robotics and its significance. In Proceedings of the 2022
International Conference on Sustainable Computing and Data Communication Systems (ICSCDS), Erode, India, 7–9 April 2022;
pp. 797–802.

24. Kyzyrkanov, A.; Atanov, S.; Aljawarneh, S.; Tursynova, N.; Kassymkhanov, S. Algorithm of Coordination of Swarm of
Autonomous Robots. In Proceedings of the 2023 IEEE International Conference on Smart Information Systems and Technologies
(SIST), Astana, Kazakhstan, 4–6 May 2023; pp. 539–544.

25. Holland, J.H. Genetic algorithms. Sci. Am. 1992, 267, 66–73. [CrossRef]
26. Dorigo, M.; Birattari, M.; Stutzle, T. Ant colony optimization. IEEE Comput. Intell. Mag. 2006, 1, 28–39. [CrossRef]
27. Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the ICNN’95-International Conference on Neural

Networks, Perth, WA, Australia, 27 November–1 December 1995; Volume 4, pp. 1942–1948.
28. Ballerini, M.; Cabibbo, N.; Candelier, R.; Cavagna, A.; Cisbani, E.; Giardina, I.; Lecomte, V.; Orlandi, A.; Parisi, G.; Procaccini, A.;

et al. Interaction ruling animal collective behavior depends on topological rather than metric distance: Evidence from a field
study. Proc. Natl. Acad. Sci. USA 2008, 105, 1232–1237. [CrossRef]

29. Din, A.; Jabeen, M.; Zia, K.; Khalid, A.; Saini, D.K. Behavior-based swarm robotic search and rescue using fuzzy controller.
Comput. Electr. Eng. 2018, 70, 53–65. [CrossRef]

30. Greenwald, A.; Hall, K.; Serrano, R. Correlated Q-learning. In Proceedings of the ICML, Washington, DC, USA,
21–24 August 2003; Volume 3, pp. 242–249.

31. Watkins, C.J.; Dayan, P. Q-learning. Mach. Learn. 1992, 8, 279–292. [CrossRef]
32. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A.A.; Veness, J.; Bellemare, M.G.; Graves, A.; Riedmiller, M.; Fidjeland, A.K.;

Ostrovski, G.; et al. Human-level control through deep reinforcement learning. Nature 2015, 518, 529–533. [CrossRef] [PubMed]
33. Guo, J.; Huo, Y.; Shi, X.; Wu, J.; Yu, P.; Feng, L.; Li, W. 3D aerial vehicle base station (UAV-BS) position planning based on deep

Q-learning for capacity enhancement of users with different QoS requirements. In Proceedings of the 2019 15th International
Wireless Communications & Mobile Computing Conference (IWCMC), Tangier, Morocco, 24–28 June 2019; pp. 1508–1512.

34. Arani, A.H.; Hu, P.; Zhu, Y. HAPS-UAV-Enabled Heterogeneous Networks: A Deep Reinforcement Learning Approach. arXiv
2023, arXiv:2303.12883.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/TNNLS.2020.3004893
http://www.ncbi.nlm.nih.gov/pubmed/32673195
http://dx.doi.org/10.1109/TCYB.2020.2977374
http://www.ncbi.nlm.nih.gov/pubmed/32203045
http://dx.doi.org/10.3390/app11114948
http://dx.doi.org/10.1109/TAC.2005.864190
http://dx.doi.org/10.1038/scientificamerican0792-66
http://dx.doi.org/10.1109/MCI.2006.329691
http://dx.doi.org/10.1073/pnas.0711437105
http://dx.doi.org/10.1016/j.compeleceng.2018.06.003
http://dx.doi.org/10.1007/BF00992698
http://dx.doi.org/10.1038/nature14236
http://www.ncbi.nlm.nih.gov/pubmed/25719670

	Introduction
	Model Description and Problem Formulation
	Creation of Boids Model
	Virtual Leader-Based Pinning Algorithm

	Value-Based Reinforcement Learning Methods
	Simulation Scenarios and Results
	Real Robot Experiments
	Conclusions
	Appendix A
	References

