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Abstract: Mapping forest canopy height at large regional scales is of great importance for the global
carbon cycle. Polarized interferometric synthetic aperture radar is an efficient and irreplaceable
remote sensing tool. Developing an efficient and accurate method for forest canopy height estimation
is an important issue that needs to be addressed urgently. In this paper, we propose a novel four-stage
forest height inversion method based on a Fourier–Legendre polynomial (FLP) with reference to the
RVoG three-stage method, using the multi-baseline UAVSAR data from the AfriSAR project as the
data source. The third-order FLP is used as the vertical structure function, and a small amount of
ground phase and LiDAR canopy height is used as the input to solve and fix the FLP coefficients to
replace the exponential function in the RVoG three-stage method. The performance of this method
was tested in different forest types (mangrove and inland tropical forests). The results show that:
(1) in mangroves with homogeneous forest structure, the accuracy based on the four-stage FLP
method is better than that of the RVoG three-stage method. For the four-stage FLP method, R2 is 0.82,
RMSE is 6.42 m and BIAS is 0.92 m, while the R2 of the RVoG three-stage method is 0.77, RMSE is
7.33 m, and bias is −3.49 m. In inland tropical forests with complex forest structure, the inversion
accuracy based on the four-stage FLP method is lower than that of the RVoG three-stage method.
The R2 is 0.50, RMSE is 11.54 m, and BIAS is 6.53 m for the four-stage FLP method; the R2 of the
RVoG three-stage method is 0.72, RMSE is 8.68 m, and BIAS is 1.67 m. (2) Compared to the RVoG
three-stage method, the efficiency of the four-stage FLP method is improved by about tenfold, with
the reduction of model parameters. The inversion time of the FLP method in a mangrove forest is
3 min, and that of the RVoG three-stage method is 33 min. In an inland tropical forest, the inversion
time of the FLP method is 2.25 min, and that of the RVoG three-stage method is 21 min. With the ap-
plication of large regional scale data in the future, the method proposed in this study is more efficient
when conditions allow.

Keywords: Fourier–Legendre polynomial; RVoG; UAVSAR; forest canopy height; PolInSAR

1. Introduction

Forest height is key information for forest ecosystems, and estimating forest height
is a timely and important research topic for improving forest management activities and
researching the role of forests as carbon sinks or sources in the global carbon cycle [1].
Synthetic aperture radar (SAR) and laser ranging (LiDAR) are important remote sensing
techniques for forest height estimation and have strong penetration capability in forests.
Usually, LiDAR can achieve high accuracy forest height estimation [2]. However, few
available satellite-based data and the high cost of airborne data acquisition limit its wide
application in the field of remote sensing estimation of forest height [3]. Microwave radar
is an advanced active remote sensing technology that is less susceptible to climatic factors
such as clouds, fog, and solar radiation, allowing for all-weather and large-scale Earth
observations [4–6].
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In microwave remote sensing, polarimetric synthetic aperture radar interferometry
(PolInSAR) has been extensively studied in the last two decades and has proven to be an
effective tool for forest height estimation because it is sensitive to the vertical structure
and physical properties of the scattering medium [7–9]. According to microwave theory,
it is possible to invert forest height directly from interferograms of ground and volume
regimes, which is the simplest application but not very accurate [10–12]. Another method is
the physical scattering model-based method for forest height estimation [13–15], of which
the most classical and widely used is the two layer random volume of ground (RVoG)
coherence scattering model [16]. In the RVoG model, the forest medium is described as a
homogeneous volume layer on the ground, which describes the forest scattering process
as a forest volume scattering layer and a ground layer, treating the volume scattering
layer as an isotropic homogeneous medium of thickness hv and describing the scattering
and absorption losses of electromagnetic waves in it by an average attenuation coefficient
σ [8,16,17], which treats the volume coherence as a function of four main parameters: forest
height, extinction coefficient, ground to volume amplitude ratio, and ground phase. Based
on the RVoG model, Cloude and Papathanassiou [17] first proposed a three-stage algorithm
for tree height retrieval, which is simple to implement, time-saving, and widely used to
transform PolInSAR measurements into forest parameters.

For PolInSAR data obtained at low frequencies (e.g., L- and P-band), the main scat-
terers of the forest are massive tree trunks and branches, which are not randomly and
homogeneously distributed in the vertical direction. In this case, it is not reasonable to
use the homogeneous assumption of the RVoG model to describe the scattering process
of the forest. Therefore, related studies have proposed an improved RVoG model [18],
an RVoG model with different extinction, and a Gaussian vertical backscattering model
as an expression function of the vertical distribution of forest scatterers [19–21]. In fact,
because of the high complexity of the vertical structure in the forest, it is difficult to accu-
rately express the scattering process of PolInSAR data by a specific function. To solve this
problem, the tomographic SAR (TomoSAR) technique was used to estimate the vertical
distribution of forest scatterers without relying on any scattering model [22]. However,
to ensure, a favorable inversion, a large and homogeneously distributed baseline of SAR
images is required, which limits the scope of application of this technique. On this basis,
Cloude [23–25], and Cloude and Papathanassiou [26] proposed the polarization coherence
tomography (PCT) technique to characterize the microwave scattering process based on the
Fourier–Legendre (FL) level under the condition that the a priori forest height and surface
height are known, which is applicable to both single-baseline and multi-baseline PolInSAR.
Ideally, the order of the FLP should be set as high as possible because higher-order FLP
can detect the forest’s vertical structure at high resolution. However, in practice, higher
order FLP are more sensitive to observation errors, such as temporal decorrelation, signal-
to-noise decorrelation, and spatial baseline decorrelation, which may lead to significant
estimation bias in FLP model inversion. Previous studies have demonstrated that third-
order FLP are sufficient to describe vertical forest structure for biomass estimation [27–29].
Because of the direct relationship between forest biomass and forest height, third-order
FLP have also been used for forest height inversion. Compared with the RVoG model,
the scattering based on the FL level is an approximation to the real forest scene, but the
prerequisite is that a priori forest height and phase letter inputs are needed to estimate the
FLP coefficients for each pixel cell, which limited the application of the method in forest
height estimation. As mentioned in Cloude’s study [25], the FLP coefficients are related
to the ground-to-volume magnitude ratio of the polarization channel, which will directly
affect the accuracy of the vertical structure function, while previous studies usually assume
that the ground-to-volume magnitude ratio of the polarization channel for the volume
scattering is close to 0. This assumption holds when the forest structure is homogeneous,
and we can use a fixed FLP coefficient to construct the vertical structure function to replace
the exponential function of the RVoG model, which not only reduces the model parameters,
but also improves the model accuracy. However, the applicability of using fixed FLP
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coefficients to represent the whole scene when the forest structure varies widely is another
question worth exploring.

To answer the above questions, we propose a four-stage forest canopy height inversion
method based on FLP. The first and second stages of the RVoG three-stage method were
used to solve the ground phase and volume coherence; the third-order FLP was used as
the vertical structure function, and a small number of samples from the LiDAR canopy
height and ground phase of the RVoG three-stage method were used as input to solve
the FLP coefficients to construct the vertical structure function for forest canopy height
inversion using the look-up table method. The performance of this method in mangrove
and inland tropical forests was tested to verify the potential and conditions of using the
fixed FLP coefficients method for canopy height estimation in different types of forests. The
purpose of this study is to develop an accurate and efficient forest height inversion method
at the regional scale, using FLP and fixed polynomial coefficients to replace the exponential
function in the RVoG three-stage method. Currently, a large number of laser samples
have been acquired by GEDI and ICEsat-2. With the arrival of TanDEM-L and BIOMASS
satellites and the NISAR program, efficient monitoring of global forest ecosystems will be
further improved.

2. Materials and Methods
2.1. Study Area and Data

In this study, both the airborne multi-baseline UAVSAR data and the LiDAR-RH100
validation data are derived from the publicly available datasets of the AfriSAR project (see
Table 1). In 2016, NASA, ESA and the Gabonese Space Agency collaborated on the AfriSAR
campaign, where NASA’s unmanned aerial vehicle synthetic aperture radar (UAVSAR) and
airborne LiDAR sensors acquired L-band multi-baseline fully polarized PolInSAR data and
full-waveform LVIS LiDAR datasets, respectively, which is part of NASA-ESA’s BIOMASS,
GEDI, and NISAR calibration and validation activities. The UAVSAR dataset is processed
for polarization calibration, baseline fine coregistered and spectral filtering, and is provided
as a single-look complex [30], with each track containing SLC data for four polarization
channels (HH, HV, VH and VV). In this paper, Lope and Pongara, located in the Gabonese
Republic on the west coast of Africa, were selected as the test areas (see Figure 1), where
the forest type of Lope is an inland tropical forest and Pongara is a mangrove forest. The
number of tracks in the Lope test area is eight, and the number of tracks in Pongara is five.
In this study, 2 × 8 SLC data were used, and the PD coherence optimization algorithm [31]
was used to calculate the complex coherence under different baseline combinations for
forest canopy height inversion, which was geocoded at 25 m resolution size.

Figure 1. Location of the test area.
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Table 1. Data set description.

Dataset Description Lope (Inland Tropical) Pongara (Mangroves)

SAR data acquisition

Acquisition Mode PolSAR
Steering Angle 90 (deg)
Steering Angle 40 (us)

Bandwidth 80 (MHz)
Center Wavelength 23.84 (cm)

Look Direction Left
Range Resolution 3.33 (m)

Azimuth Resolution 4.80 (m)
Polarization Type Full polarization

Average Along Track Velocity 224.76 (m/s) 224.97 (m/s)
Look Angle 21.48–65.43 (deg) 21.87–65.34 (deg)

Number of Tracks 8 5
Vertical Baseline(m) 0, 20, 40, 60, 80, 100, 120 (m) 0, 20, 45, 105 (m)

Longitude 11◦25′53” E~11◦49′31” E 9◦17′40” E~10◦0′29” E
Latitude 0◦3′58” N~0◦20′40” S 0◦1′27” N~0◦14′15” S

RH100 (LiDAR)
Resolution 25 m

Height Range 1.94–84.28 (m) 1.80–65.11 (m)

The relative height variable RH100 derived from LVIS LiDAR data was used as the true
value to evaluate the accuracy of canopy height estimation. In this study, the RH100 canopy
height product used was from the Oak Ridge National Laboratory (ORNL) Distributed
Active Archive Center (DAAC), with a spatial resolution of 25 m [32].

2.2. RVoG Coherence Scattering Model

The RVoG coherence scattering model describes the forest scattering process as a forest
volume scattering layer and a ground layer that cannot be penetrated, assumes the volume
scattering as an isotropic homogeneous medium of thickness hv, and uses an extinction
coefficient σ to describe the scattering and absorption losses of electromagnetic waves in
the volume layer [8,13,16]. The theory is as follows:

γ(ω) = ejϕ0 γv+m(ω)
1+m(ω)

= ejϕ0 [γv + L(ω)(1− γv)]

L(ω) =
m(ω)

1+m(ω)

(1)

where m(ω) is the effective ground-to-volume amplitude ratio, ϕ0 indicates the ground
phase, and γv indicates the “pure” volume coherence, expressed as Equation (2).

γv =
∫ hv

0 f (z)ejkzzdz∫ hv
0 f (z)dz

= 2σ

cos

(
e

2σhv
cos(θ) −1

) ∫ hv
0 ejkzze

2σz
cos(θ) dz

= p
p1

ep1 hv−1
ephv−1

p = 2σcos(α)
cos(θ−α)

p1 = p + jkz

kz =
2π
hoa = 2nπ∆θ

λsin(θ−α)
= 2nπB⊥

λRsin(θ−α)

(2)

where σ is the average extinction coefficient, hv is the forest height, kz is the vertical effective
wave number, kz denotes the phase change corresponding to a height change of 1 m. The
height of ambiguity (hoa) denotes the interference phase change of 2π producing a height
change, R is the slant distance, B⊥ is the vertical baseline length, and n depends on the
acquisition mode of the radar image [33].
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2.3. Baseline Selection Method

In the RVoG model, the distribution of the complex coherence points under ideal
conditions is approximately elliptical. In this paper, multiple baseline datasets are used,
so the most suitable pair of baseline combinations from multiple baselines can be selected
for forest canopy height inversion, and the best combination of baselines that fits the
assumptions of the RVoG model is chosen based on the degree of separation of the complex
coherence and the coherence magnitude information. In this study, baselines were selected
using the PROD method (Equation (3)), which uses the product of the coherence separation
and the average coherence amplitude as an evaluation index, and the baseline combination
was obtained by baseline selection when the PROD value within each observation unit was
maximum [34–36].

PROD = abs(γh − γl) × abs(γh + γl) (3)

where γl denotes the complex coherence near the surface, γh denotes the complex coherence
near the top of the canopy.

2.4. RVOG Three-Stage Method

The three-stage forest height inversion method, proposed by Cloude and Papathanas-
siou [13], solves the ground phase by fitting a coherence line and uses the look-up table
method for forest height inversion in a three-stage process.

First stage: Fitting the coherence line. In this study, the PD coherence optimization
algorithm is used to calculate the complex coherence under different baseline combina-
tions [36], and the interferometric complex coherence (γh, γl) under the best baseline
combination is obtained by baseline selection, and fitting the coherence line where the two
coherence points are located, which intersects with the unit circle to obtain two potential
ground phase points (Figure 2a).

Figure 2. RVoG three-stage method solution schematic, (a) indicates the first stage, (b) indicates the
second stage.

The second stage: Determining the ground phase ϕ0 from the two potential ground
phases. The complex coherence farthest from the ground phase is selected as the volume
scattering complex coherence (Figure 2b).

The third stage: The estimation of forest height (hv) and extinction coefficient (σ). A
two-dimensional look-up table is created (LUT) by setting reasonable hv and σ according
to the relationship between γv and (hv and σ) in Equation (2), and the inversion process is
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used to search the forest height (hv) and extinction coefficient (σ) corresponding to the γv
with the smallest distance from γh in the look-up table (Equation (4)).{

min
hv ,σL =‖ γh − ejϕ0 γv ‖

min
hv ,σL =‖ γh − ejϕ0 p

p1

ep1 hv−1
ephv−1

‖ (4)

2.5. FLPMethod

This method represents the interferometric complex coherence as the integration of
the vertical structure function in the height direction and expands this function in the form
of an FL order, which is then solved for the FLP coefficients based on the a priori forest
height and topographic phase. Based on the RVoG model, the pure volume coherence is
expanded by the FL order [25], expressed as Equation (5). Previous studies have demon-
strated that third-order FLP are sufficient to describe vertical forest structure for biomass
estimation [27–29]. Because of the direct relationship between forest biomass and forest
height, third-order FLP have also been used for forest height inversion.

γ(ω) = ej∅0 γv+m
1+m

γv = ei(ϕ0+kv)( f0 + a10 f1 + a20 f2 + . . .)
kv = kzhv

2 ; ai0 = ai
1+a0

f0 = sinkv
kv

f1 = i
(

sinkv
k2 v
− coskv

kv

)
f2 = 3coskv

k2
v
−
(

6−3k2
v

2k3
v

+ 1
2kv

)
sinkv

(5)

where an is the Legendre coefficient. f 0, f 1, f 2 denotes the i-th order FLP.

2.6. Fixed FLP Coefficients

In the study of cloud [13], it is mentioned that the FLP coefficients are related to the
ground-to-volume magnitude ratio of the polarization channel, as shown in Figure 3, where
the FLP coefficients change with the ground-to-volume magnitude ratio. Previous studies
have usually assumed that the ground-to-volume magnitude ratio of complex coherence
dominated by volume scattering is 0. When the structure of forest conditions changes
greatly, differences in forest cover within different observation units can lead to inconsistent
ground-to-volume magnitude ratios, in which case the use of fixed FLP coefficients to
represent the whole study area is subject to error. We designed a four-stage forest height
inversion method to test this hypothesis using fixed FLP coefficients.

2.7. A Novel Four-Stage Forest Canopy Height Inversion Method Based on FLP

Since the FLP is mainly used for tomographic techniques, the solution of the poly-
nomial coefficients requires an a priori forest height and ground phase corresponding to
each pixel cell, which can limit the extension of the method. Therefore, we propose solving
and fixing the FLP coefficients representing the whole scene by a small number of training
samples and comparing this approach’s applicability in different forests.

The four-stage forest canopy height inversion method based on the FLP, which is
based on the RVoG three-stage method, uses a third-order FLP as the vertical structure
function of forest height and is solved by the following procedure.

First and second stages: solving the ground phase and volume coherence using the
first and second stages of the RVoG three-stage method.
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Figure 3. Schematic representation of the relationship between the FLP coefficients and the ground-
to-volume magnitude ratio (Figure cited in reference [25]).

Third stage: a limited amount of a priori data of ground phase ϕ0 and RH100 is used as
input to solve the FLP coefficients a10 and a20 using nonlinear least squares (Equation (6)) and
applied to the whole experimental area to obtain the vertical structure function expressions.

kv = kzhv
2 = kzRH100

21
0
0

0
−i f1

0

0
0
f2

×
a00

a10
a20

 =


1

Im
(

γ(w)e−i(ϕ0+kv)
)

Re
(

γ(w)e−i(ϕ0+kv)
)
− f0

 (6)

γ(w) denotes the complex coherence of the arbitrary polarization channel.
Fourth stage: Inversion the forest height (hv) using the look-up table method. Ac-

cording to Equation (5), a reasonable range of forest height hv is set as input to construct a
look-up table. From Equation (7), it can be found that the method no longer relies on the
extinction coefficient; the unknowns become only hv.

min
hv

L =‖ γ(ω)− ei(ϕ0+kv)( f0 + a10 f1 + a20 f2) ‖ (7)

3. Results

To validate the four-stage forest canopy height inversion method based on FL and its
applicability, two different forest types were selected for validation in this study, the first
being a mangrove forest with a homogeneous structure and the second being an inland
tropical forest with a complex structure.

3.1. Estimation Results in Mangroves

In the mangrove test area of Pongara, 4602 sample points of LIDAR canopy height
RH100 were selected to validate the inversion results, and the results are shown in
Figures 4 and 5. The R2 of the RVoG three-stage method inversion results is 0.77, the
RMSE is 7.33 m, and the BIAS is−3.49 m. The scatter plot (Figure 4a) shows that the sample
points show an overall overestimation, the fitted trend line is above the 1:1 line, and a small
number of sample points are underestimated when the forest height is greater than 40 m.
The inversion results (Figure 5a,d) also show that the forest canopy height values based
on the RVoG three-stage method are greater than RH100 overall. The inversion accuracy
based on the four-stage FLP method was better than that of the RVoG model, and the R2
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is 0.82, the RMSE is 6.42 m, and the BIAS is 0.92 m. From the scatter plot (Figure 4b), it
was found that the overestimation phenomenon was improved compared with the RVoG
model, and the fitted trend line was closer to the 1:1 line. However, there is still a small
number of samples with underestimation when the forest height is greater than 45 m. From
the inversion results (Figure 5b,e), it can be found that the inversion results are closer to
RH100 based on the four-stage FLP method.

Figure 4. Scatterplot of validation results for the Pongara test area: (a) is the RVoG method, (b) is the
FLP method (black line indicates 1:1 line, red line is the fitted trend line of the scatter plot).

Figure 5. Forest canopy height inversion results of the Pongara test area: (a) is the inversion result of
the RVoG three-stage method, (b) is the inversion result of the FL four-stage method, (c) is the LIDAR
canopy height, and (d,e) are the local inversion results of the RVoG and FL methods, respectively.



Drones 2023, 7, 152 9 of 16

3.2. Estimation Results in Inland Forests

In the Lope test area of the inland tropical forest, the inversion results were ver-
ified with 6436 samples of LIDAR canopy height RH100. The results are shown in
Figures 6 and 7. The R2 of the inversion results in the RVoG three-stage method is 0.72, the
RMSE is 8.68 m, and the BIAS is 1.67 m. From the scatter plot (Figure 6a), it is found that
the overestimation phenomenon is obvious when the forest height is lower than 25 m, and
the underestimation phenomenon is more significant when the forest height is greater than
35 m, and this phenomenon can also be seen in the inversion result Figure 5a,d. The inver-
sion accuracy based on the four-stage FLP method is lower than that of the RVoG model;
the R2 is 0.50, the RMSE is 11.54 m, and the BIAS is 6.53 m. From the scatter plot (Figure 6a),
it is found that when the forest height is lower than 20 m, there is still overestimation of
lower forests, which is consistent with the inversion results of the RVoG three-stage method,
and the underestimation is more obvious when the forest height is higher than 25 m, and
the underestimation is more serious than that of the RVoG three-stage method, which is
also shown in the inversion results in Figure 5b,e. Moreover, a small number of outlier
sample points exists in the inversion results of both methods.

Figure 6. Scatterplot of validation results for the Lope test area: (a) is the RVoG method, (b) is the
FLP method (black line indicates 1:1 line, red line is the fitted trend line of the scatter plot).

3.3. Model Efficiency Comparison

In constructing the look-up table for forest height estimation, the input parameter of
the four-stage FLP method is forest height hv, but the RVoG three-stage method is forest
height hv and extinction coefficient σ. Therefore, the solution speed of the FLP method is
greatly improved with the reduction of model parameters (Figure 8), and the inversion
elapsed time is significantly reduced. The inversion time of the FL method in the mangrove
forest is 3 min, and that of the RVoG three-stage method is 33 min, while that of the FL
method in the inland tropical forest is 2.25 min, and that of the RVoG three-stage method is
21 min. The efficiency is improved by about tenfold.
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Figure 7. Forest canopy height inversion results of the Lope test area: (a) is the inversion result of the
RVoG three-stage method, (b) is the inversion result of the FL four-stage method, (c) is the LIDAR
canopy height, and (d,e) are the local inversion results of the RVoG and FL methods, respectively.

Figure 8. Comparison of inversion efficiency for different methods.
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4. Discussion

In the mangrove forest, the inversion results based on the four-stage FLP method were
better than those of the RVoG three-stage method, but in the inland tropical forest, the
inversion results of the RVoG three-stage method were better than those of the four-stage
FLP method (Table 2). We will analyze the reasons for the difference in results between the
two forest types from the following aspects.

Table 2. Comparison of results for different forest types.

Test Area (Forest Type) Inversion Model R2 RMSE BIAS

Lope (Inland tropical forests) RVoG 0.72 8.68 1.67
FL 0.50 11.54 6.53

Pongara (Mangroves) RVoG 0.77 7.33 −3.49
FL 0.82 6.42 0.92

4.1. Differences in Forest Types

As mentioned in the cloud [13] study, the FLP coefficients are related to the ground-to-
volume magnitude ratio of the polarization channel. According to the scattering mechanism
of SAR, since the ground-to-volume magnitude ratio is close to 0 for the complex coherence
γH dominated by volume scattering, it can be assumed that the ground-to-volume magni-
tude ratio is consistent in a structurally homogeneous forest, and thus a fixed FLP factor
can be used to represent the whole study area. According to Figure 9, it can be seen that
mangrove forests are broadleaf forests, the structure in mangrove forests is more homoge-
neous, in this area, the canopy cover is larger, and there is no other vegetation on the forest
ground surface, in which case the condition is valid for fixed FLP coefficients. However,
in the inland tropical forest, the tree species composition is diverse, and the underground
vegetation is complex. In the scatter plot in Figures 6a and 9a, it can be seen that the forest
height in Lope shows a polarization phenomenon, with more tall and low forests. Under
the condition of low forest cover, the contribution of surface scattering is larger, and the
dry surface in the inland forest reflects electromagnetic waves more strongly compared
with the mangrove forest, so the assumption that the ground-to-volume magnitude ratio of
the whole study area is 0 is not fully valid; therefore, it is not feasible to use a fixed FLP
coefficient in the inland forest, which leads to the FLP method having a lower inversion
accuracy. In the next step of the study, the performance of this method in other forest types
is explored to draw a more definite conclusion.

4.2. Impact of the Baseline Selection Method

Another important parameter related to forest canopy height inversion is the ver-
tical effective wave number kz and the 2π height of ambiguity (hoa). Long baselines
produce smaller ambiguity heights corresponding to larger kz, which are sensitive to low
forests, and short baselines produce larger ambiguity heights and smaller kz. Kugler
and Schlund’s study shows that baseline size has an important effect on forest height
inversion [33,37], with short baselines reducing sensitivity to forest height and long base-
lines reducing coherence and thus limiting forest height inversion. Previous studies have
shown that when the product of forest height and vertical wave number is less than hoa
(kz × hv < hoa), the inversion results are more accurate, and either too large or too small val-
ues of kz would increase the interference of decorrelation [38,39], while the spatial baseline
is an important parameter for determining kz. Despite our study’s use of multi-baseline
PolInSAR and baseline selection, it was impossible to fully overcome the baseline effects.
From the scatter plots Figure 10a,c, it can be seen that Hoa increases with forest height in
mangrove forests, which is consistent with the requirement of forest height on hoa size.
However, in the inland forest, the hoa is much larger than the forest height when the
forest height is less than 20 m. Moreover, when the forest height is larger than 30 m, many
sample points correspond to Hoa much smaller than the forest height (Figure 10b,d), so
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the overestimation and underestimation are more serious in the canopy height inversion
results of the inland forest. As mentioned above, the forest structure in mangroves is
homogeneous and closer to the RVoG model hypothesis, and the baseline selection results
are more reasonable, while the structural composition of inland tropical forests is complex,
with more interference factors, and relying only on the product of coherence separation
and average coherence amplitude as the baseline selection criteria does not reflect the true
forest height information, which was also verified in the study of Denbina [35], and the
optimization and improvement of baseline selection methods in the next study is also a
new research problem.

Figure 9. Schematic representation of different forest scenes of different forest types: (a) is mangrove
and (b) is inland tropical forests.

4.3. The Impact of Temporal Decorrelation

There is a temporal interval in the acquisition of airborne SAR data, and the mangrove
area in the Pongara experiment area is more affected by dielectric constants such as wind
and water. Hence the effect of temporal decorrelation is more obvious. Lee [40–42] found
that temporal decorrelation reduced the coherence coefficient and increased the coherence
phase volatility in vegetation areas. Moreover, the effect of temporal decorrelation is more
severe in low vegetation areas, which caused the higher height of the center of volume
coherence phase, resulting in overestimation of low vegetation, which is a common problem
in PolInSAR forest height estimation. It was consistent with the findings of Lee [42], but
our study showed that the FLP method could improve the overestimation of lower forests.

4.4. The Impact of Microwave Penetration

PolInSAR is an active remote sensing method, and the electromagnetic wave signals
penetrate the forest to a certain extent. Compared with X-band and C-band, the larger
wavelength makes the L-band SAR signals penetrate the forest more deeply, causing the
interference phase center to be located at the top lower part of the canopy [16,43,44]. The
scatter plots from both test areas in this paper show that the overestimation is more obvious
at higher forest height; the use of microwave penetration to improve this defect may be
considered in future studies.
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Figure 10. kz and hoa after baseline selection for different test areas: (a,c) indicate kz and hoa for
Pongara test area, and (b,d) indicate kz and hoa for Lope test area.

4.5. Limitations of This Method

In this study, we propose a method to improve forest canopy height estimation using
FLP instead of the vertical structure function of the RVoG model, which presupposes a
homogeneous forest structure and requires the support of a priori forest height data, which
is an important factor limiting the extension of this method, and still cannot overcome the
overestimation problem in low and sparse vegetation areas. The next research question is
how to improve the usability of this method in complex structured forests.

5. Conclusions

The PolInSAR technique is an important remote sensing tool in forest height estimation,
and among the current PolInSAR-based forest height estimation methods, the RVoG three-
stage method is the most classical and widely used method. However, it is difficult to
accurately express the scattering process of the PolInSAR signal by a specific function
due to the high complexity of the vertical structure of the forest. To solve this problem,
a third-order FLP was used to replace the exponential function in the RVoG three-stage
method, and a small number of LiDAR height samples was used to solve the coefficients of
the polynomial to construct a four-stage forest height inversion method. The results show
that the inversion accuracy of the four-stage FLP-based method is higher in mangroves with
homogeneous forest structures, but this conclusion is reversed in the complex structure of
inland tropical forests, and the applicability conditions of the two models are different. In
the four-stage FLP method, the model inversion time is greatly reduced, and the efficiency
is improved by about tenfold compared with the RVoG three-stage method. With the
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realization of TanDEM-L and BIOMASS satellites and the NISAR program, it is essential to
develop an efficient forest height inversion method to obtain forest structure parameters on
a global scale.
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