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Abstract: Ecological monitoring programs are fundamental to following natural-system populational
trends. Drones are a new key to animal monitoring, presenting different benefits but two basic
re-strictions First, the increase of information requires a high capacity of storage and, second, time
invested in data analysis. We present a protocol to develop an automatic object recognizer to minimize
analysis time and optimize data storage. We conducted this study at the Cruces River, Valdivia, Chile,
using a Phantom 3 Advanced drone with an HD-standard camera. We used a Black-necked swan
(Cygnus melancoryphus) as a model because it is abundant and has a contrasting color compared to
the environment, making it easy detection. The drone flew 100 m from water surface (correcting
AGL in relation to pilot landing altitude) obtaining georeferenced images with 75% overlap and
developing approximately 0.69 km2 of orthomosaics images. We estimated the swans’ spectral
signature to build the recognizer and adjusted nine criteria for object-oriented classification. We
obtained 140 orthophotos classified into three brightness categories. We found that the Precision,
Sensitivity, Specificity, and Accuracy indicator were higher than 0.93 and a calibration curve with
R2= 0.991 for images without brightness. The recognizer prediction decreases with brightness but
is corrected using ND8-16 filter lens. We discuss the importance of this recognizer to data analysis
optimization and the advantage of using this recognition protocol for any object in ecological studies.

Keywords: automatic recognition; drone; black-necked swan; abundance and density estimation;
orthomosaic object recognition

1. Introduction

Ecological monitoring programs are essential to understanding the population dy-
namics of different species worldwide. These monitoring programs allow researchers to
describe natural patterns or detect disturbances, generating information to develop efficient
management tools and knowledge-based decision-making [1–4]. New technologies im-
prove the data collection quantity and quality from natural systems, increasing the precision
and exactitude of measures to establish better monitoring programs [4,5]. Remote sensing
techniques allow for obtaining information from isolated places, reducing sampling time
and effort and increasing the collected information’s accuracy [6,7]. Additionally, remote
sensing can provide consistent long-term observation data at different scales, from local to
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global [8]. The information generated from these remote sensors depends on the sensor
incorporated and on the characteristics of the images it produces, like (a) spatial resolution
(pixel size), (b) spectral resolution (wavelength ranges), (c) temporal resolution (when and
how often images are collected), and (d) spatial extent (ground area represented) [9].

Drones use has rapidly overcrowded over the years because of their accessibility,
low-cost operation, versatility in size, flight autonomy, and the type of information they can
collect [10–12]. This approach has been increasing the number of applications, including
monitoring processes in agriculture, forestry, and ecology [13–20]. In this sense, monitoring
programs have benefited from drones’ advantages, mainly because of the replicability
of flight paths and the lower sampling effort, making more attainable time-series data
(Table 1) [17].

Although the use of drones improves the accuracy of the spatial information ob-
tained [5,21,22], the increase in data collection and the time invested in data analysis can
be a significant disadvantage [21,23,24]. In response to this problem, automation in pro-
cessing and analyzing images is a recent and promising research area [25]. This process
generates multiple benefits, mainly reducing the time invested in analyzing photographs
and videos and reducing or eliminating the bias generated by the observer [24]. Being an
automatic process, it has the potential to be standardized and replicable [23]. Also, most
of the parameters in the algorithms can be modified and used with different drones, focal
species, and research for various purposes [23].

Table 1. Summary of the drone’s advantages and disadvantages and recognizer use in the
ecological context.

Methodology Advantages Disadvantage References

Direct counting versus
manual drone counting

Objects on the images can be
counted more than once by different
observers. Improving the accuracy
of abundance determination over
classical sampling (i.e., binocular)
and the spatial position of each
individual can be obtained.

There may be observer and
experience bias in image analysis. [16–18,21,22,24]

Larger areas can be sampled
simultaneously, making it a
cost-efficient tool. In addition, it
makes it possible to reach
remote places.

Larger areas can be sampled
simultaneously, making it a
cost-efficient tool. In addition, it
makes it possible to reach remote
places.A large amount of
information is generated, and
ample storage and processing
capacity is required. If the fly does
not consider the basic biology of
animals can cause disturbances to
normal behavior.

[21,23,24]

The images can be reviewed and
used for various studies. Storage power must be available. [16,24]

Use of recognizers
Reduces or eliminates observer bias
and reduces analysis time for
repeated sampling

The confusion matrix must be
created, to determine the true
positive, true negative, false
positive, and false negative cases
and make a correct interpretation
based on the species.

[24]

Most automatic recognition methods involve the use of spectral properties [26], pattern
recognition (i.e., shape and texture [27]), and the use of filters to increase the contrast
between the object of interest and the background [28]. These methods allow the systematic
monitoring of multiple species and reduce the analysis time [29], optimizing the early
detection of wildlife behavioral or populational changes, and contributing to evaluating
conservation measures’ effectiveness (Table 1) [7]. Although automation brings multiple
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benefits, some disadvantages must be taken into consideration. Because it is a relatively
new methodology, it has been used for species that are easier to detect and highly contrasted
with their habitat [30]. In addition, each time a new dataset is available, the recognizers
must be recreated or the existing ones adjusted, increasing the analysis time [31].

This study develops and describes an automatic count protocol of black-necked swans
(Cygnus melancoryphus) under natural conditions. We used drone imagery and supervised
classification methods to establish the spectral signature of black-necked swans and the
shape attributes, and propose this protocol as a tool for the automatic classification of any
object (individual) to be recognized from drone imagery. Although we have adjusted this
tool to recognize swans, by modifying the parameters, it can be assigned to any species
of interest.

2. Materials and Methods
2.1. Model and Study Area

The black-necked swan is an aquatic bird of the Anatidae family and the only species
of the genus Cygnus in the Neotropics [32]. Its distribution includes Argentina, Chile,
Uruguay, and Southern Brazil [32,33]. This species is a medium size (5–7 kg) herbivorous
bird which diet is strongly related to the consumption of Egeria densa [34]. Black-necked
swans are highly social and gregarious outside the breeding season, between July and
March [35]. In the IUCN Red List of Threatened Species [33], the black-necked swan
is classified as Least Concern, but the Chilean classification has different conservation
status categories (Endangered and Vulnerable). In the study site, the black-necked swan is
classified as Endangered.

We carried out this study at the Carlos Anwandter Sanctuary (39◦49′ S, 73◦15′ W), a
48.8 km2 coastal wetland located in the southern range of the Valdivian Temperate Rain
Forests Ecoregion, Chile [36,37]. In addition, we incorporated two sites in the Cruces River
close to Valdivia City (Figure 1). We selected three sites where we performed 110 survey
missions (48 for site 1, 44 for site 2, and 18 for site 3) between July 2017 and October 2018
using a Phantom 3 Advanced drone with an HD standard camera recorder (Sony Exmor R
BSI 1/2.3” sensor with 12 MP). We obtained the image following a pre-established back-
and-forth route (transect) using the MyPilot application (https://www.mypilotapps.com,
accessed on July 2017 to October 2018). The drone flew 100 m above the water surface
(corrected with AGL from the pilot landing altitude) at a mean seed of 10 m/s (range
between six to 12 m/s depending on the daily weather condition (slower in clouding condi-
tions), automatically regulated by the camera’s sensor), minimizing blur in the images.We
considered 100 m of altitude for survey, considering the minimum effect of the swans’
behavior, and following previous studies of drone effect on colonial birds’ behavior [38,39],
and based on preliminary fly probes between 25 and 100 m without apparent changes in
swans’ behavior. We georeferenced images with 75% overlap at both axes for orthophoto-
graph construction (Figure 2). During each survey, we obtained 370 ± 90 (mean ± 1 SD)
images with a surface of 0.69 km2 by orthomosaic and a pixel resolution of 3.854 ± 0.135
(mean ± 1 SD) cm. For orthophotograph construction, each set of images (one set for
the survey mission) was mosaiced using an online version of the DroneDeploy software
(https://www.dronedeploy.com, accessed on July 2017 to October 2018). Orthophotos were
composed of 3 bands: red, green, and blue (RGB color model) within the visible spectrum
(740 to 380 nm λ).

https://www.mypilotapps.com
https://www.dronedeploy.com
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Figure 2. Steps for obtaining orthophotographs. (A) Example for the sampling site number 2, (B) the
design of the flight transects, (C) the superimposition of the obtained images, and (D) the creation of
the orthophotography in the DroneDeploy software.

2.2. Building the Recognizer

The first step in developing the automatic recognizer was to describe the black-necked
swans’ spectral signature. We randomly selected 14 out of 110 orthophotos and manually
selected 10 individuals (140 total) for each. We recorded the range of spectral values for each
pixel in each band for each selected individual. We determined the minimum threshold
value for defining a black-necked swan in a band as the first quartile of the distribution of
the spectral values in each band. According to the previous configuration, we filtered each
orthophoto. If the pixel shows values higher than the threshold in all bands, it is classified
as 1 and 0 otherwise (Supplementary Materials Figure S1). Finally, we vectorized the raster
obtaining a vector layer, where each polygon represents a potential swan.
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In the second step, we established an object-oriented classification. We selected nine
attributes of the shape. We classified these measures into three groups following an
intragroup hierarchical procedure. Group 1 included polygons: (a) size, (b) perimeter,
(c) area/perimeter ratio, and (d) shape index, defined as ((4π* Area)/(Perimeter2)), where
values close to 0 correspond to more prolonged and thinner figures, and values close to
1 resemble a circle [34,40]. Group 2 included (a) Box’s length, the minimum bounding box’s
length that contains the polygon; (b) Box’s width, the minimum bounding box’s width that
contains the polygon; (c) Box’s length/width, i.e., the quotient between the length and the
width of the box; and (d) the intersection area, which corresponds to the percentage of the
box intersected by the object. Group 3 included the vertex numbers of the polygon. To
optimize the procedure, we used the first 14 orthophotos (140 individuals) and considered
each measure’s maximum and minimum values to incorporate in the recognizer. We
applied the filter to the remaining 96 orthophotos to obtain the number and spatial position
of the classified “swan” objects. We performed the analyses using QGis 2.18 [41] and R
software [42], including the packages Raster [43], rgdal [44], geosphere [45], spatstat [46],
maptools [47], gdalUtils [48], rgeos [49], spatialEco [50], and R.utils [51]. We include the R
code for the analysis (SM 2).

Due to the water brightness, overexposed or badly reconstructed areas can appear
in orthophotos; we classified the orthophotos into three classes following Chabot and
Francis (2016) [24]: (a) 0, there was no brightness; (b) 1, there was localized brightness; and
(c) 2, the brightness was present throughout the orthophoto (Figure 3). We performed an
independent analysis for each of the three categories.
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Figure 3. Brightness orthophoto classification. (A) Category 0, there was no brightness; (B) Cate-
gory 1, there was localized brightness; and (C) Category 2, the brightness was present throughout
the orthophoto.

2.3. Evaluating the Accuracy of the Recognizer and Confusion Matrix

To evaluate the validity of the filtering procedures, we constructed a confusion ma-
trix [52]. We manually checked all objects recognized by the filters in each of the 96 or-
thophotographs. We estimate the True-Positive objects (TP) as the objects correctly assigned
as black-necked swans, the False-Positive objects (FP) corresponding to not black-necked
swan objects that the recognizer assigned as swans, and the False-Negatives (FN) as miss-
ing black-necked swans archived in the orthophoto but not recognized by the recognizer.
In addition, we estimated the true negative as the number of objects recognized by the
spectral signature but rejected by the shape filters (TN) (Figure 4a). We estimated confus-
ing matrix indicators, including Precision = TP/(TP + FP), Sensitivity = TP/(TP + FN),
Specificity = TN/(TN + FP), and Accuracy = (TP + TN)/(TP + TN + FP + FN) (Figure 4b).
Finally, we compared the manual count and recorder estimates in each orthophoto classifi-
cation fitting linear regression model using R software [42,52].
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3. Results
3.1. Filtering Process

The minimum critical thresholds for the black-necked swans’ coloration corresponded
to 220 for the red, 221 for the green, and 221 for the blue band (Figure S1). We summarized
the specific range estimated for each shape attributed in Table 2.

Table 2. Shape attribute values. Lower and upper limits of the range in which an object is classified as
a swan for each shape attribute used in the recognizer. Units in parenthesis (undimensional variables
not present units).

Shape Attributed Lower Limit Upper Limit

Size (m2) 0.0111562 0.5501689
Perimeter (m) 0.6220029 4.8082500

Area/Perimeter ratio 0.0179360 0.1476506
Shape index 0.2166254 0.6981190

Box’s length (m) 0.2144787 1.1876790
Box’s wide (m) 0.1367180 0.8679846

Box’s Length/Width 1.0001040 3.7119470
Intersection area (%) 30.7244900 88.3788400

Vertices (n) 11 72

3.2. Confusion Matrix

When we considered brightness levels, we classified 29 orthophotos in category 0, 14
in category 1, and 67 in category 2, representing 26.4%, 12.7%, and 60.9%, respectively. From
the 29 orthophotos classified as category 0, the recognizer found a total of 17,345 objects,
while, by direct count, we found 16,940 black-necked swans. Figure 5 shows an example of
the explicit distribution of recognized and unrecognized objects (swans). In all brightness
categories, we found a correct assignation of objects as swans (true-positive objects, Table 3).
However, in high brightness (category 3), brightness spots tend to be recognized as swans,
showing very high false-negative assignations (Table 3).

In the confusion matrix, the Precision, Sensitivity, Specificity, and Accuracy were
higher than 0.93 (Table 4). In the 14 orthophotos classified as category 1, the recognizer
found 10,345 objects, while we estimated 7228 individuals by direct count. Sensitivity,
Specificity, and Accuracy remained at high values (<0.90), but the Precision decreased
to 0.687 (Table 4). The recognizer in category 2 orthophotos assigned 757,958 objects as
black-necked swans, while we estimated 26,584 individuals by manual count. Precision
decreased to 0.033, showing very bad object estimations (Table 4). In this case, the recognizer
overestimates the FP, assigning a high number of brightness spots as Black-necked swan
individuals. Sensitivity remains at high values, but the Specificity and Accuracy decrease
to values nearest to 0.82 (Table 4).
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Figure 5. Example of explicit detections performed by the recognizer. Green dots correspond to true-
positive objects recognized, red dots correspond to true-negative objects unrecognized (real swans
not detected by the recognizer), and orange dots correspond to false-true objects (object recognized
as swans but are not). In (A), without brightness (category 0); in (B), localized brightness (category 1);
and in (C), high brightness levels (category 2).

Table 3. Summary of class analysis, including the true positives, false positives, true negatives, and
false negatives separated by brightness categories.

Recognizer Objects

Positive Negative

True swans

Category 0 True 16,445 445
False 900 97,095

Category 1 True 7117 93
False 3228 76,161

Category 2 True 25,537 952
False 73,241 3,491,641

Table 4. Summary of the confusion matrix parameters for each brightness category.

Brightness

Category 0 Category 1 Category 2

Precision 0.948 0.687 0.033
Sensitivity 0.973 0.987 0.964
Specificity 0.99 0.96 0.82
Accuracy 0.988 0.962 0.827

Finally, in a recognized predictive capacity, we found high accuracy in orthophotos
classified as category 0 (slope = 0.97, intercept = 0, adjusted R2 = 0.991; Figure 6a). In
category 1, we found equivalent results but with a tendency of overestimating abundance
(slope = 1.33, intercept = 0, adjusted R2 = 0.989; Figure 6b). Finally, we found no significant
linear regression between the manual recount and recognizer in orthophotos classified as
Category 2, indicating recognized non-accuracy for the brightness image (Figure 6c).
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linear model, and the gray confidence interval uses the standard error. In (A), We present the results
of orthophotos without brightness (category 0), (B) moderate brightness (category 1), and (C) high
brightness levels (category 2).

4. Discussion

We optimized a filtering protocol to establish an automatized system for counting
black-necked swans from orthophotos. We analyzed 110 orthophotographs and compared
manual versus automatized procedures to do this. We quantified 50,752 swans by manual
count, whereas the automatic recognizer estimated a total of 49,262, which missed only
1653 swans (representing 3.257% of individuals lost). The spectral filter lost 163 individuals
associated with the object’s size. In this case, we mainly lost chicks represented by a few
pixels. Consequently, we found that the spectral signature was altered with environmental
borders, because the low number of pixels with the objects is recognized.

We identified eight situations where the recognizer fails: (i) When two individuals are
extremely close, the spectral signature cannot separate individuals (n = 251 individuals). In
this case, the shape filter excludes both individuals (Figure 7A). (ii) Two individuals are
extremely close and present different sizes (n = 257). The spectral filter recognizes only
one individual, and then, the shape filter recognizes it; thus, only one individual is lost
(Figure 7B). (iii) Young swans (n = 417 individuals). We optimized the filter to recognize
adult shapes and sizes; thus, young swans are discarded (Figure 7C). (iv) Familiar groups
(n = 68 individuals). When all swans are close together, the shape filter discards all the
individuals (Figure 7D). (v) Adult clusters (n = 44 individuals). In some cases, swans
swim in lines very close to each other (from three to eight individuals), and the shape filter
discards the object, losing all the individuals (Figure 7E). (vi) Swans in wetland vegetation
(n = 85 individuals). We observed that grassland distorts swans’ shapes, and the shape
filter rejects these objects (Figure 7F). (vii) Flying swans (n = 8 individuals); extended wings
change the object’s shape, and the shape filter rejects it (Figure 7G). (viii) Orthomosaic
reconstruction (n = 360 individuals). In some cases, especially on borders, orthophotos
present deformations, seams, or gaps affecting swan shapes; therefore, the shape filter
rejects the objects (Figure 7H).

In orthophotos classified in category 0, we obtained nearly 6.1% of error in the swan
identifications, such as other works in birds and marine mammals [23,24,53,54]. Most au-
tomatized recognizers only analyze the identification accuracy concerning manual counts
but do not perform a confusion matrix; therefore, they are not evaluating the effective-
ness of the recognizers [19,23,55,56]. Moreover, in most cases, the studies complete the
recognizer with raw data without error classification omitting availability, perception,
misidentification, and double counting [18,55,57–59]. By incorporating the description of
the types of error and their quantification, we can know the recognizer’s reliability, and
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we can modify the spectral and shape parameters to increase the accuracy or establish
reliability intervals.
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We must point out that the brightness directly affects spectral classification and over-
estimates false-positive objects. In general, when attempting to identify bright or white
birds (i.e., black-necked swans), the most difficult elements to remove/discriminate are
those related to the color white, such as glitter, flashes, and foam in the water or pale
rocks, as they are very similar to the object of interest [24,59]. Other water factors such as
waves, sunshine, or water movement generates brightness in the orthophotos failing in
the correct object assignation or directly affecting the orthophoto construction by missing
image overlapping lost meeting points [24,56]. In our case, we obtained an overestimated
black-necked swan abundance directly associated with brightness, causing an increase of
false positives and the error in identification by decreasing Accuracy and Sensitivity [56]. A
similar problem was described using a thermal camera where the rock heath emission in the
forest floor produces false-positive heath points similar to warm blood animals [60–62]. We
suggest eliminating false positives manually for these cases, mainly if they are concentrated
in specific areas of the orthophoto, such as bright spots [24]. We found that brightness
is generated mainly at the orthophoto edges, so we recommend increasing the sampling
area. An alternative solution is incorporating a polarizer lent to the drone’s camera. In
our case, we used an ND8 filter lent (we recommended ND8 or 16). Therefore, using a
polarizer or color-correcting lent can help avoid over or under-light exposition and increase
the contrast between object and environment. Using these elements permits avoiding the
possible errors associated with climate variables and expanding flight schedules.

The flight transects design can influence the correct orthophotos assembly; a wrong
orientation of the transect can generate that an animal in movement may be captured
in two adjacent photos, which could cause a double count of the same individual (false
positives; [59]). A low percentage of overlapping images does not present enough meeting
points between adjacent images, generating spaces without data that do not represent
the terrain’s reality or the appearance of shadows and shadows within the surface [24].
The literature recommended that the minimum overlap percentage to reconstruct any
surface is 60% [63]. We used a 75% overlap during the first stage of sampling; later, we
increased it to 80% (overlapping percentage suggested when reconstructing water, snow,
and clouds, or surfaces with fewer meeting points due to their color or texture, or constant
movement) [24]. Drone movements, because of the wind, can also reduce the percentage
of overlap between images. In some cases, wind can cause a 5 to 37% loss overlap when
using 57% of overlapping [64]. In extreme cases, the wing instability produces the loss of
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the nadir position (the perpendicular line between the camera and the surface), causing
inconsistencies between the objects’ size and shape [24,64].

We observed an increase in these errors during the breeding and rearing season. First,
adults are closer together, especially breeding pairs or familiar groups. Second, black-
necked swans build nests on the reed beds, and incubation is exclusively for females while
males guard the nest [35]. During this period, individuals spend most of their time on the
wetland vegetation, hindering automatic recognition. To avoid these complications, we
recommend a post-manual inspection, or as has been suggested, an increase of temporal
replications or complement the automatic counting with direct observations [59]. Another
option to increase the accuracy of this procedure is to build a specific recognizer for
aggregations. For example, in the grey seal (Halichoerus grypus), where the aggregations are
of six or more individuals, Convex Envelopes over the polygons were made to discriminate
between individuals and aggregations, where depending on the size of the aggregation, the
number of individuals was determined [31]. In other cases, authors have used the number
of pixels as a size approximation to discriminate between bird aggregations [28].

Aerial drone sampling is a more effective alternative to traditional sampling when
monitoring birds, especially waterfowl, obtaining more accurate counts than those made by
direct counts [22,58]. Drones have been used to quantify birds’ abundance under-sensitive
to observer-generated disturbances, birds concentrated in small areas (colonies or flocks),
birds inhabiting open habitats, and birds that contrast strongly with the background and
other image elements [24,65,66]. Our work established an automatized protocol, increasing
object detection accuracy and reducing the time spent on image processing. We calculated
effectiveness indices using the automatized procedures, recorded the different types of
errors, and improved image analysis. Although we optimized the recognizer for the black-
necked swan’s classification, the steps we described are a procedure that can be generalized.
It can be applied to any object recognized (animals, plants, mobile or stationary objects).
For example, we applied the same protocol to estimate the abundance of red-gartered
coot (Fulica armillata). In this case, the birds’ black general coloration does not permit
the implementation of an efficient spectral signal filter. To solve this problem, we use a
negative photographic technique to obtain a similar white spectral signature to the black-
necked swans. Therefore, we increased the spectral signature resolution by modifying the
orthophoto’s original coloration spectral to achieve the best environmental/object contrast.

Automated recognizers are essential to establish long-term animal monitoring aerial
surveys. We propose the following steps (i) building an orthomosaic image to construct
efficient automated recognizers. (ii) spectral signal definition, if necessary, modify the
original image coloration to obtain the best environmental/object contrast, (iii) establish
an Object-oriented classification based on shape, (iv) perform a Confusion analysis to
estimate the accuracy (and the improvement possibility) of the recognizer, and (v) manual
supervision to estimate the number of missing objects.

5. Conclusions

The use of drones and the construction of orthomosaic images in wildlife monitoring
is a tool that generates multiple benefits following the recommendations mentioned above.
This tool reduces sampling times and allows monitoring of remote and large areas such as
wetlands. In addition, by standardizing the sampling area, estimating effectiveness indices,
and recording the different types of errors, it is possible to use the counts as an approxi-
mation to the abundance and density, making aerial surveys with automatic recognizers
one of the most efficient tools for long-term monitoring of waterbirds. The incorporation
of automatic recognizers allows the identification of waterbirds to be highly effective, as
demonstrated in our results for the dull images (Precision, Sensitivity, Specificity, and
Accuracy were higher than 0.93).
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thophotographs.
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