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Abstract: The adoption of drones and other emerging digital technologies (DTs) has proven essential
in revolutionizing humanitarian logistics as standalone solutions. However, the interoperability
of humanitarian drones with other DTs has not yet been explored. In this study, we performed
a systematic literature review to attempt to fill this gap by evaluating 101 mathematical models
collected from Scopus. After conducting a descriptive analysis to identify the trends of publications
in terms of year, type, source, and country of origin, a content analysis ensued to investigate the
complementarity, interoperability, and level of integration of humanitarian drones with eight DTs.
Next, we researched how these DTs can help drones exploit their capabilities to their full potential
and facilitate the various drone operations deployed across different disaster scenarios, types, and
stages. Last, the solving approaches employed by the models were examined. Overall, we shifted our
research focus toward several overlooked aspects in the literature and identified multiple challenges
needing to be addressed. Our work resulted in the formulation of a holistic framework aiming to
standardize the cooperative utilization of DTs during the execution of humanitarian drone operations,
so as to enhance their real-life application and scalability.

Keywords: humanitarian logistics; drones; unmanned aerial vehicles; digital technologies; Internet
of things; big data; disaster management

1. Introduction

Contemporary logistics networks, even under normal operating conditions, are inher-
ently faced with a plethora of issues, which become even more challenging in the event
of disasters and emergencies, which either disrupt existing networks by imposing addi-
tional pressure or require the creation of ad hoc humanitarian logistics (HL) networks for
disaster management (DM), to relieve the affected areas and provide aid to the victims.
According to the authors of [1], HL is defined as the “process of planning, implementing
and controlling the efficient, cost-effective flow and storage of goods and materials as well
as related information from the point of origin to the point of consumption for the purpose
of alleviating the suffering of vulnerable people”. Humanitarian and commercial logistics
are recognized as radically different [2]. Authors [3] examined the differences between
the two, concluding that HL, not being profit-driven as with commercial logistics, aims to
minimize deprivation costs, i.e., the loss of well-being due to the lack of a good or service.
Moreover, unlike traditional logistics, the dynamically changing environment prevalent
during disasters may lead to lack of up-to-date information and may thus become a source
of uncertainty regarding supply, demand, time, location, and size [4].

Even though it is not possible to completely prevent all disasters, it is widely known
that leveraging emerging digital technologies (DTs) can transform HL operations deployed
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before, during, and after the strike of a disaster. Recently, unmanned aerial vehicles
(UAVs) or “drones” have significantly changed the humanitarian landscape through their
communication, monitoring, and transportation capabilities [5]. Other disruptive DTs,
such as, but not limited to, big data analytics [6–11]; Internet of things (IoT) [12–14];
cloud, edge, and fog computing [15–17]; artificial intelligence (AI) [18–20]; social me-
dia and crowdsourcing [8,21–24]; robotics and cyber-physical systems (RCPSs) [25–27];
blockchain [18,28–30]; and extended reality (XR) [31,32], have also been harnessed in HL
operations. However, the academic literature, to the best of our knowledge, has only
focused on drones and DTs as standalone solutions, and the interoperability of drones with
other DTs has so far been studied in neither the HL nor DT literature.

In the present research, we attempted to fill this particular research gap through a
systematic literature review (SLR). The present paper is structured as follows: Section 2
introduces the reader to the four discrete steps of the research methodology followed in
the study and provides details about the selection process of papers included in the study
sample. Next, in Section 3, a descriptive analysis is outlined, and its results are provided to
illustrate the trends in publications in terms of year, type, source, and country of origin.
Section 4 describes the coding criteria proposed for the classification of the papers, which
is detailed in Section 5, where the results are categorized and evaluated. In Section 6, the
results are discussed, challenges are pinpointed, and a novel holistic integrated framework
is proposed based on the review results. Finally, the paper concludes with Section 7,
summarizing the study’s findings as well as highlighting research limitations and future
research potential.

2. Research Methodology: Systematic Literature Review

An SLR was carried out to identify and critically appraise the findings of relevant
peer-reviewed research works, while ensuring transparency, objectivity, rigor, and repro-
ducibility. The main objective of an SLR is to analyze a mass of evidence to help both
academics and practitioners ameliorate their decision making by bridging the prevalent
“knowing–doing” gap between research and practice [33]. SLRs differ from traditional
narrative reviews in that they require a more formal and meticulous approach in terms
of reporting methodology, search terms, databases used, as well as inclusion and exclu-
sion criteria [34,35]. An SLR methodology consists of four steps, i.e., planning, searching,
screening, and extraction [35]. Their implementation in the present study is detailed below.

2.1. Planning

The initial step of conducting an SLR is to develop clear, focused, and concise research
questions, which set the context to our research, refined the issue under study, and guided
material collection, with a view to constructing a logical argument and finding new aspects
of already established results. After conducting preliminary research on HL to acquire
familiarity and a deep understanding of the field, to ensure the validity of our original
research idea, and to avoid duplication of previously addressed research questions, we
observed that even though the research on DTs in the context of HL has been peaking
over the last decade [36], there still are significant research gaps to be addressed. Indeed,
according to numerous works reviewing DTs, including drones, in HL, this topic still
contains various unexplored research avenues that call for additional analysis (see Table 1).
The three gaps addressed in this study are described as follows:

X There have been multiple literature reviews concentrating on the integration of emerg-
ing technologies in HL operations, the majority of which, nevertheless, have focused
on the enablers of drones [5] and other DTs [7,18,28,37–41] as standalone solutions.
In fact, publications synthesizing previous research on how different DTs have been
applied in tandem with drones in HL are scarce and not inclusive enough. For in-
stance, such reviews include [42], where the coordination of drones with wireless
sensor networks (WSNs); the IoT; edge, fog, and cloud computing for data gathering;
and communication provision in DM was discussed. Other researchers [43] examined
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combined drone–truck operations for various types of drone problems in civil applica-
tions, including but not emphasizing HL. To the best of our knowledge, no study has
so far holistically investigated and systematically appraised the complementarity and
interoperability of drones with other emerging DTs across various disaster scenarios,
types, and stages.

X The various types of drone problems have been the subject of much research con-
ducted in the context of civil applications, as seen in [43], where original studies of
different types of drone operations were brought together and analyzed. However,
such analysis in the context of HL has been overlooked.

X The literature reviews of mathematical models in HL have not focused on either drones
or other DTs [44–46]. Therefore, there is a need to fill this gap by highlighting the
trends, state of the art, and most promising challenges in such modeling approaches.

Table 1. Summary of the most pertinent literature reviews.

Reference Drones DTs
Drones

in Tandem with
DTs

Contributions: This Paper
Reviews . . .

Technology-/Model-Oriented Future
Research Directions Should

Address . . .

HL
Context

Non-HL
Context

[44–47] - - -
Mathematical models

developed in the field of
HL.

The need for the use of metaheuristics to alleviate
models’ computational burdens and enable them to be
used in actual disasters and filtered down into policy,
practice, and procedures.
The lack of holistic approaches.
The infancy of technology use.
The lack of use of real-time data.
Narrow variety of modeling objectives.

X -

[48] X - -

Optimization problems
arising in the operations

planning of drones in civil
applications.

Dynamic planning schemes for a range of relevant
drone operations fulfilling a set of desired criteria.
Approaches to deal with data uncertainty.
Drone design to optimize performance, practicality,
and economics.
The incorporation of demand into planning models.
How individual beliefs and experience impact
purchasing decisions of drone technology and services,
and the ways in which drones are used as well as the
perceived benefit.

- X

[49,50] X - -
Trajectory and routing

optimization models based
on the usage of drones.

Other types of optimization problems in addition to
routing ones, such as task assignments.
Modeling energy consumption and kinematics, which
need further investigation.

X X

[6,7] - X - Big data in HL.

The better understanding of the environmental and
social aspects of HL through big data.
Big-data-assisted social media analytics.
The combination of stakeholder and institutional
theory from the perspective of big data use.
Cost–benefit analysis of maintaining viable practices
based on big data.
The shift of focus from descriptive and diagnostic to
predictive analytics.
Improving big data quality.
Securing privacy and security when integrating big
data with cloud computing.

X -

[43] X - X

Optimization issues related
to drone and drone–truck

operations, including
mathematical models,

solution methods,
synchronization between a

drone and a truck, and
implementation barriers.

Incorporating uncertainty.
Relaxing operational constraints.
Improving modeling techniques and solution
methodologies.
Addressing mixed-fleet arc routing problems.

X X

[5] X - -

Potential of drones and
their role to provide
operational tools for

emergency responders
during disastrous

situations. Three important
capabilities, three

performance outcomes, and
adoption barriers in three

areas were identified.

Investigating drones’ complementarity and
interoperability with other emerging DTs, such as IoT,
AI, blockchain, and big data analytics, other than
drones as a standalone solution.

X -
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Table 1. Cont.

Reference Drones DTs
Drones

in Tandem with
DTs

Contributions: This Paper
Reviews . . .

Technology-/Model-Oriented Future
Research Directions Should

Address . . .

HL
Context

Non-HL
Context

[37] X X -

DTs (IoT, AI, blockchain,
drones, cloud computing,
big data, social media, 3D
printing, robotics, AR, VR
etc.) in the humanitarian

supply chain (HSC)
domain and their role in
terms of main objectives,
application domains, and

deployment phases within
the HSC framework.

The collection of insights from various stakeholders to
explore multiple perspectives on the novelty of a
specific DT within the HSC context and potentially
discover new processes, methods, organizational
structures, and managerial frameworks for HL
operations.

X

[42] X - X

Data collection through
drones and communication

provision through
drone-assisted ground

technologies (WSN, IoT,
and edge and fog

computing) and their
coordination for DM.

Challenges UAVs are faced with in disaster
communication scenarios such as delay, coverage,
quality of service (QoS) requirements, channel models,
and UAV positioning and interference problems.

X -

[28] - X - Blockchain technology in
HL.

The integration of optimization models.
The lack of empirical evidence.
Testing simulation scenarios before performing
real-life implementations.

X -

[41] X X -

DTs (IoT, image processing,
AI, big data, smartphone
applications, etc.) that are

in use and have been
proposed for DM of urban

regions.

Systematization and standardization.
A global database on the application of technology for
HL that will act as a roadmap, highlighting the
relevance of each technology as per the scenario.
Training on technology.
A better understanding of the legal implications of
technology, data protection, privacy laws, etc.

X -

Considering all of the above, in this study, an SLR was carried out to address the
challenges that have emerged from previous studies, as presented above, by evaluating the
mathematical models investigating the complementarity and interoperability of drones with
other emerging DTs across various drone operations as well as disaster types and stages.
The aim of the research questions posed in this SLR was to look into the aforementioned
research gaps as well as identify the progress of the field under study and future research
perspectives.

In particular, we raised the following research questions (RQs):
RQ1: What is the trend in the publications in terms of year, type, source, and country

of origin?
RQ2: Which disaster stages and types of disasters have been discussed? What emerg-

ing DTs are being used?
RQ3: How have DTs started to complement and operate in tandem with drones in HL

literature? How are these DTs diversified?
RQ4: What drone operations have been examined, and what drone capabilities have

been utilized? How are drone operations approached by each DT?
RQ5: What different mathematical models have been proposed? What types of solving

approaches have been proposed?

2.2. Searching

This step pertains to the identification of academic literature relevant to the RQs
posed and the determination of which studies should be included in the sample after
setting a number of inclusion and exclusion criteria. The data collection process in our
SLR was conducted on 4 September 2022, based on papers from the Scopus database. The
search query used in this study comprised three key word sets combined with the “AND”
operator. The first one was used to establish the humanitarian context; the second one
to include the term “UAVs” as well as synonyms and alternate terms, as shown by the
authors of [5], who performed an SLR to synthesize research on drones in the HL context;
and the last one was used to include various DTs, all separated by the “OR” operator.
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The DTs included in our query were inspired by the research protocol followed by the
authors in [37], who conducted an SLR to investigate the role of DTs in HSCs. After a
comprehensive preliminary search, it was concluded that some of the DTs proposed in that
study do not work in tandem with drones and were, hence, excluded from the search query.
It is worth mentioning that the term “mathematical models”, despite being the focus of
our SLR, was not included in the query to avoid missing useful material. The query of the
keyword terms used in this study was:

(“Humanitarian Supply Chain” OR “Humanitarian Operation*” OR “Humanitarian Logis-
tic*” OR “Emergency Management” OR “Disaster*”) AND (Drone* OR “Unmanned Aerial Vehi-
cle*” OR UAV* OR “Unmanned Aircraft System*” OR UAS* OR “Remotely Piloted Aircraft*”)
AND (“Big Data” OR “Big Data Analytics” OR “Cloud Computing” OR “Edge Computing” OR
“Fog Computing” OR “Internet of Things” OR IoT OR “Augmented Reality” OR “Virtual Reality”
OR “Extended Reality” OR “Mixed Reality” OR “Robotics” OR “Cyber-physical System*” OR
“Social Media” OR “Crowdsourcing” OR “Block-chain*” OR “Blockchain*” OR “Information
Technolog*” OR “Industry 4.0” OR “Smart Industry” OR “Digitalisation” OR “Digital Platform*”
OR “Digital Transformation” OR “Logistics 4.0”))

Additional reviews added on a later date to the Scopus database were, thus, not
included in the present study. The proposed keyword string was entered into Scopus’s
default tab (Document Search form), followed by the selection of the search field “Article
Title, Abstract, Keywords”. Note that the use of double quotation marks ensures the
inclusion of each phrase as a “loose phrase”, meaning that the words must appear together
in the selected search field(s). Furthermore, the use of asterisks (*) at the beginning or end
of a keyword ensures the inclusion of the term in both singular and plural forms as well as
its derivatives. This initial search generated 631 results.

2.3. Screening

Three exclusion criteria were then set to narrow down the development trends in
mathematical models exploiting both UAVs and other DTs in the context of HL. First and
foremost, our sample was limited to studies published after 2015. The reason behind this
decision was twofold. On the one hand, we wanted to make sure the resulting sample was
manageable enough to be carefully studied and analyzed in its entirety. The average SLR
sample in the HL literature (bibliometric systematic reviews aside) was ~86 papers (see
Table A1 in Appendix A), which is considerably smaller than our initial sample. On the
other hand, the scope of this SLR was to collect information about the most novel solutions
in the sense that novelty is inherently linked to the most recent years of technological
innovation. According to the works presented in [37], the period following 2015 was the
most suitable starting point for our research design including DTs and HL due to the recent
increase in pertinent scientific interest, resulting in the concepts’ relative maturity [6,36].
This is also corroborated by the authors of [46], who confirmed the infancy of the use of
technology and sophisticated mathematical models in HL back in 2015. Taking both points
into consideration, 81 papers, which were published before 2015, were rejected. The second
criterion set was the exclusion of papers written in any language other than English. Sixteen
of the papers yielded by the search were written in Chinese, Korean, or Ukrainian and
were therefore removed from the sample. The third and last criterion applied to the type of
publications and led to the exclusion of 49 magazines, conference reviews, and errata.

After rigorously examining their content, i.e., their abstract, keywords, table of con-
tents, and main body, we also rejected 390 irrelevant papers (e.g., the majority of rejected
papers deviated from the HL concept and focused on other drone applications or were
describing theoretical HL contributions instead of mathematical models) as well as papers
whose full text could not be retrieved. Considering all of the above, the initial sample
size decreased to 101 papers. The systematic screening process described is presented in
Figure 1.
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Figure 1. Systematic screening process of the SLR.

2.4. Extraction

After a descriptive analysis was conducted to answer RQ1, the 101 publications of
the final SLR sample were thoroughly investigated content-wise, and coding criteria were
applied to answer the remaining RQs. The ultimate classification results were processed
with Microsoft Excel software, because its formulas, formatting options, and various data
management and visualization tools make it a suitable tool for organizing data in an easy-
to-navigate way and rapidly and accurately performing complex mathematical calculations.
A list of classification abbreviations is provided in Table A2 (Appendix A), followed by a
list of other abbreviations of terms used in this paper (Table A3 in Appendix A).

3. Descriptive Analysis
3.1. Number of Publications (Per Year, 2015–2022)

The chronologically first paper selected to be included in this research was [51],
published in the International Conference on Informatics in Control, Automation and
Robotics (ICINCO). Figure 2 illustrates the number of publications from 2015 to the present
moment. From the beginning of our time frame to 2018, the number of papers published
has gradually increased, while the rate of growth from 2018 to 2019 has been more than
400%. Despite this emerging trend, after 2019, the overall trend decreased for the next
two years. This could be attributed to the COVID-19 pandemic as non-COVID-19 research
production decreased. In fact, according to the authors of [52], non-COVID-19-related
articles began to decrease in volume as COVID-19-related articles increased. Nevertheless,
the trend seems to have surged again in 2022, and it will likely continue to grow in the near
future as well.

3.2. Number of Publications (Per Type)

The following pie chart (Figure 3) illustrates that roughly half of the papers in our
sample (n = 55, 54.46%) are journal papers, while the remaining papers (n = 45, 44.55%),
apart from one book chapter, are conference proceedings. The predominance of journal
papers indicates early signs of the maturing of the field.
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Figure 3. Number of publications (per type).

3.3. Number of Publications (Per Publishing Source)

Table 2 demonstrates how the papers included in our SLR relate to their classification
by the source where they were published. A uniform distribution of papers across different
sources can be seen, with no obvious pattern for a particular journal or conference in
which the number of papers (n) is noteworthy. Out of 101, 75 (74.26%) studies were
published in sources, accounting for only 1 or 2 papers in our SRL. The six sources with the
majority of papers were IEEE Internet of Things Journal (n = 8, 7.92%), IEEE Access (n = 4,
3.96%), IEEE Transactions on Vehicular Technology (n = 4, 3.96%), IEEE Conference of Computer
Communications (n = 4, 3.96%), Computer Communications (Elsevier) (n = 3, 2.97%), and IEEE
International Workshop on Safety, Security and Rescue Robotics (n = 3, 2.97%). Overall, all
of the 34 journals and 37 conferences participating in our study had a reasonably high
impact factor (weighted average ~5.3) and h5 index (weighted average ~36), respectively;
consequently, it was rightfully deduced that the selected studies were subject to meticulous
quality control by editors and peer reviewers.

This fragmentation of academic literature pertinent to the topic under study is in
accordance with the conclusions made in [5,37], which, as already mentioned, acted as
motivations for this study. Moreover, all sources in our sample are technology-, applications-
, and computer-science-centric and lack humanitarian foci. This contributes to our previous
argument and reaffirms the conclusion drawn in [53] that the role of DTs in HL follows a
technology-oriented research perspective.
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Table 2. Number of publications per publishing source.

Publishing Source # of Papers (n) %

IEEE Internet of Things Journal 8 7.92%
IEEE Access 4 3.96%
IEEE Transactions on Vehicular Technology 4 3.96%
IEEE Conference on Computer Communications 4 3.96%
Computer Communications (Elsevier) 3 2.97%
IEEE International Workshop on Safety, Security, and Rescue Robotics 3 2.97%
IEEE Wireless Communications 2 1.98%
Wireless Communications and Mobile Computing (Wiley Hindawi) 2 1.98%
IEEE Transaction on Network Science and Engineering 2 1.98%
IEEE International Conference on Communications Workshops 2 1.98%
IEEE Transactions on Industrial Informatics 2 1.98%
IEEE Systems 2 1.98%
IEEE International Conference on Cloud Networking 2 1.98%
Sensors (MDPI) 2 1.98%
IEEE International Conference on Distributed Computing in Sensor
Systems 2 1.98%

Other * 57 56.44%
All 101 100%

* Includes sources participating in the study with only one (1) paper.

3.4. Geographical Distribution of Authors

The sample size of our SLR shows that the work of authors spanned over 41 countries,
with distinctly discernible clusters in east Asia, the United States, western and central
Europe, as well as south and southeast Asia, along with various smaller clusters in other
parts of the world, such as South America, the Middle East, eastern Europe, and Oceania
(Figure 4). It is worth noting that China alone hosted over one-third of the authors. The
researchers from Europe were primarily located in Italy, Spain, France, the United Kingdom,
and Germany. China, Japan, and South Korea (east Asia); India and Pakistan (south Asia);
as well as Vietnam, Malaysia, and Thailand (Southeast Asia) represented the Asian clusters.
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4. Coding Criteria Taxonomy

The descriptive analysis was followed by a content analysis based on a specific pattern
of coding criteria developed, with a view to divulging meaningful themes in our sample and
producing valid inferences [54]. In general, content analysis does not proceed linearly [55].



Drones 2023, 7, 301 9 of 59

For the content analysis, the inductive method (classification after reading the selected
documents) was carried out, which means that the coding criteria emerged from the
content of the papers in our sample through an iterative process of criteria-building, testing,
revising, and comparing [56]. Given that humanitarian drones are emerging as a promising
technology [40], the use of a deductive approach would not be appropriate, because new
codes have to be inferred from the data and adaptably established [57]. This process was
guided by the RQs posed in the methodology section and resulted in a coding criteria
taxonomy, which we used to categorize the selected publications and investigate the field’s
progress in terms of the integration of DTs into various drone operations across different
disaster phases and types, the drone capabilities utilized, and the mathematical modeling
approaches employed. The proposed coding criteria are discussed below.

4.1. Disaster Phases and Types

The first criterion was the disaster phases and types addressed by each proposed
mathematical model in our sample. Leveraging DTs, including drones, in DM phases has
been pinpointed in the recent literature to be a topic of paramount significance requiring
further analysis [5,6,39] because they have proven to play a vital part in ameliorating
efficiency, effectiveness, and continuity. In the literature, DM efforts have been classified
into two stages, i.e., the pre- and postdisaster stages [58]. The predisaster stage covers
the mitigation phase, which includes the steps to prevent a disaster from happening and
minimize the vulnerability to its impacts; and the preparedness phase, which includes
educating communities on how a disaster can impact them, so that they can appropriately
react when needed and adopt a proactive stance [6,44]. On the other hand, the postdisaster
stage covers the response phase, which involves resource allocation and emergency pro-
cedures aimed at protecting life and property, as well as the socioeconomic structure of a
community after its immediate strike; and the recovery phase, which includes actions that
support the restoration of all the damage as a result of the disaster and the stabilization of
the community [6,47]. The selected contributions were also classified based on the type of
the disasters, which, depending on the cause of the disruption, could be categorized into
natural and human-made and further categorized into sudden- and slow-onset disasters,
depending on whether their emergence was unexpected or gradual [2].

4.2. Humanitarian Digital Technologies (HDTs)

The second criterion pertains to the various DTs complementing drones in the hu-
manitarian operations addressed by the mathematical models in our sample. These DTs
include the IoT; cloud, edge, and fog computing; big data analytics; AI; social media and
crowdsourcing; RCPSs; blockchain technology; and XR, which are detailed below.

4.2.1. IoT

Semantically, the IoT paradigm refers to a network of interconnected physical objects,
called “things”, which contain embedded technologies capable of communicating and
interacting with one another [12,59], formulated to enable sensing, seamless communica-
tion, and actuation. Its capabilities, including interoperability, distributed processing, and
real-time analytics, render IoT technologies capable of “smartifying” DM and providing
solutions to various problems [13]. In such applications, the fundamental contributions of
the IoT lie in the simultaneous and continuous exchange of real-time data, obtained from
different strategically selected and reliable sources, which help crises stakeholders with
decision -making before, during, or after the strike of a disaster [14,60]. In particular, the
instantaneous and close-to-reality information updates from the distributed smart objects
and the communication infrastructure can perfectly address the dynamic nature of the
requirements during an HL operation. They contribute to disaster risk mitigation and
prevention through the monitoring and design of prediction and early warning systems;
to emergency response through the real-time communication for the mapping of affected
areas and timely victim rescue and relief; and, finally, to disaster recovery, for example, in
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missing person search operations in the aftermath of a disaster [14,61,62]. Among others,
IoT networks in such applications comprise sensors, gateways, mobile devices, and robots,
including UAVs, computers, and satellites.

4.2.2. Cloud, Edge, and Fog Computing

Cloud, edge, and fog computing have been broadly used in IoT data management to
increase data processing speed and efficiency as well as to smartify storage, control, and
networking and obtain improved resource utilization and availability among connected
IoT entities [63]. Cloud computing is the standard IoT computing paradigm that, instead
of saving information to local servers or devices, is based on the centralization of resources.
This means that all information is kept in multiple remote servers able to be accessed
online from any device, which, however, increases latency, bandwidth cost, and network
requirements. A new trend in computing is currently emerging with the function of
clouds increasingly moving toward network edges [64]. Unlike cloud computing, in
edge computing, data are directly processed and kept on edge devices without being
transferred to remote servers, which prevents the transmission of irrelevant data to the
cloud, eliminates the need to wait for data to return from a centralized processing system,
and secures an immediate response and the lowest latency possible. Fog computing works
as an intermediate layer between cloud and edge computing and works by taking on
specific processing tasks from the two, hence decreasing their workload. Even though it is
decentralized like edge computing, unlike it, fog computing takes place further away from
the data-generating devices. In fog computing, data are analyzed within an IoT gateway,
while in edge computing, data are analyzed on the devices themselves.

4.2.3. AI

AI refers to technologies that can learn from experience and adjust accordingly, thus
enabling machines to imitate or even outperform human intelligence when performing
human-like tasks. Machine learning (ML) is an application of AI that determines how
a computer system develops its intelligence without being explicitly programmed. ML
algorithms are categorized into supervised learning (SL) algorithms, which are trained
by humans based on pre-existing labeled data from which the machine is expected to
learn the pattern and predict the output values for new data inputs, and unsupervised
learning (UL) algorithms, which learn exclusively from unlabeled data, without the need
for human intervention. This conventional dichotomous separation is becoming all the
more vague every day as, usually, both types of ML algorithms are used either sequen-
tially or in a hybridized form. However, there are ML algorithms that do not require a
training data set and are therefore neither supervised nor unsupervised. Examples of such
algorithms include reinforcement learning (RL) algorithms, which are feedback-based,
where desired behaviors are rewarded and/or undesired ones are punished, allowing the
model to make mistakes and explore data within certain parameters. ML is playing an
increasingly significant role in DM operations from the prediction of hazards and their
escalation, vulnerability assessment, the provision of situational awareness and decision
support through remote sensing (e.g., with drone aerial imagery), crowdsourcing, and the
development of maps for disaster detection in real time to early warning systems, damage
assessment, and beyond [19,20].

4.2.4. Social Media and Crowdsourcing

Social media is defined as a group of Internet-based applications that allow the creation
and exchange of user-generated content that can be edited, shared, and interacted with [65].
It includes a broad spectrum of content formats including text, audio, video, photographs,
and GPS coordinates [8]. Social media has come to play a role of paramount importance
in citizen participation and crowdsourcing in the event of a crisis [21,66], as the massive
volume of data generated can be mined for enhancing communications before, during, and
after the occurrence of a disaster [22]. Through social media platforms, people are capable
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of broadcasting their needs, divulging and dispersing crisis-pertinent information [67–69],
and providing real-time status updates [70], thus contributing to the planning and execution
of relief operations [71,72]. The abundance of data generated by social media and their
real-time analysis can help aid organizations and first responders to streamline their efforts
as well as coordinate and collaborate with competent agencies and stakeholders during
humanitarian operations [7]. The interactivity provided by social media [23,73] can also
enable the dissemination of information, in the form of instructions and guidance, back to
the citizens in danger through the design and development of early warning information
systems. Human behavior can be estimated through the analysis of social big data from
various services, and the efficient evacuation of victims stranded in vulnerable areas can be
accomplished. Last, after the disaster has been dealt with, recovery can be aided through
the sharing of locations and transmission of images of damaged infrastructures.

4.2.5. Big Data Analytics

Big data analytics involves examining and making sense out of large volumes of
quickly generated, complex, and diverse data, with a view to unraveling hidden patterns
and unknown correlations and ultimately improving efficiency and enhancing decision-
making capabilities. These data, in their raw form, are impossible to process and analyze
using traditional methods and technologies. Big data are characterized by the seven Vs, i.e.,
volume, designating the quantity of generated and stored data; velocity, i.e., the speed at
which data are generated; variety, i.e., the nature of data; variability, i.e., the inconsistency
in data; veracity, i.e., the quality of data; visualization, i.e., the visual representation of
data; and value, i.e., the return resulting from data management. The ability of big data
analytics to visualize, analyze, and predict disasters and their consequences renders it
capable of revolutionizing humanitarian operations and emergency management [6,9,10].
In the context of humanitarian operations, the most important sources of big data include
satellite imagery, UAV-based aerial imagery and videos, WSNs and the IoT, social media
and crowdsourcing, as well as mobile GPS and call data records [11].

4.2.6. RCPSs

RCPSs are complex, physically aware networked systems that integrate embedded
computing technologies including sensors, processors, and actuators into the physical
world. These systems are designed to sense and interact with the physical world with
the aim of supporting real-time monitoring, knowledge discovery, decision making, and
actuation [74–76]. They are widely used in the field of HL, providing intelligent and fast
responses to emergencies [76], being launched in terrestrial (unmanned ground vehicles
(UGVs)), aerial (UAVs) or aquatic (unmanned underwater vehicles (UUVs) and unmanned
surface vehicles (USVs)) environments. RCPSs are able to perform a multitude of operations
including but not limited to the transportation of medical supplies, commodities, oxygen
tanks, or even wounded victims; monitoring through video cameras or thermal imaging
to spot survivors; public safety communication; search and rescue (SAR); detection and
disposal of explosive ordnances; firefighting; the detection of toxic industrial chemicals or
radiation; the collection of information about the temperature, humidity, and wind in the
atmosphere; tethering to other devices; etc.

4.2.7. Blockchain Technology

Blockchain is a DT that started to rapidly enter the context of HL through the estab-
lishment of the permanent, immutable, and transparent recording of data and transactions
across information systems and geographies with permissioned data access and identity
validation. The data in blockchain are stored in a shared, distributed, and fault-tolerant
database to which each and every participant in the network has access. This technology
provides the ability to eliminate corruptive actions by leveraging the computational capabil-
ities of the honest nodes, thereby rendering information exchange resilient to manipulation.
Its decentralized architecture makes it robust against potential attacks, and its reliance on a
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public key infrastructure makes data cryptographically safe [77]. These capabilities enable
blockchain to provide a solution to multiple critical DM challenges, such as the establish-
ment of secure access to critical data generated across all HL phases, the timely exchange of
verified information, the acceleration of partnership formation and collaboration between
diverse organizations and agencies, the establishment of trust and reduction of corruption
among stakeholders, the amelioration of resource allocation as well as coordination, and
network resilience [29,30].

4.2.8. XR

XR is an umbrella term covering the spectrum of all immersive technologies merging
the real and virtual worlds using augmented reality (AR), virtual reality (VR), or mixed
reality (MR), which superimpose virtual objects on the real environment or/and integrate
real objects into a preliminary virtual environment. In particular, AR is a solution to creating
mediated reality environments in which georeferenced and context-specific computer-
generated information elements in the form of text, audio, and/or graphics complement
the perception of the real world [31]. VR is a solution to creating a sense of immersion
and “intelligent” scenes comprising a fully virtual environment with virtual elements that
obscure the physical environment and simulate real-life objects [78]. Last, in MR, also
referred to as hybrid reality, the capabilities of AR and VR complement each other in such
a way that digital and real objects coexist and interact with one another in real time [32].
In the context of HL, the aforementioned technologies are employed in both the pre- and
postdisaster phases to deal with numerous challenges, such as achieving mass awareness
by alerting the general public about disaster situations, assessing infrastructure damage,
and applying efficient rescue training through realistic simulation (ibid).

4.3. Humanitarian Drone Operations (HDOs) and Capabilities (HDCs)

The third criterion was related to the HDOs performed in the studies included in our
sample and the HDCs utilized during their execution. The operations we explored are
inspired by the context of civil drone applications [43,48] but are here discussed across the
humanitarian spectrum. It is worth mentioning that overlapping may exist between the
HDOs. HDCs were first investigated in [10] and included the transportation and deliv-
ery, surveying and monitoring, and communication and integration capabilities. Briefly,
transportation and delivery capabilities aim, among others, at facilitating the delivery of
essentials, reducing delivery times, and enabling access to geographically, environmentally
or/and, infrastructure-challenged areas, which may be unreachable by conventional trans-
portation means [79–81]. Surveying and monitoring capabilities enable remote sensing and
the collection of spatial information through the acquisition of high-resolution material
even in the harsh environmental conditions of dangerous or impassable disaster-stricken
areas as well as of damaged infrastructure in the aftermath of a disaster [82–84]. Last,
communication and integration capabilities complement terrestrial communication and
connectivity and facilitate communication between first responders and victims by pro-
viding long-range wireless connectivity for DM tasks [26,85,86]. For further details about
HDCs, the reader is referred to Rejeb et al. [5]. As thoroughly analyzed in Section 5, an
HDO can utilize one, two, or all three HDCs depending on the setting and objectives.
Nonetheless, some HDOs are intrinsically associated with certain HDCs.

4.3.1. Area Coverage

In area coverage HL operations, one or more UAVs equipped with sensors of a limited
footprint must monitor various shapes of a specified area affected by a disaster to rapidly
collect spatial information [48]. Their remote sensing capabilities enable drones to provide
clear and high-resolution aerial photographs or videos and assist in the surveillance of
dangerous or even impassable areas, thus securing the safety of human rescue teams [83].
In such operations, the path of UAVs is designed so that unproductive movements and
repeated monitoring of the same points are avoided, with common objectives being the
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minimization of distance [87–89], completion time [80,90], the number of turns, or energy
consumption while satisfying a set of constraints [43]. Area coverage operations inherently
exploit the drone’s surveying and monitoring capabilities.

4.3.2. Search

Search operations in drone-assisted SAR applications involve one or multiple UAVs
being launched to locate a missing person with an unknown location by partitioning a
map of the search area into cells, each labeled with a different probability of finding the
target [48]. The most common objectives of such operations include the maximization of
the cumulative finding probability under a time constraint or the minimization of the time
to find a target under a given probability. While the humanitarian drone search operations
share similarities with traditional search operations [43], additional limitations have to be
taken into consideration, such as the limited battery capacity, which sheds light on the need
for recharging and leads to more frequent searching close to the charging station [91]; the
limitations of drone sensors, which differ from the ones used by UGVs in traditional search
operations [92]; and, last, the communication limitations that could arise in UAV-to-UAV,
UAV-to-base station (BS), or UAV-to-UGV communication [93,94]. Search operations, by
default, utilize the drone’s surveying and monitoring capabilities.

4.3.3. Routing for a Set of Locations

UAV-assisted routing for a set of locations involves setting up one or several UAVs to
visit a set of locations to complete a task, while minimizing cost, time, distance, energy, or
other objectives, considering several limitations, including time windows, environmental
conditions, payload weight and size, distance, pick-up and delivery capacity, fly zone,
battery life, or fuel constraints [50]. The requirements of the locations (nodes) to be visited
also have to be taken into account, as there might be no need to visit all of them based on
the actual needs and available resources [95]. Routing for a set of locations might overlap
with the area coverage problem because its discretized formulation can be considered as
routing [48].

4.3.4. Path Planning and Trajectory Planning

Path planning and trajectory planning share similarities with routing for a set of
locations, but there are significant differences worth mentioning. As stated, in routing, an
optimal route needs to be found so as to fulfil a specified objective, as opposed to path
planning, which pertains to the feasibility of the route to be pursued by the UAVs in a
routing problem, which is a complex but crucial task. In essence, path planning involves
finding a flyable collision-free geometric path for the UAV visiting a specified sequence
of nodes in a two- or three-dimensional space irrespective of any specified time law or
drone dynamics. On the other hand, in trajectory planning, a time law is assigned to
the geometric path, and the control history of the drone is considered, while abiding by
constraints pertaining to a set of equations of motion that describes the relationship between
the spatiotemporal system changes as well as drone position, velocity, acceleration, and
dynamics [96]. Trajectory planning is intrinsically linked to control problems. Generally,
path planning is followed by trajectory planning. However, in some cases, for example,
when only two nodes to be visited are specified, path and trajectory planning can be applied
at the same time [97].

4.3.5. Task Assignment

UAV-assisted task assignment is relevant to the UAV routing problem. It refers to
the assignment of a UAV or a swarm of UAVs to a number of tasks subject to mission
requirements and environmental constraints [98]. The number of tasks does not have to
be equal to the number of UAVs employed [99]. This drone operation aims at maximizing
efficiency, minimizing system costs, and through cooperative work, meaning multiple
UAVs supporting each other’s operation through information sharing, task integration,
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and resource optimization, reducing overall risks and execution time as well as enhancing
the quality of the completed tasks (ibid).

4.3.6. Scheduling

There is a plethora of scheduling decisions to be made in the HL operations that are
assisted by multiple drones. The ultimate objective of UAV-assisted scheduling is to ensure
the continuity of operations [100] by assigning drones to appropriate tasks [101,102]. These
decisions may refer to multiple processes, such as drone recharging, battery swapping,
refueling, predictive maintenance, safety checks, scheduling of servicing, human expert
assessment and critical information collection on the fly, etc. [48]. A common objective
in scheduling a drone employed to cover a disaster-stricken area is the maximization of
information collected [103] for a predetermined time span; for drone delivery, a common
objective is the maximization of the nodes served and minimization of delivery completion
time [104]. We refer the interested reader to Zabih Ghelichi [105] on drone location and
scheduling problems in HL.

4.3.7. Data Gathering and Recharging in a WSN

UAV-assisted data gathering and recharging in a WSN is the operation where UAVs
are assigned to collect information from a discrete set of locations while, as opposed to
routing for a set of locations, taking into account the communication range and distance,
data recency, and memory capacity limitations [48]. A WSN is defined as a distributed
system that gathers data from the physical environment through sensor nodes, i.e., small
autonomous short-range transceivers capable of collaborating with one another using
wireless communication [106]. Even though sensor nodes themselves are able to collect
data from a spatially limited area, a WSN with multiple sensor nodes can cover a larger
region [107]. The information collected by the sensors is conventionally transmitted to
a BS, which then forwards it to a server. However, in some operations including HL
operations, this would be prohibitively slow and costly. In such operations, UAVs act as an
additional layer between the sensors and the BS by gathering data from the former and
transmitting them or carrying them back to the latter. Apart from data gathering, UAVs can
also recharge sensors inductively through wireless power transfer (WPT) by generating an
electromagnetic field [108,109]. The UAVs can dynamically move around the sensors and
power them, enabling information transmission. Data gathering and recharging in a WSN
intrinsically takes advantage of the drone’s communication and integration capabilities.

4.3.8. Resource Allocation for Mobile Devices

In the aftermath of a disaster, traditional terrestrial cellular networks may provide
intermittent, poor, or no coverage owing to failure of a part or the entirety of the BS infras-
tructure [110–112]. This highlights the need for the deployment of reliable communication
services supporting data transmission and communication between ground user devices
in disaster-stricken areas, so that evacuation of trapped victims and relief operations are
facilitated. Resource allocation for mobile devices refers to the UAV-assisted allocation
of communication links of adequate quality and computing power to the battery-limited
mobile devices participating in such emergency communication networks. UAVs play a
critical role in such network, by being used as fixed or flying BSs with adaptive altitude,
linking mobile devices to macrocell BSs, or even enabling UAV-to-UAV transmissions, link-
ing mobile devices connected to one UAV to mobile devices connected to another [113–115].
Establishing communication links with a UAV requires the mobile device to be located
within its communication range, which is therefore subject to deployment location lim-
itations. This explains why the most common resource allocation objectives pertain to
cost minimization, QoS maximization (interference minimization and signal-to-noise ratio
maximization), and energy efficiency maximization to achieve the desired communication
quality [116]. Similar to data gathering and recharging in a WSN, resource allocation uses
the drone’s communication and integration capabilities.
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4.3.9. Other

Last but not least, in this category, other HDOs are introduced that were included in
our analysis but were not addressed thus far, including supply allocation and sampling.
The former refers to the delivery of essential, life-saving commodities, such as medical
equipment, pharmaceuticals, and vaccines, as well as food and water. This operation has
to take a variety of factors into consideration, including meeting the demand for supplies
as determined by the victims of the disaster, maximization of space utilization to serve
as many victims (nodes) as possible, and the consideration of time constraints. Sampling
relates to the collection of water, chemical spill, or other types of samples for the testing of
drinkability or/and detection of hazardous substances. Both operations are linked to the
drone’s transportation and delivery capabilities.

4.4. Solving Approaches

The last criterion categorizes the studies based on the problem-solving approach
proposed, i.e., optimization, control, and other types of mathematical models. Obviously,
various other categorizations can be employed, but we think that those chosen represent a
sufficient compromise and reflect the most useful information. Additional classifications
with respect to algorithmic design paradigms used and vehicle considerations examined
by the studies in our analysis are introduced in Section 5. Optimization and control models
are introduced below. If a mathematical model in our sample did not fall into either of the
two categories, it was assigned to the “other types of mathematical model” category.

4.4.1. Optimization Models

Optimization models are used to quantitatively tackle many emerging DM chal-
lenges [117], with pertinent drone-related examples being presented in [43,48,50]. In our
analysis, optimization models were categorized based on their stochasticity into exact
models, which guarantee the optimal analytical solution but often suffer from high com-
putational complexity and, therefore, inefficient execution times; and nonexact models,
which provide a suboptimal but computationally reasonable solution. The latter were
further categorized into heuristic models, which generate problem-dependent solutions;
and metaheuristic models, whose solutions are generic and can be applied to a broad
spectrum of problems. Note that due to the spread of the topic, we cannot provide details
on decision variables, constraints, or objective functions for each reviewed study in the
limited space of a journal article. Some other considerations are described in the following
section when evaluating specific methods.

4.4.2. Control Models

Because of its nonlinear characteristics and underactuated design, UAVs seem to be an
excellent platform to control systems research [118]. Control models pertain to the control of
dynamic systems to drive them to a desired state while minimizing delays, the occurrence
of a signal or function exceeding its target (overshooting) or steady-state error, and securing
control stability [119]. A controller monitors the process variables and compares them with
a reference value, whose difference is then applied as feedback to generate a control action
to ensure the process variable has the same value as the reference value (ibid). Note that
optimization may be part of control models, but when this is the case, emphasis is placed
on the control aspect of the model.

5. Material Evaluation

In this section, the results of our analyses are presented. The evaluation of the studies
of our sample was divided into categories relevant to the coding criteria introduced in
Section 4. Table A4 in Appendix B succinctly lists the categorization of the papers into the
proposed criteria. Notably, the foci of the papers in our sample are varied and not mutually
exclusive; therefore, more than one subcategory per coding criterion may apply to each
paper. The papers were examined under the lens of all subcategories into which they were
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classified in order to provide different insights and perspectives in terms of the integration
of different HDTs, their application into the different HDOs, the exploitation of different
HDCs, as well as the solving approaches pursued.

5.1. Which Disaster Phases and Types Have Been Discussed? What Emerging Technologies Are
Being Used?

As illustrated in Figure 5, after investigating the sample in its entirety, we concluded
that the mitigation phase was examined in 75 papers (74.26%), while the preparedness
phase was analyzed in 38 papers (37.62%). Correspondingly, the response phase was
covered in 99 papers (98.02%) and the recovery phase in 18 papers (17.82%). Overall, the
focus on the postdisaster stage was greater in comparison. The predisaster stage received
the focus in 89 papers (88.12%), whereas the postdisaster stage was investigated by all
studies (100%) participating in the final sample. This means that some of the studies
developed solutions applicable to more than one disaster phase/stage.
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With regard to the disaster types, natural disasters were addressed in 43 papers
(42.57%), while 14 papers (13.86%) addressed both natural and human-made disasters. The
rest of the papers (43.56%) do not explicitly specify the origin of the disaster considered by
the proposed models, so it can be assumed that either disaster type could have been the
application focus. It is notable that no paper in our sample had human-made disasters as
the main focus. With regard to the speed of the disasters, all studies explored sudden-onset
disasters, including wildfires, floods, earthquakes, and chemical spills. The only study
addressing slow-onset disasters, which was in combination with sudden-onset disasters,
was [120], where a model was designed for panic-based, timely, and orderly evacuation of
stranded people and applied to a case study pertinent to the COVID-19 pandemic disaster.
In particular, the proposed model contributes to helping with the panic-based selective
testing of people with the aim of preventing panic, which is often assumed to be the natural
response of people to physical danger.

Six out of eight of the DT categories introduced in Section 4 were used in all HL phases,
with cloud, edge, and fog computing and XR being the two exceptions, which are not used
during the recovery phase.

5.2. How Emerging DTs Have Started to Complement and Operate in Tandem with Drones
in HL Literature?

In Figure 6, the classification of the 101 papers into the 8 DT categories introduced in
Section 4 is depicted. Big data (n = 86, 85.15%) and IoT (n = 71, 70.3%) were studied by the
majority of models in our sample, followed by AI (n = 40, 39.6%) and cloud, edge, and fog
computing (n = 22, 21.78%). RCPSs were studied in 17 studies (18.81%), while blockchain,
social media and crowdsourcing, and XR were utilized by 10 (0.1%), 7 (0.07%) and 4 (0.04%)
studies, respectively. In the remainder of this section, the level of integration and the
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interoperability of each HDT with UAVs are evaluated with respect to the mathematical
models presented in the literature.
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5.2.1. IoT

The use of IoT communication networks can considerably improve the performance
of DM systems through the exploitation of the massive heterogeneous data generated by
various interconnected devices [121]. Nevertheless, during an emergency, where proximal
BSs can potentially be damaged, overloaded, or out of the transmission range of the devices,
secure communication services are compromised. Thankfully, UAVs, due to their flexibility,
can establish three-dimensional mobile aerial networks in an ad hoc manner and provide
reliable multihop paths able to maintain connectivity through other types of nodes [122].
UAVs are able to hover close to devices, gather IoT data, and transmit them to a remote BS
or control center for processing or even immediately perform the processing on site through
specialized computing units [123]. UAVs can even be equipped with devices themselves
(e.g., optical, acoustic location sensors, etc.) to provide valuable audiovisual or other types
of useful data [124].

Overall, according to [125], based on the nature of the application, UAVs can be
integrated in different IoT–WSN architectures. As shown in Figure 7, in the IoT-enabled
mathematical models in our sample, the authors have proposed links between the UAV
and mobile devices (63.38%), other UAVs (29.58%), stationary sensors (28.17%), satellites
(0.1%), as well as other vehicles (0.08%). Each proposed model incorporated multiple links
in its architectural design, so the inclusion in one category is not exclusive.
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The most prevalent link in our sample is the connection of the UAV to mobile
devices, aiming at collecting data from phones, laptops, and wearable devices belong-
ing to the victims of a disaster [94,120,121,126–165]. In some scenarios discussed in
the models [127,128,130,146,159], BSs suffer severe damage, and UAVs are employed as
flying BSs. This, however, is subject to a range of technical challenges, including interfer-
ence as well as energy and coverage restrictions. Flying over dataless IoT nodes wastes
both time and energy, both being critical resources in such urgent scenarios [94]. In this
case, multihop device-to-device (D2D) communication is exploited to relay signals into
the UAV’s coverage area and help it extend its wireless coverage to serve more ground
users with no need for additional and potentially fruitless movements. An approach to
overcoming energy limitations and securing the continuous supply and exchange of data
from user devices with ground terminals was proposed by the authors in [134], who consid-
ered a tethered UAV, which could only be utilized in small controlled environments. The
models presented in [132,148,155] focus on the localization and crowd counting through the
received signal strength indication (RSSI) measurements emitted from the devices (Wi-Fi
access points). For the recharging of IoT devices, both mobile and stationary, a WPT scheme
was proposed [131], where a UAV acts as a wireless charger and delivers energy to a set of
energy receivers.

Stationary devices refer to sensors with limited storage, processing, and communication
capabilities that are distributed at random locations over an area for the remote sensing of a
disaster. Such sensors can be thermal sensors to detect active fires, chemical sensors to detect
pollutants and contaminants, etc. However, many researchers have assumed a stationary node,
even if the target is a user device, i.e., an inherently mobile node, because its speed is natu-
rally much slower than that of a UAV. In the communication between a UAV and stationary
sensors [111,120,121,131,138,143,148,151,153,157,158,162,166–173], the sensing area is divided
into clusters and sensing nodes into cluster members, cluster heads, and relay nodes, responsible
for data sensing, collection, and forwarding, respectively [172]. Clustering can reduce energy
consumption, increase network scalability, extend battery life, decrease network delay, and boost
throughput [174,175]. The minimization of completion time [111,120,148,170], maximization of
throughput [166,173], optimization of device density [167] and drone placement [165], as well
as energy-related objectives [121,131,138,151,170] are the most prominent among the proposed
models. In UAV-to-UAV communication, a link is established between
UAVs [121,122,126,132,133,138,144–146,151–153,164,173,176–182], forming a collaborative com-
munication scheme. Not all UAVs are able to directly communicate with a BS due to different
communication and networking requirements as well as vicinity reasons. This is the case for
which UAV relay communication is used [136,140,144,150,152,173,176,181] to provide wireless
coverage between IoT devices (mobile devices, stationary sensors, and gateways) and a BS
without reliable direct communication links and enable spectrum sharing. Additionally, not
all tasks can be handled by a single UAV due to their limited computational capacity, and
offloading tasks to a server could be too time- and energy-intensive [144,146,179]. This type of
network is also used when UAVs are susceptible to environmental conditions [151,152,181] and
for collision avoidance [121,145,151,152,180,182].

In several models in our sample, the UAV is connected to a satellite. Satellites and
UAVs, as space and aerial deployment platforms, respectively, are able to provide a flexible
mode to manage the computing resources in the IoT. The flexibility mostly lies in satellites
not being affected by geographical restrictions and therefore being able to achieve long
communication ranges and seamless coverage for myriads of geographically sparse IoT
devices and present stakeholders with an omnipresent cloud computing service [161,183].
Even though a satellite-controlled UAV can cover a large area, this method is quite
expensive [184]. Such contributions are presented in [138,142,151,161,162,176]. The objec-
tives of these models include the minimization of energy consumption for computation and
transmission [138,151,161], minimization of computation delay and latency [138,142,176],
as well as maximization of node-to-node connections [162] and throughput of devices [151]
under various constraints. The authors of [143,169] have considered the use of high-
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altitude pseudosatellites (HAPs) for the purpose of dealing with high computation and
transmission demands.

Last but not least, in some models, communication between UAVs and rescue vehicles
takes place for safe driving and efficient rescue. The UAV-enabled Internet of vehicles
(IoV) has been used [138,149,153,177,185] to assist with data sharing and recharging in
disaster areas. Studies examining UAV-to-vehicle cooperation are further analyzed in the
RCPS subsection.

5.2.2. Cloud, Edge, and Fog Computing

Edge computing accounts for 81.81%, cloud computing for 31.81%, and fog comput-
ing for 9.09% of the computing-oriented mathematical models of the proposed sample
(Figure 8). Of course, this entails that several models have been included in more than one
type of computing.
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Mobile edge computing (MEC) has emerged as a radical paradigm in the IoT. The
deployment of MEC servers, such as BSs, has enabled the execution of the real-time
computation-intensive and latency-critical tasks of mobile devices at the network edge in-
stead of the cloud, thus reducing energy consumption as well as addressing communication
congestion and latency [186]. However, in disaster scenarios, terrestrial MEC networks may
be compromised. In UAV-assisted MEC architectures, drones act as flying edge node carri-
ers with cloud computing capabilities, providing controllable mobility, flexible deployment,
and strong line-of-sight (LoS) channels with mobile devices [187]. Such networks have
been studied by the authors of [138,188], where optimal task–UAV–edge server offloading
models are proposed to minimize energy consumption and delay. In [189], UAVs were used
as edge node carriers and a long-range wide area network (LoRaWAN) as a communication
protocol to provide secure MEC services with increased channel capacity. In [144,164], the
workload balance and communication range of UAVs have been addressed by proposing a
relay control method equalizing the workload between UAVs and reducing network delay.
With the aim of maximizing system stability and minimizing the energy consumption [135]
and computation latency [154] of UAV-aided MEC systems, two models were proposed
to optimize UAV trajectory control and users’ offloaded task ratio scheduling as well as
to maximize the average aggregate quality of experience (QoE) of all IoT devices. Accom-
plishing stability was also the focus of the authors of [130,133,185,190], where distributed
and adaptive task planning models running on a network of UAVs are proposed. UAV-
assisted offloading energy efficiency systems for MEC are also proposed in [146,156]. The
study presented in [147] considered a novel UAV-and-BS hybrid-enabled MEC system that
addresses the limited capabilities of MEC systems aided only by UAVs. In the proposed
solution, multiple UAVs and one BS are used to facilitate the provisioning of MEC services
either directly from UAVs or indirectly from the BS, with a view to maximizing the lifetime
of all mobile devices and minimizing their energy consumption. In [143], the cooperation
of UAVs and HAPs to provide the hierarchical MEC service for IoT was examined.



Drones 2023, 7, 301 20 of 59

Space-aerial-assisted mixed cloud–edge computing models are included in the sample,
where UAVs provide IoT devices with MEC services’ and satellites’ omnipresent access to
cloud computing. The model in [191] is similar to those in [133,190] but it also integrates
cloud computing, mainly for the collection of aggregated data, which is a delay-tolerant
task. A pure cloud computing system was proposed [192] that collects data from WSNs and
then constructs a 3D environment in near real time to reflect the incidents detected by the
sensors, which is then used as a training environment for rescue teams. In [155], a cloud-
terminal collaborative system for real-time crowd counting and localization using multiple
UAVs is introduced. A fog-assisted cloud computing architecture is detailed in [120],
where a UAV is responsible for the timely and orderly evacuation of stranded panicked
people. The fog space assists in providing real-time diagnostic services and enables the
optimized energy consumption of devices, while the cloud space facilitates the monitoring
and prediction of panic severity of people as well as disaster mapping and geographical
population analysis. Three blockchain-enhanced UAV-assisted HL applications in IoT,
which are analyzed in the corresponding subsection [178,185,193], also utilize edge, cloud,
and fog computing.

5.2.3. Social Media and Crowdsourcing

Social-media-driven drone sensing (SDS) is an emerging paradigm that relies on real-
world observations using physical sensors on drones as well as observations collected
from social media about the status of a disaster. Several researchers have attempted to
address the challenges prevalent in SDS. First, in [194], a game theoretic social-media-
driven energy-aware drone sensing model is proposed to jointly leverage the reliability
of UAVs and scope of social sensing, with the aim of efficiently unraveling the truthful
events during emergency scenarios. An RL-based UAV dispatching scheme was developed
to adaptively launch an appropriate number of drones for event exploration considering
the conflicting objectives of event coverage and UAV energy conservation. In [195], the
exploitation of SDS for wildfire prediction was investigated. The lack of social media data
in remote forest fire regions and the limited flight time capacity of UAVs were addressed
through a wildfire monitoring model, which predicts the regions of fire toward which the
UAVs should be guided. A game theoretic RL-assisted model is introduced in [196] to
address the noisy nature of social media data. In the proposed model, signals from social
media are distilled to dispatch the UAVs to target areas for event verification, the results
of which are then forwarded back to enhance the sensing and distillation process and
contribute to the identification of trustworthy information. The second to last SDS study in
our sample introduces a spatiotemporal correlation inference model and game-theoretic
UAV dispatching mechanism that leverages noisy social media signals and explores the
dynamic and latent correlations among event locations [197]. Finally, the last proposed
SDS model uses social media for tasking UAV swarms in SAR missions [198]. In [199], a
pipeline for object detection and classification of images acquired from UAVs and labeled
by a crowdsourcing effort for damage assessment and monitoring is proposed. In [200],
vehicular crowdsourcing (VC) was used, where a group of UAVs and UGVs are navigated
in a 3D disaster zone to collect data from several points of interest (PoIs).

5.2.4. AI

AI, and ML in particular, was the focus of approximately half of the selected studies. SL
accounted for 13 papers, UL for 10 papers and RL for 20 papers in the sample (Figure 9). SL is
used in multiple models in our sample for different purposes. In five studies, UAV-captured
image recognition and classification were considered. In particular, deep learning (DL)
has been used in the form of convolutional neural networks (CNNs) [199,201–203] and
generative adversarial networks (GANs) [204] for disaster locating and monitoring as well
as damage assessment. A CNN was also used to create an edge audio processing application
to classify audio sent from a UAV fleet to help locate human sounds [133]. SL was also
used to predict outcomes. To achieve an efficient workload distribution among UAVs,
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authors [190] modeled their proposed system as a network of queues, and by leveraging an
autoregressive integrated moving average (ARIMA) regressor, they dynamically predicted
the length of future UAV task queues to proactively migrate the tasks in case an imbalance
occurs. In [120], a seasonal autoregression integrated moving average (SARIMA) model
was used to predict the panic severity index (PSI) of stranded people during a disaster.
In [205], a DL model was developed to predict signal blockage duration based on the
mobility, location, and signal-to-interference-plus-noise ratio (SINR) values received from a
UAV-node during a disaster. A vision-based intelligent neural network (NN) was used [206]
for the autonomous landing of a UAV on static and moving targets in SAR applications. A
decision tree was used [121] to model the UAV-collected physiological parameters of people
in a disaster situation, including their heart rate, blood oxygen saturation, systolic blood
pressure, respiratory rate, and temperature to determine their risk status.
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UL has been used in several models for clustering IoT devices. K-means clustering was
employed in three studies aiming to group IoT devices and allocate them to UAV collectors
addressing UAV path planning [111,145,170] as well as energy consumption [145,170] and
completion time minimization objectives [111]. In [151], a density-based optics clustering
(DBOC) algorithm was developed for increasing communication reliability between the
UAV and a cluster of IoT devices. In [148], a weighted entropy-based clustering algorithm
was used to find a cluster of positions where the RSSIs observed for a specific target IoT
device could be used to estimate its location. Ref. [178] presents a federated learning
approach, which trains an algorithm across a multitude of decentralized edge devices,
keeping all training data, with the aim of improving distributed decision making during
a disaster. Researchers [182,207] have proposed unsupervised algorithms to address the
trajectory selection problem with the aim of minimizing the age of information collected
by a UAV and the positioning of multiple BSs in scenarios with exceptionally high mobile
device density.

Last, RL has been used in the majority of ML studies. Q learning, a model-free RL
technique that does not require prior knowledge of system parameters, has been used for
locating a missing human [208], achieving secure data sharing in UAV-aided blockchain
networks [177,193], and UAV routing [180]. Deep Q learning (DQL) has been used for path
planning [131,166] and task scheduling [146], while deep reinforcement learning (DRL)
has been used for task-association scheduling [138,147] and task offloading [135,138] in
UAV-aided MEC networks, UAV route design [163], trajectory optimization [135,154], and
repositioning [162], as well as for learning consensus parameters in a blockchain-assisted
network [185]. Two social-media-driven UAV networks leverage techniques from RL
to exploit existing knowledge and explore different choices with a view to identifying
trustworthy information [196] and generating UAV dispatching strategies based on UAV
availability, number of reported events, and distances of the events from the UAVs [194].
Reinforcement-based coalition formation was employed [130] to enable the self-adaptive
behavior of each IoT node to determine its role as an emergency gateway and its D2D links
in the network. In [150], gradient-ascent and log-linear RL algorithms were utilized for the
association of first responders to different disaster areas and UAVs, respectively.
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Combinations of the abovementioned approaches have also been used [160,200,209].

5.2.5. Big Data Analytics

This DT is only mentioned for completeness, as it includes all studies mentioned in
the IoT, AI, and social media and crowdsourcing categories, because these DTs inherently
handle big data. Figure 10 depicts the distribution of these studies, the models presented in
which were analyzed in the previous subsections, including their overlaps.
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5.2.6. RCPSs

Heterogeneous robot cooperation is a vital aspect of UAV-assisted DM operations as it
facilitates the provision of valuable information as well as the accomplishment of various
SAR tasks. Employing a single robot under emergency conditions where movement in
unknown environments and on unstable surfaces is required poses various challenges that
can be dealt with by the joint operation of heterogeneous RCPSs, because each robot’s
deficiencies can be compensated for by the strengths of the others.

In UAV–UGV collaboration, UAV deployment provides high mobility, flexibility, cov-
erage, and relief to remote or inaccessible disaster-affected areas, but UAVs have reduced
flight autonomy limits and restrictive payload limitations. UGVs are able to overcome
these hurdles, meeting the requirements of energy autonomy and payload; however, they
have limited mobility and a reduced field of view. In [210], such a system was studied,
where a model was developed for comparing three policies that assign areas of interest
(AoIs) amongst a group of UGVs and a squadron of UAVs to assist a human observer
collect information for disaster exploration. The UGV acts as a long-range transport, power
supply, and communications station for the UAVs, which provide a set of sensors for the
UGVs and act as ad hoc communication relays when needed between the UGV and the
observer. Similarly, a scheme was proposed by assigning a group of UAVs and UGVs to
collect data from PoIs with the aim of assisting disaster rescue in a 3D disaster work zone
and maximizing the amount of data collected, geographical fairness, and energy efficiency,
while minimizing data dropout [200]. In [211–213], autonomous systems are presented that
enable a UAV to take off autonomously from a landing platform attached to a UGV, detect
it while in the air using visual cues, follow it, and robustly land on it. In [145], a model is
proposed to coordinate and specify the interrelationships between a UAV and a UGV collab-
orating to close a valve in a disaster-stricken industrial environment. A nested marsupial
RCPS with a matryoshka (Russian nesting doll) team configuration (UGV→UAV→UGV)
was introduced [214] and used to support first responders in performing a mock hazardous
chemical spill investigation and sampling task within constrained spaces. Another symbi-
otic UAV–UGV relationship was proposed by the authors of [51], where the UGV presents
the UAV with a landing area and transports it across long distances, therefore extending its
battery life, while the UAV enables the UGV to surmount obstacles by lifting it across them.
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In the event of a flood, rescue boats have limited visibility while searching for victims
to rescue. In [215], the proposed model is aided by UAV–USV cooperation, with the for-
mer recognizing obstacles, roads, landmarks, or victims through the capturing of aerial
images and the latter providing additional surface information through its acoustic sensors
allowing route replanning. In the context of unmanned postdisaster construction, the AoI
might not be within the operator’s visual range, so a UAV can enable the teleoperation of
the construction machine with direct visual observation from a safe place. In [216], a micro
unmanned aerial vehicle (MUAV) was tethered to a teleoperated construction machine per-
forming restoration tasks to provide adequate visual information and ensure human safety.
The tether was also used as an energy supply, thus extending the MUAV’s operation time.

Other studies [217,218] are also worth mentioning as, instead of investigating het-
erogeneous robotic networks, the researchers focused on homogeneous networks with
heterogeneous capabilities, i.e., a group of UAVs dedicated to the inspection of a disaster
zone, with the aim of locating the best areas (victim locations) for the deployment of the
other group of UAVs, which was responsible for delivering supplies to the victims.

Finally, UAV–vehicle collaboration was the last aspect explored in our sample, which
falls into the cyber–physical system (CPS) part of the proposed labels in our coding criterion.
In [153,219], blockchain-assisted models have been used to enable vehicle-to-vehicle (V2V)
charging transactions in postdisaster electric vehicle networks, where UAVs functioned
as sensing and communication nodes. In [193], vehicles were used as fog nodes to offload
UAVs’ heavy data processing and storage tasks. In [185], a blockchain-aided hybrid UAV–
truck architecture is proposed for last-mile relief distribution. The model tracks and controls
the status of trucks and their on-board resources and enables them to optimally reroute
and redistribute resources from damaged vehicles. The on-board UAVs, once in proximity
to the AoI, deliver the resources and return. Another blockchain-enhanced solution was
developed by the authors of [177], where a set of UAVs was deployed to monitor an AoI
and a group of ground vehicles to carry out SAR missions. V2V links are used to increase
road safety and rescue efficiency through the exchange of information pertinent to collision
avoidance, road conditions, and rescue experience.

5.2.7. Blockchain Technology

In [177], blockchain was used to provide secure data sharing and assist with potential
security data threats in UAV-assisted IoV for disaster rescue. A credit-based delegated
proof-of-stake (DpoS) consensus algorithm was designed to efficiently reach consensus
in the blockchain, where the credit value was evaluated based on nodes’ behaviors. Re-
searchers [153,219] have concentrated on UAV-aided blockchain offline transactions and,
in particular, presented a game theory-assisted model designed to ensure the security
and effectiveness of delay-tolerant blockchain V2V charging transactions in postdisaster
vehicular networks when UAVs are offline. The authors of [193] developed a secure and
efficient blockchain-based information sharing scheme able to safeguard data sharing in
UAV-aided disaster rescue and immutably trace misbehaving entities. A reputation-based
consensus protocol was created to adapt the weakly connected environment with enhanced
consensus efficiency and UAVs’ honest behaviors. In hybrid UAV–truck architectures for
last-mile relief distribution, there is an unpredictable demand for resources, which need
to be tracked to prevent theft and maldistribution as well as fault-tolerant path planning.
To address these needs, authors [185] proposed a blockchain-based algorithm for tracking
and controlling the status and resources of trucks. An IOTA-based game-theory-enabled
blockchain ledger, which uses no miners to validate a transaction, was employed [220] in a
distributed network of charging stations and UAVs for optimal energy trading. IOTA-based
blockchain is as secure and distributed as traditional blockchain, but it also provides low
latency and consumes less power [137]. Energy consumption as well as blockchain latency
were the focus in a study [178], in which blockchain, ML, and UAVs were combined to
create a model using wireless mobile miners at UAVs for disaster response. The deci-
sions regarding user association, UAV movement, and bandwidth allocation are crucial
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challenges in deploying such networks and were addressed [137], where a game-theory-
enabled blockchain-based security framework for drone-mounted BSs was proposed. A
sparsity-optimized and compressed-sensing-based spatiotemporal data aggregation model
was proposed by the authors of [172], which focuses on UAV-aided monitoring scenarios.
Its objective is to improve the security and validity of data collected through WSNs by
decreasing data redundancy. Last, a network coding wireless signal transmission model
combined with blockchain [221] was developed to enhance the reliability and encryption
of UAV wireless signals in natural disaster scenarios.

5.2.8. XR

XR is the least employed DT in the proposed models. Three studies used VR, one
used AR, and none of them used MR. A VR control scheme for decreasing the cognitive
overload when controlling a UAV and addressing the lack of situational awareness of
human operators was proposed [222], where a virtual UAV pilots the real UAV. In [223],
VR technology was used to compare the advantages and shortcomings of several algorithms
to establish a path optimization and multitarget detection model. A study [192] showcases
the combined utilization of 3D VR, WSNs, cloud computing, and RCPSs for natural disaster
management, where the datasets generated by the WSN and the observations of the robotic
systems were used to create a realistic VR environment able to reflect actual conditions
and facilitate the preparation of rescue scenarios within an acceptable time window. Last,
in [224], an algorithm to improve the geographic registration accuracy of UAV imagery
was designed, in which AR is implemented in thermal infrared video streams, obtained for
the acquisition of information at night by collecting thermal radiation from ground objects
without additional lighting measures.

5.3. What Drone Operations Have Been Examined and What Drone Capabilities Have Been Used?
How Are Drone Operations Approached by Each DT?

In this section, the classification of the selected studies into the HDOs presented in
Section 4 is analyzed, with a brief mention of the HDCs and HDTs exploited throughout
their execution. Regarding the HDOs, path and trajectory planning (n = 38, 37.62%) has
been the most pursued operation in our sample, followed by resource allocation for mobile
devices (n = 27, 26.73%), task assignment (n = 22, 21.78%), search (n = 20, 19.8%), data
gathering and recharging in a WSN (n = 19, 18.81%), scheduling (n = 12, 11.88%), area
coverage (n = 11, 10.89%), routing for a set of locations (n = 5, 4.95%), supply allocation
(n = 3, 2.97%), and sampling (n = 1, 0.99%) (Figure 11). Correspondingly, with regard to the
HDCs, UAV communication and integration (n = 80, 79.2%) capabilities have been used
the most, followed by surveying and monitoring (n = 40, 39.6%) and transportation and
delivery (n = 7, 6.93%) capabilities (Figure 12).
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5.3.1. Path and Trajectory Planning

The path and trajectory planning models in our sample focused on complex drone
operations involving several tasks in addition to the implementation of a smooth, collision-
free path from a given starting point to a given end point with no redundant path nodes.
The most common objectives among the models in this category are related to energy
consumption [121,130,131,135,151,152,156,170], delay or latency
minimization [111,152,155,170,182,207], coverage maximization [169,217], and traveled dis-
tance minimization [215,225]. Only five studies focused exclusively on path and trajectory
planning. In [223,225] and [207], path smoothness and QoS optimization were respectively
pursued. In [151], three different schemes were constructed targeting covered points’ maxi-
mization, PoI prioritization, and balancing the coverage and priority objectives. In [169],
a dynamic, energy-efficient positioning and weather-predicting scheme is introduced.
Weather conditions have also been considered [152,195,196,214,223]. In the remaining stud-
ies, resource allocation and scheduling are the most common HDOs carried out in tandem
with path and trajectory planning. The synergistic optimization of path/trajectory and
resource allocation has been proposed by the authors of [129–131,135,136,140,145,147,166],
and joint path/trajectory and scheduling optimization models have been described by the
authors of [51,94,121,124,152,177,203]. More than half (n = 22, 59.46%) of the proposed path
and trajectory planning models employ multiple UAVs in their problem formulations. Path
and trajectory planning operations have mostly been assisted by big data (n = 35, 92.11%),
the IoT (n = 26, 68.42%), and AI (n = 19, 50%).

5.3.2. Scheduling

A multitude of scheduling decisions have been made in the models in our sample.
Resource scheduling constitutes an important subject of interest among researchers. In [131],
a resource scheduling scheme for a multi-UAV system was developed to provide wireless
services for IoT devices in wide areas; while in [142], a fairness-aware resource scheduling
solution is introduced to minimize the maximum task execution delay among IoT devices.
In [179], a resource scheduling scheme is proposed to guarantee the availability of services
and efficient resource utilization, taking into account the UAVs’ finite lifetime and need
for replacement. In [146], a task scheduling algorithm for a dispersed computing network
is proposed, where the control center distributes tasks to the UAVs, which can choose to
compute the tasks locally or offload them to the mobile devices. To maximize the lifetime
of the mobile devices, an energy-efficient scheduling model was proposed for the studied
UAV-assisted MEC system [147]. A navigation system composed of a camera-equipped
UAV and offloading mobile devices was proposed by the authors of [203], consisting of
visual recognition, task schedule, and fly control modules. The image captured through
the UAV camera is sent to the visual recognition module, the result of which is fed to
the task schedule module, which then sends flying instructions to the control module.
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The scheduling of camera-equipped UAVs to collect audiovisual material from various
locations was proposed [124], considering a finite number of hovering positions. A task
scheduling algorithm was proposed [51] to enable the various robots of a heterogeneous
robotic system to collaborate by exploiting one another’s strengths and symbiotically
executing complex tasks. In the UAV-enabled IoV model discussed in [177], to enhance
driving safety and rescue efficiency, ground vehicles are able to receive scheduling and
guidance commands from ground stations. UAV path scheduling and user scheduling
have been proposed [152] and [94], with the aim of minimizing time and UAV energy
consumption. The minimization of UAV energy consumption was also the focus in [121],
where an energy-efficient task scheduling scheme for data collection by UAVs from the
ground IoT network was developed. Scheduling has mostly been aided by big data (n = 10,
83.33%), the IoT (n = 10, 83.33%), and AI (n = 6, 50%).

5.3.3. Task Assignment

Task assignment problems emerge in multi-UAV and -vehicle missions, where inter-
vehicle coordination and communication are needed. In [195], a drone task assignment
(DTA) module was created to assign a set of UAVs to investigate probable fire regions
obtained from a wildfire propagation prediction module. Two other DTA modules have
been proposed [194,196,197], which allocate a subset of events to UAVs based on distilled
social media signals and drive the UAVs to the event location to identify unreliable in-
formation before the event deadlines expire. Another social-media-driven multidrone
tasking platform was introduced [198], assigning SAR tasks to UAVs. Spatiotemporally
constrained tasks were also assigned to UAVs and driverless cars [200], such as the col-
lection of environmental data from PoIs, mapping for situational awareness, searching
for missing people, etc. UAV-enabled task offloading, i.e., the assignment of resource-
intensive tasks to separate UAV-mounted mobile nodes, is thoroughly discussed in our
study sample [133,135,138,142,156,164,176,177,188–191]. In [193], offloading tasks to mov-
ing vehicles acting as fog computing nodes was investigated. The assignment of tasks to
UAV–UGV symbiotic networks has also been studied [51,192,210]. Task assignment has
mostly been facilitated by big data (n = 18, 81.82%), the IoT (n = 13, 59.1%), edge computing
(n = 10, 45.45%), AI (n = 9, 40.91%), and RCPSs (n = 5, 22.73%).

5.3.4. Search

Searching for a missing person is a core operation in the models in our sample. In the
majority of the studies, search operations were conducted in the context of SAR missions in
tandem with other operations, mostly path and trajectory planning and task assignment, where
the end goal was to find a missing person during a disaster. Life searching is usually one of
the tasks assigned to UAVs in task assignment operations [133,153,192,193,198,210,219]. In the
selected studies, search operations were facilitated by Twitter data [198], data obtained from
thermal cameras [141], LiDAR sensors [210], or other types of sensors attached to the searching
vehicles [193,206,210–213,215] as well as the data from the mobile IoT devices belonging to the
victims [139,148,149,155,221]. In most cases, the missing person is assumed to be moving or
their mobility status is unspecified and unrelated to the problem formulation at hand, except
in [208], where the person was considered immobile. The only study where the target of the
search operation was not a person but a chemical sample to be collected and tested was [214].
Searches were predominantly enabled by big data (N = 17, 85%), the IoT (N = 9, 45%), RCPSs
(N = 9, 45%), AI (N = 5, 25%), and blockchain (N = 4, 20%).

5.3.5. Area Coverage

In area coverage operations, UAVs are equipped with optical [199,201,202,204,209,215,216,222]
or thermal cameras [141,224] for them to be able to perform the remote sensing of complex disaster
environments. The models in [202,222,224] considered the azimuth or elevation [141,199,202] angles
between the UAV and the camera. Several studies focused on the processing of the UAV images
acquired from such operations, for map generation [215], image classification to eliminate redundant
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photographs [124,209], damage assessment [199], image segmentation for the detection of flooded
areas [204], intelligent recognition of damaged poles [202], as well as image de-noising and feature
extraction for accurate disaster identification [201]. Some area coverage models targeted the human
operators and, in particular, the reduction in their cognitive workload while piloting [222] and their
safety while teleoperating a construction machine from a safe distance [216]. Authors [165] proposed
the future implementation of their method in communication coverage for monitoring operations
as well. Exactly half of the selected models employ multiple drones, with the other half describing
single-drone area coverage operations. Area coverage operations have mostly been enabled by big
data (N = 10, 90.91%), AI (N = 5, 45.45%), and the IoT (N = 3, 27.27%).

5.3.6. Data Gathering and Recharging in a WSN

Data gathering and recharging in WSNs has been investigated by multiple researchers
focusing on different aspects of the operation. Researchers [153,172,178,219] have empha-
sized the security and validity of the data collected from different clusters of ground sensor
devices; in [171], UAV navigation planning was performed so that the data-gathering
operation of a UAV in one cluster did not affect the same or other operations conducted by
another UAV in another cluster. Energy- and time-consumption minimization during data
collection from static IoT sensors by a multi-UAV network was pursued by the authors
of [121,170] and [111,121,170], respectively. Energy- [120,168] and time- [120,182] consump-
tion minimization objectives have also been studied, where both static and mobile devices
attached to robots or worn by humans have been considered. Mobile ground nodes have
also been considered [132,150]. Other researchers [167] targeted the optimization of the den-
sity of IoT devices and the number of UAVs covering the area, whereas in [163,166,200,210],
energy-efficient approaches for the maximization of the data gathered were pursued. The
recharging of IoT devices was the focus in [131], whereas UAV recharging was considered
in [220], with potentially applicable results to IoT devices as well. WPT was also included
in the future research steps of the study presented in [166]. Data gathering and recharging
in a WSN has mostly been supported by big data (n = 18, 94.74%), the IoT (n = 17, 89.47%),
AI (n = 10, 52.63%), blockchain (n = 5, 26.32%), and RCPSs (n = 4, 21.05%).

5.3.7. Resource Allocation for Mobile Devices

Resource allocation for mobile devices, in the form of communication links and
computing power, has been proposed in several studies with varying objectives. The
improvement in the coverage footprint to secure network connectivity has been attempted
with numerous models, which optimize the drones’ placement for that purpose. In [122],
the authors adjusted the UAV’s height and distance from other drones; in [145], the op-
timization of the placement of a heterogeneous team of robots was pursued to bridge
disconnected networks. In [141], the drone was equipped with various optical, weather,
and location sensors, enabling it to identify the optimum UAV altitudes, longitudes, and
latitudes; in [205], the UAV was free to fly within a predetermined topology at a specified
rate. In [158,159,162,165], the UAV altitude was fixed. In [134], the hovering region was
enhanced through a tether, ensuring longer flight times. Six nonorthogonal multiple access
(NOMA) schemes have been proposed by the authors in our sample, with the aim of mini-
mizing the transmitting power of users and mobile devices [126] as well as maximizing
the achievable rate of devices [129,157,166], throughput [173], and energy efficiency [130].
Researchers [127,128] have targeted the maximization of the number of connected mobile
devices by extending network coverage. In [138], network computation cost minimization
was pursued, while in [136,140,143,158], the authors attempted to maximize the amount
of data collected. Energy consumption as well as network delay and latency reduction
were the foci in [147,160,161] and [137,142,144,154,161], respectively. Resource allocation
for mobile devices has mostly been aided by big data (n = 27, 100%), the IoT (n = 27, 100%),
AI (n = 9, 33.33%), and edge computing (n = 7, 25.93%).
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5.3.8. Routing for a Set of Locations

Routing for a set of locations was the focus of only five studies, which considered
energy consumption minimization [181,200], and maximization of data collected [200] and
wireless coverage extension [127]. In [181], a routing algorithm for a multi-UAV network is
proposed, taking energy usage and fire sensor node information into consideration. In [200],
a UAV–UGV routing algorithm is presented addressing the UGVs’ inability to fully explore
3D spaces including PoIs in high altitudes as well as UAV–UGV cooperation challenges.
In [127], a shortest path routing algorithm is proposed for the establishment of D2D links
in an emergency UAV-aided network. In [176], latency minimization was targeted, where,
unlike most routing algorithms, which are based on the drones’ future location information,
such as in [180], which is also included in our sample, the proposed model considers the
unpredictability of drone locations due to disaster-disrupted conditions. Routing for a set
of locations has mostly been assisted by big data (n = 4, 80%), the IoT (n = 4, 80%), and
AI (n = 2, 40%).

5.3.9. Other

Lastly, supply allocation and sampling are the least-employed HDOs in our sample.
They have all exploited RCPSs (n = 4, 100%) for loading the necessary resources for primary
care and delivering them to victims guided by a leader robot agent [218], storing and deliv-
ering as many supplies as possible by maximizing space utilization [217], enabling resource
tracking in last-mile UAV-aided truck delivery to prevent theft and maldistribution [185],
and collecting samples with the help of a nested marsupial robotic system [214].

In Table 3, a mapping of the frequency of the utilization of the different HDTs in the
different HDOs is presented.

Table 3. Mapping of the frequency of the utilization of different HDTs in different HDOs.

Routing for
a Set of

Locations

Area
Coverage Search Scheduling Task

Assignment

Path and
Trajectory
Planning

Data
Gathering

and
Recharging
in a WSN

Resource
Allocation
for Mobile

Devices

Other

Social media and
crowdsourcing 1 1 1 0 6 4 1 0 0

IoT 4 3 9 10 13 26 17 27 2
Big data analytics 4 10 17 10 18 35 18 27 2

AI 2 5 5 6 9 19 10 9 1
XR 0 2 1 0 1 1 0 0 0

Blockchain 0 0 4 1 2 1 5 1 1
RCPS 1 2 9 2 5 6 4 1 4

Cloud computing 0 0 2 1 3 1 1 2 1
Edge computing 0 0 1 3 10 5 1 7 1
Fog computing 0 0 1 0 1 0 1 0 0

A mapping of the frequency of the utilization of the different HDTs in the different HDOs is presented, where the
darker the color, the higher the frequency. The color gradation is used to shed light on the highest frequencies.

5.4. How Are the Mathematical Models Different? What Types of Solving Approaches Have
Been Proposed?

The majority of the mathematical models in our sample are optimization models
(n = 61, 60.39%). Almost half of the optimization models proposed are heuristic (n = 43,
42.57%), followed by metaheuristic (n = 11, 10.89%) and exact (n = 3, 2.97%) models.
These figures indicate that the integration of stochasticity into the proposed models has
been a priority for researchers. The remaining optimization models (n = 4, 3.96%) use
a combination of heuristic, metaheuristic, and exact approaches for finding solutions to
different subproblems. Single-objective optimization methods outnumber multiobjective
optimization methods, with the former accounting for 37 studies (36.63%) and the latter for
29 studies (28.71%). In particular, 18 models have 2 objectives, 8 models have 3 objectives,
and 3 models have 4 objectives. Control models comprise the minority of our sample,
accounting only for 13 studies (n = 13, 12.87%). Figure 13 depicts the distribution of the
solving approaches employed in the mathematical models in our sample.



Drones 2023, 7, 301 29 of 59

Drones 2023, 7, x FOR PEER REVIEW 33 of 62 
 

Hamiltonian control system with a large number of DOFs is introduced for the control of 

a large-scale joint swarm of UGVs and UAVs. This global Hamiltonian control system 

makes use of local Lie-derivative-based controllers, i.e., the nonlinear generalization of 

PID controllers. Lastly, in [23], a reliable and stable control system is proposed for a 

UAV–UGV cooperative RCPS system fulfilling complex aerial manipulation tasks. 

 

Figure 13. Categorization of the papers based on the solving approach employed in the proposed 

models. 

6. Discussion 

The adoption and integration of drones and other DTs is a vital step toward deliv-

ering more value to HL operations [5,18]. Motivated by significant research gaps detected 

in the DM literature, we carried out an SLR to holistically evaluate relevant 

peer-reviewed works through various unexplored lenses. After conducting a descriptive 

analysis to identify the trends of publications in terms of year, type, source, and country 

of origin, a content analysis ensued to answer the RQs we formulated to attempt to fill the 

aforementioned gaps. The first and foremost issue tackled in this analysis was the inves-

tigation of the complementarity and interoperability of humanitarian drones with other 

emerging HDTs, including big data analytics; IoT; AI; cloud, edge, and fog computing; 

blockchain; RCPSs; and XR. We researched how these DTs are utilized in the 

UAV-assisted HL literature, across the various disaster scenarios, types, and stages in 

which they have been applied. Next, we looked into the different approaches through 

which the different HDTs facilitate the executed HDOs by exploiting different HDCs. 

Only mathematical models were considered in this study, so the proposed solutions were 

also explored, including exact and nonexact optimization as well as control models. In 

this section, the findings of our SLR, which were presented in Sections 3 and 5, are dis-

cussed, with a view to identifying research avenues that will shape future research en-

deavors. 

The descriptive analysis performed indicated that the sample of 101 studies in our 

SLR mostly includes journal papers, followed by conference papers. The number of 

studies in the sample has substantially increased since 2015, with a slight decline during 

the COVID-19 pandemic, is authored by researchers spanning in 41 countries and dis-

persed across 72 sources. Amongst these observations, it is worth highlighting the com-

parative abundance of journal papers, which implies early signs of the maturing of the 

field. Despite this relative maturity, the fragmentation of studies across many different 

sources, which are incidentally technology- and not humanitarian-centric, impedes uni-

form comparisons across UAV-enabled DT operations and hinders the drawing of uni-

versal conclusions regarding the objectives in the HL spectrum. DTs’ integration aside, 

Figure 13. Categorization of the papers based on the solving approach employed in the proposed models.

5.4.1. Optimization Models

Exact models providing analytical solutions are sparse in our sample, given the fact that
many of the problems formulated in the selected studies are nonconvex. The sample also
includes convex, optimally and efficiently solved problems, such as [128,149,158,170,188,220].
Nonconvex problems are NP-hard, highly complex, and computationally hard problems, so
can be tackled by heuristic solving approaches, including metaheuristics. In the selected stud-
ies, multiobjective nonconvex optimization problems have often been decomposed into sim-
pler problems with single objectives and solved by various algorithms, including reweighted
message-passing algorithms [126], iterative algorithms [129,136], hybrid heuristic and learning-
based algorithms [147], and block coordinate descent (BCD) algorithms [142]. BCD has also
been used [94,156,161] along with the bisection search technique and geometric programming-
based optimization. Other approaches to such problems used by the models in our sample
include approximation algorithms for the transformation of nonconvex to convex problems,
followed by the utilization of low-complexity algorithms for solving the resulting convex
problems, such as second-order cone programming [127], iterative algorithms [140], and the
least l1 norm method [172]. Greedy heuristics [145,169], search [167], and K-means clustering
algorithms [111], as well as alternative heuristic solutions [124,198], have been also proposed
for handling NP-hard problems to compute suboptimal solutions.

Evolutionary algorithms, such as genetic algorithms [121,146,152,155,165,215], multi-
optimization evolutionary algorithms based on decomposition (MOEA/D) [131,166], mul-
tiverse optimization algorithms [225], covariance matrix adaptation evolution strategies
(CMA-ES) [173], and bio-inspired swarm mobility algorithms [132], including particle swarm
optimization (PSO)-based algorithms [176,218,223] and shuffled shepherd optimization [151],
have also been used to find near-optimal solutions. In [151,181], other types of metaheuristics
have been proposed. It is worth mentioning that a plethora of game theoretic approaches
have been employed [130,137,138,143,149,151,153,192,194–197,219,220]. Additionally, ML-
driven solutions have been employed in a multitude of complex and analytically intractable
optimization models in our sample, which were discussed in the AI subsection.

5.4.2. Control Models

Various control schemes have been proposed in the studies in our sample. UAV
landing was the center of a study [206], where a vision-based intelligent NN controller is
proposed for the autonomous landing on static and moving targets with no prior informa-
tion from the external infrastructure of the target locations. UAV tracking and landing were
also addressed [212]. Through the tracking of a cooperative target on a platform attached to
a moving vehicle, combined with the prediction of its movement, the target the UAV needs
to track is acquired; thus, stable and rapid autonomous landing can be achieved. Similar
were the foci in [211], where two different approaches are proposed. The first one is based
on a height-adaptive PID controller using the current position of the landing platform as
target, while the second one combines this controller with a Kalman filter to predict the
future positions of the platform and provide them as the input to the controller. According
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to the authors in [224], in the traditional Kalman filter algorithm, most input sensor data
are unreliable. This realization led them to develop an improved extended Kalman filter
algorithm with real-time kinematic global positioning system (RTK-GPS) data, which are
usually highly accurate and can be approximated as accurate measurements relative to
the usual drone operating range. In [176], the authors combined the Kalman filter with a
weighted time expanded graph to address the complex network dynamics of emergency
UAV networks.

RL and DL have been used for autonomous UAV navigation ([208] and [203], respec-
tively). The models in [133,191] leverage Jackson’s network model to support control
operations, such as adaptive control. The authors of [222] paid attention to the lack of
situational awareness of human operators when teleoperating UAVs and their increased
cognitive overload owing to this fact. To address this, they developed a novel exocentric
virtual control scheme with a virtual UAV piloting the real one. In [214], the authors intro-
duce a model for autonomous planning, control, and estimation supporting vision-based
manipulation and mobility for a nested marsupial RCPS fulfilling tasks in constrained
environments. The control techniques currently being implemented are mostly devoted
to dealing with a small number of degrees of freedom (DOFs). In [211], a Hamiltonian
control system with a large number of DOFs is introduced for the control of a large-scale
joint swarm of UGVs and UAVs. This global Hamiltonian control system makes use of
local Lie-derivative-based controllers, i.e., the nonlinear generalization of PID controllers.
Lastly, in [23], a reliable and stable control system is proposed for a UAV–UGV cooperative
RCPS system fulfilling complex aerial manipulation tasks.

6. Discussion

The adoption and integration of drones and other DTs is a vital step toward delivering
more value to HL operations [5,18]. Motivated by significant research gaps detected in the
DM literature, we carried out an SLR to holistically evaluate relevant peer-reviewed works
through various unexplored lenses. After conducting a descriptive analysis to identify
the trends of publications in terms of year, type, source, and country of origin, a content
analysis ensued to answer the RQs we formulated to attempt to fill the aforementioned
gaps. The first and foremost issue tackled in this analysis was the investigation of the
complementarity and interoperability of humanitarian drones with other emerging HDTs,
including big data analytics; IoT; AI; cloud, edge, and fog computing; blockchain; RCPSs;
and XR. We researched how these DTs are utilized in the UAV-assisted HL literature, across
the various disaster scenarios, types, and stages in which they have been applied. Next,
we looked into the different approaches through which the different HDTs facilitate the
executed HDOs by exploiting different HDCs. Only mathematical models were considered
in this study, so the proposed solutions were also explored, including exact and nonexact
optimization as well as control models. In this section, the findings of our SLR, which were
presented in Sections 3 and 5, are discussed, with a view to identifying research avenues
that will shape future research endeavors.

The descriptive analysis performed indicated that the sample of 101 studies in our
SLR mostly includes journal papers, followed by conference papers. The number of stud-
ies in the sample has substantially increased since 2015, with a slight decline during the
COVID-19 pandemic, is authored by researchers spanning in 41 countries and dispersed
across 72 sources. Amongst these observations, it is worth highlighting the comparative
abundance of journal papers, which implies early signs of the maturing of the field. Despite
this relative maturity, the fragmentation of studies across many different sources, which
are incidentally technology- and not humanitarian-centric, impedes uniform comparisons
across UAV-enabled DT operations and hinders the drawing of universal conclusions
regarding the objectives in the HL spectrum. DTs’ integration aside, HSCs are generally
subject to a plethora of complexities and weaknesses [226–228], which either remain un-
explored or have been approached by diverse multidisciplinary methodologies [229,230].
This diversity in both the HDT and non-HDT literature sheds light on the urgent need for
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the convergence of the different mathematical models and theoretical approaches toward
a common and integrated field of study focusing on technology, information manage-
ment, and processes as well as the socioeconomic, environmental, managerial, and other
implications of HL.

Regarding the content analysis, all four disaster phases were considered by the mathe-
matical models in our sample with an additional emphasis on the postdisaster stage. The
predominance of post-disaster-oriented literature balances the dearth spotted in [36], in
which the integration of DTs in the postdisaster stage was deemed inadequate compared
with that in the predisaster stage. In particular, the response phase was studied the most
often in our sample, followed by the mitigation and preparedness phases. The recovery
phase was by far the least explored phase. The lack of focus on recovery has also been noted
outside the UAVs–DTs collaboration spectrum [58,231–234], which can be justified due to
the nonthreatening state of the disaster at that point, but should not be neglected because
the restoration of normality and long-term sustainability are contingent on the success of
the logistical activities and operations during that phase [235,236]. Therefore, additional
emphasis on the recovery phase is required in the context of HDT-assisted HDOs.

Regarding disaster types, it is noteworthy that no study in our sample concentrated
solely on human-made disasters, with their focus being on natural or a combination of
both natural and human-made disasters. This lack of research on human-made disasters
again confirms the statements of the authors in [231]. This could be attributed to the fact
that natural disasters are considered more calamitous, less preventable, and not as easily
manageable compared with human-made disasters [58]. The speed of the disasters was
also taken into account in our analysis, which shows that all studies explored sudden-onset
disasters, with only one paper addressing a slow-onset disaster, which was in combination
with a sudden-onset disaster. Yet, although the low speed of such disasters seemingly
decreases urgency, their large scale can lead to even more catastrophic repercussions than
sudden-onset disasters [237]. This is also supported by the existing literature, which has
primarily focused on disaster relief, overlooking continuous aid operations, most probably
due to time availability permitting better planning and rendering such operations less
challenging in comparison [231]. Overall, more researchers should consider the particulari-
ties and intrinsic complexities of human-made and slow-onset disasters (e.g., multiperiod
approaches are required) in their mathematical formulations.

Most HDTs are used in all HL phases, which validates findings [37] that suggested
that the majority of DTs are able to contribute to all four HL phases as standalone solutions.
In this study, we took this a step further by showing that most DTs can be utilized in
tandem with UAVs in all disaster phases. The authors of [5] systematically indicated how
drones are able to improve HL phases through their capabilities, i.e., communication and
integration, surveying and monitoring, and transportation and delivery capabilities. In this
study, the HDCs leveraged in the various HDOs considered in the models in our sample
are supported by various heterogeneous HDTs, which help stakeholders exploit them to
their maximum potential. Big data analytics, IoT, and AI are the most-investigated HDTs in
our sample, followed by cloud, edge, and fog computing; RCPSs; blockchain; social media
and crowdsourcing; and XR.

Communication and integration are crucial aspects during emergency scenarios, with
~80% of the models utilizing such HDCs. Big data have been generated by many sources
and communicated to stakeholders for efficient management of the disaster. In partic-
ular, the data generated by social media platforms or acquired during the execution of
area coverage (images, audiovisual material, etc.) and data gathering (victims’ physiolog-
ical parameters, environmental sensor measurements, Wi-Fi access points, etc.) from
IoT mobile and stationary devices have been used to a large extent in the proposed
models for emergency verification and disaster identification [194–197,201], crowd count-
ing and localization [132,148,155], search operations [141,206,210–213,215], and damage
assessment [199,202,204]. Search and area coverage operations have used the surveying
and monitoring HDCs, as observed in ~40% of the studies. AI has been utilized to address
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the large amount of redundant information and errors naturally arising from such sources
and requiring data processing and analysis. Holistic models incorporating heterogeneous
data from all these sources combined were not considered in our sample studies, which,
can be justified given the need for more advanced approaches to deal with the increased
complexity emerging from their fusion, which therefore indicates an important future
research direction.

Yet, the generation, consolidation, filtering, processing, and analysis of such data are
fruitless if seamless communication networks meeting QoS requirements are not in place
to enable secure transmission and dissemination. Resource-allocation-focused models
are abundant in our sample studies, designed to provide network coverage in the cases
where BSs have been destroyed and UAV-mounted BSs or UAVs as relay nodes have been
employed. Edge computing networks have been broadly utilized in such operations to
address communication latency, congestion, and energy consumption, which are among the
most targeted objectives amongst the models. Resource-intensive task assignment to UAV-
mounted mobile nodes, i.e., task offloading, as well as resource scheduling are common
topics discussed in the selected models. Another challenge in UAV communication is
security and privacy within aerial networks for DM, which has been dealt with through
AI solutions and blockchain technology. Resource allocation has often been combined
with path and trajectory planning operations, which was the most-researched HDO in the
sample. A few models focused on regular UAV routing operations, but the majority of them
shifted their focus toward UAV placement and positioning to address collision avoidance
and energy management. Modeling energy consumption and kinematics had needed
further investigation according to [49,50], objectives that were thoroughly considered in
the selected models. Only one study considered drone recharging through WPT [220], with
the rest of recharging-related studies targeting mobile devices, shedding light on the need
for more WPT-pertinent models in the future. Path and trajectory planning models have
been assisted by AI through image recognition and the exchange of IoT data about drone
speed, trajectory, and position through inter-UAV communication.

Interoperability is a core capacity in emergency situations, either when referring to data
gathering from heterogeneous devices or the collaboration of different RCPSs with various
configurations. Different UAV–RCPS configurations have been proposed in the studies in
our sample, so that the weaknesses of the UAVs are compensated for by the strengths of
other vehicles and vice versa. Task assignment and task scheduling operations have widely
been employed for efficient intervehicle coordination, in response to a previous concern
expressed in [49,50]. UAV–UGV, UAV–USV, UGV–UAV–UGV, as well as UAV–electric
vehicle configurations have been proposed for data gathering, area coverage, search, supply
allocation, and sampling operations. The last two operations exploit the transportation and
delivery HDCs, which accounted for only ~7% of the studies. The lack of supply allocation
operations in our sample cannot be ignored, stressing the need for producing such models
in the future.

The last aspect of our analysis focused on the solving approaches employed in the
mathematical models, which were mainly optimization models; according to [28], these had
been much needed. Most of the rest are control models addressing path and trajectory plan-
ning. Almost half of the optimization models proposed use heuristics and metaheuristics,
indicating that researchers have widely taken into consideration stochastic parameters. The
level of uncertainty integrated in the models has increased to more accurately reflect the
dynamic disaster conditions compared with the past, as shown in the previous literature,
which has mostly dealt with deterministic approaches [43,48]. AI and metaheuristics were
mainly used to reduce computational burdens and the execution times of complex multi-
objective problems, filling a large research gap present in the previous optimization HL
literature [44–47]. Although the proposed models were proven computationally efficient
in simulation contexts, this might not be the case when applied in actual disasters, which
remains to be confirmed in future studies.
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In Figure 14, based on all of the above, a novel framework is proposed, illustrating
how the different HDTs are able to complement the different HDOs executed in a generic
disaster scenario.
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7. Conclusions

Even though humanitarian crises cannot be approached similarly due to their inher-
ently different characteristics and complexities, in this era of volatility, complexity, and
ambivalence, standardizing the adoption of drones and their cooperative use with other
HDTs during the execution of various HDOs are essential steps toward increasing their
applicability and enhancing their scalability. This was the focus of this study, based on
the results of which a novel holistic integrated framework was developed aiming at this
overlooked aspect of the literature and contributing to the identification of several chal-
lenges needing to be addressed in the future. A step to advance the field even further
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is the creation of a worldwide HDT database acting as a roadmap by highlighting the
relevance of each HDT per HDO for different scenarios and needs and creating awareness
through the sharing of past experiences, mistakes, and measures taken, thus providing
tailored options for interested stakeholders. The collection of perspectives from diverse
stakeholders to gain insights into real-life applications of such models in actual disaster
scenarios may lead to the establishment of new processes, organizational structures, and
managerial frameworks for DM operations. However, an immense gap exists related to
the exploitation of the proposed models and the integration of their results into policy
frameworks, enabling real-life implementations, which should be a future research priority.

The present study, despite its contributions, is subject to limitations. The first limitation
refers to the data collection source, i.e., the inclusion of studies from the Scopus database
only, thus potentially leading us to omit notable non-Scopus-indexed papers. The time
frame that we chose may also have led us to miss pertinent material. Moreover, even
though we tried to formulate keywords that were as inclusive as possible, some studies
were likely accidentally missed. Finally, our last remark pertains to the formulation of the
proposed coding criteria, on which the classification of studies was based, which are both
subject to human indexer bias. To mitigate such bias and ensure objectivity, the selected
studies were individually examined, and the grouping decisions were then juxtaposed for
us to debate and, eventually, eliminate ambiguities.
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Appendix A

Table A1. Systematic literature review samples in the context of HL.

Reference # of Papers in the Sample Reference (Cont.) # of Papers in the
Sample (Cont.)

[238] 9 [239] 66

[33] 17 [240] 74

[241] 23 [242] 78

[243] 25 [244] 81

[245] 25 [47] 83

[7] 28 [246] 83

[247] 28 [248] 88

[249] 31 [250] 88

[251] 31 [44] 94

[252] 32 [253] 100

[254] 36 [37] 110

[255] 45 [256] 123

[257] 46 [258] 126

[259] 47 [5] 142

[260] 51 [261] 152
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Table A1. Cont.

Reference # of Papers in the Sample Reference (Cont.) # of Papers in the
Sample (Cont.)

[262] 52 [231] 174

[263] 52 [264] 178

[265] 53 [266] 207

[38] 61 [267] 228

[28] 64 [36] 362

Table A2. List of classification abbreviations.

Category Abbreviation Details

Disaster Phase M Mitigation

P Preparedness

Res Response

Rec Recovery

Disaster Type N Natural disaster

HM Human-made disaster

Solving
Approach Opt Optimization modeling

Ex Exact solution or closed form solution

H Heuristic algorithm solution apart from metaheuristic
algorithms

MH Metaheuristic algorithms solution

Co Control theory and algorithms

OM Other mathematical models

Game

Game theory (convergence to a Nash equilibrium or
Stackelberg equilibrium, minority games, game engine
theory, stochastic game/Markov game, matching game
theory, bottom-up game theory)

BnB, DP, LR Branch-and-bound, dynamic programming, Lagrangian
relaxation algorithms, respectively

Subject of Planning SD Single drone

MD Multiple drones

Vehicle
Considerations LF

Limited flight time/distance/payload/maximum
speed/climb (descent) rate/fixed location, or
height/coverage radius/intercoverage distance/fixed
speed

EqM

Equations of motion including minimum turning radius,
curvature continuity constraint, maximum
climbing angle constraint, and other system dynamics
constraints

EC Energy consumption consideration

CTC Communication/transmission consideration

S Sensor related consideration (e.g., limited footprint
distance/angle from device, distance between devices)

SF Safety concerns (presence of obstacles, collision concerns)

W Weather considerations

HG Heterogeneous vehicles, heterogeneous capabilities

HDCs. Tran Transportation and delivery capabilities
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Table A2. Cont.

Category Abbreviation Details

Mon Surveying and monitoring capabilities

Com Communication and integration capabilities

Table A3. List of other abbreviations.

Full Term Abbreviation

Area of Interest AoI

Artificial Intelligence AI

Augmented Reality AR

Autoregressive Integrated Moving Average ARIMA

Base Station BS

Block Coordinate Descent BCD

Convolutional Neural Network CNN

Covariance Matrix Adaptation Evolution Strategy CMA-ES

Cyber–Physical System CPS

Deep Learning DL

Deep Reinforcement Learning DRL

Deep Q Learning DQL

Degree of Freedom DoF

Delegated Proof-of-Stake DpoS

Density-Based Optics Clustering DBOC

Device-to-Device D2D

Digital Technology DT

Disaster Management DM

Drone Task Assignment DTA

Extended Reality XR

Generative Adversarial Network GAN

High-Altitude Pseudosatellite HAP

Humanitarian Digital Technology HDT

Humanitarian Drone Capability HDC

Humanitarian Drone Operation HDO

Humanitarian Logistics HL

Humanitarian Supply Chain HSC

Internet of Things IoT

Internet of Vehicles IoV

Line of Sight LoS

Long Range Wide Area Network LoRaWAN

Machine Learning ML

Micro Unmanned Aerial Vehicle MUAV

Mixed Reality MR

Mobile Edge Computing MEC

Multioptimization Evolutionary Algorithm based on Decomposition MOEA/D

Neural Network NN

Panic Severity Index PSI
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Table A3. Cont.

Particle Swarm Optimization PSO

Point of Interest PoI

Quality of Experience QoE

Quality of Service QoS

Real-Time Kinematic Global Positioning System RTK-GPS

Received Signal Strength Indication RSSI

Reinforcement Learning RL

Research Question RQ

Robotics and Cyber–Physical System RCPS

Search and Rescue SAR

Seasonal Autoregression Integrated Moving Average SARIMA

Signal-to-Interference-plus-Noise Ratio SINR

Social-media-driven Drone Sensing SDS

Supervised Learning SL

Systematic Literature Review SLR

Unmanned Aerial Vehicle UAV

Unmanned Ground Vehicle UGV

Unmanned Surface Vehicle USV

Unmanned Underwater Vehicle UUV

Unsupervised Learning UL

Vehicle-to-Vehicle V2V

Vehicular Crowdsourcing VC

Virtual Reality VR

Wireless Power Transfer WPT

Wireless Sensor Network WSN
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Appendix B

Table A4. Classification of the 101 selected papers into the proposed coding criteria.

Ref. Disaster Phase Disaster Type HDC HDT HDO Objective Subject of Planning Vehicle
Cons. Solv. App.

M P Res Rec N HM Tran Mon Com SD MD

[151] X X X X X X IoT, AI,
big data

Path
planning

Minimization of energy consumption
and maximization of the throughput
of IoT devices.

X
LF, EC,

CTC, S, SF,
W

Opt, MH,
Game

[169] X X X IoT, big
data

Path
planning

Maximization of the number of
covered points, prioritization of the
points according to their visit
precedence, balancing coverage and
priority objectives.

X LF, CTC, S OM

[141] X X X X X X X X IoT, big
data

Resource
allocation,

search

Strong wireless connectivity,
wide-coverage footprint,
high-throughput transmission, low
power consumption, and, thus, longer
drone flight time.

X EC, CTC,
S, W OM

[206] X X X X X AI, big
data Search

Autonomous landing on static and
moving targets with no prior
information from external
infrastructure of the target locations.

X EqM Co

[199] X X X X X
Crowdsourcing,

AI, big
data

Area
Coverage

Object detection and fine-grained
classification in images acquired from
drones.

X - OM

[139] X X X X X X IoT, big
data Search Identification of the position of mobile

devices and, thus, missing persons. X LF, CTC,
SF OM

[157] X X X X IoT, big
data

Resource
allocation

Maximization of the overall sum rate
of the system by optimizing the
positions of UAVs for a given IoT
distribution, optimization of the
transmitting power of IoT devices.

X CTC Opt, H

[222] X X VR, big
data

Area
coverage

Reduction in the cognitive overload
when controlling drones. X EqM Co

[181] X X X X X X IoT, big
data Routing Minimization of energy consumption,

maximization of network lifespan. X EC, CTC,
S Opt, MH



Drones 2023, 7, 301 39 of 59

Table A4. Cont.

Ref. Disaster Phase Disaster Type HDC HDT HDO Objective Subject of Planning Vehicle
Cons. Solv. App.

M P Res Rec N HM Tran Mon Com SD MD

[167] X X X X X X IoT, big data Data
gathering

Optimization of IoT devices’ density,
optimization of the number of UAVs
covering the forest area, such that a
lower bound on wildfire detection
probability is maximized.

X LF, CTC,
W Opt, H

[192] X X X X X
IoT, VR,
cloud

computing

Search,
task as-

signment

Minimizing delivery time, energy
consumption, and total costs for all
robots; reducing maximum costs for
all robots; balancing workload
between robots/lengths of the
tour/mission time/number of targets
allocated.

X EC, CTC,
S, HG, W

Opt, H,
Game

[158] X X X IoT, big data Resource
allocation

Maximization of the average data rate
of drones through power allocation
and placement of drones.

X LF, CTC, Opt, H,
LR

[147] X X X
IoT, AI, edge
computing,

big data

Scheduling,
trajectory
planning,
resource

allocation

Maximization of the lifetime of mobile
devices by jointly optimizing drone
trajectories, task associations, devices’
CPU frequencies, and wireless
transmitting powers.

X LF, EC,
CTC, SF Opt, H

[160] X X X IoT, AI, big
data

Resource
allocation

Resumption of ground
communication service in the
postdisaster rescue context with the
goal of optimizing energy efficiency.

X LF, CTC Opt, H

[111] X X X X X IoT, AI, big
data

Path
planning,

data
gathering

Minimization of completion time. X LF, EC,
CTC, SF Opt, H

[121] X X X IoT, AI, big
data

Scheduling,
path

planning,
data

gathering

Minimization of drone energy
consumption X LF, EC,

CTC Opt, MH

[149] X X X X X IoT, big data Search

Maximization of the obtainable gain
(in terms of meeting the demands of
the applications and users in terms of
performance and success rate),
minimization of the consequent cost in
terms of energy consumption.

X EC, CTC,
W

Opt, H,
Game
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Table A4. Cont.

Ref. Disaster Phase Disaster Type HDC HDT HDO Objective Subject of Planning Vehicle
Cons. Solv. App.

M P Res Rec N HM Tran Mon Com SD MD

[131] X X X X IoT, AI, big
data

Trajectory
planning,

scheduling,
resource

allocation

Sequential optimization of the 3D
position of the drone, beam pattern,
charging time to maximize energy
harvested.

X LF, EC,
CTC, SF

Opt, MH,
BnB

[166] X X X IoT, AI, big
data

Path
planning,

data
gathering,
resource

allocation,
recharging

Maximization of the total uplink
throughput, maximization of the total
achievable rate of IoT devices,
maximization of the sum rate of all IoT
devices.

X LF, CTC, S,
SF Opt, MH

[145] X X X X
IoT, AI,

RCPS, big
data

Path
planning,
resource

allocation

Maximization of network coverage
and exploration path X LF, EC,

CTC, HG Opt, H

[172] X X X X X X
IoT,

blockchain,
big data

Data
gathering

Reducing data redundancy, improving
sparsity, and ensuring the security of
data transmission.

X LF, EC,
CTC, W OM

[159] X X X IoT, big data Resource
allocation

Evaluation of the overall outage
probability for different SINR
threshold values, D2D transmit
powers, distance of an IoT user from
the IoT gateway, and the distance of a
D2D user from a drone.

X LF, CTC OM

[218] X X X X RCPS Supply
allocation

Ensuring minimal distances between
agents and avoiding collisions. X LF, SF, HG Opt, MH

[210] X X X X X RCPS, big
data

Search, task
assignment,

data
gathering

Maximization of the amount of
information for a given set of
responder-defined AoIs.

X LF, EC,
CTC, HG Opt, H

[200] X X X X X X
Crowdsourcing,

AI, RCPS,
big data

Routing,
task

assignment,
data

gathering

Maximization of the amount of
collected data, geographical fairness,
energy efficiency, minimization of data
dropout.

X EC, CTC,
S. HG Opt, H
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Table A4. Cont.

Ref. Disaster Phase Disaster Type HDC HDT HDO Objective Subject of Planning Vehicle
Cons. Solv. App.

M P Res Rec N HM Tran Mon Com SD MD

[220] X X X X
IoT,

blockchain,
big data

Recharging Optimal energy trading between
drones and charging stations. X EC, CTC OM,

Game

[137] X X X
IoT,

blockchain,
big data

Resource
allocation

Optimization of cost and time
parameters. X LF, CTC Opt, H,

Game

[209] X X X X X IoT, AI, big
data

Area
coverage

Reduction in the number of images to
be processed by the first responders. X EC, W OM

[213] X X X RCPS Search

Prediction and control of a large-scale
joint swarm of UGVs and UAVs
performing a joint autonomous
land–air operation

X EqM, CTC,
HG Co

[221] X X X Blockchain Search
Addition of an encryption function to
a large number of data transmission
models.

X CTC OM

[225] X X X X Big data Path
planning

Optimization of the smoothness of
path, landing accuracy at destination,
distance minimization.

X X LF, SF Opt, E,
MH

[173] X X X X IoT, big data Resource
allocation Maximization of throughput. X LF, EC,

CTC Opt, MH

[143] X X X
IoT, edge

computing,
big data

Resource
allocation

Maximization of the total successful
computed data, optimization of the
usage of aerial resources.

X CTC Opt, H,
Game

[168] X X X X X X X IoT, big data Data
gathering

Enhancement of the lifespan of the
WSN. X LF, EC,

CTC, S OM

[188] X X X IoT, edge
computing

Task
assignment

Minimization of energy consumption
and task completion time for optimal
task–UAV–mobile edge server.

X LF, EC,
CTC Opt, H

[216] X X X RCPS Area
coverage

Position estimation for a tethered UAV,
in charge of securing the safety of the
teleoperator of a construction machine.

X LF, HG OM

[171] X X X X X IoT, big data

Data
gathering,
trajectory
planning

Use of UAVs as IoT devices for data
acquisition from different clusters of
sensor devices deployed in a region
through geofencing.

X CTC, S, SF OM
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Table A4. Cont.

Ref. Disaster Phase Disaster Type HDC HDT HDO Objective Subject of Planning Vehicle
Cons. Solv. App.

M P Res Rec N HM Tran Mon Com SD MD

[135] X X X X
IoT, AI, Edge
Computing,

big data

Trajectory
Planning,

Task
Assignment

Maximization of the number of
completed tasks and minimization of
energy consumption.

X LF, EC,
CTC, SF Opt, H

[154] X X X
IoT, AI, Edge
Computing,

big data

Resource
Allocation,

Path
Planning

Maximization of the average total QoE
of all IoT devices over all time slots. X LF, CTC,

SF Opt, H

[162] X X X X IoT, AI, big
data

Resource
Allocation

Maximization of the number of
node-to-node connections while
maintaining a strongly connected
drone network.

X LF, CTC,
W Opt, H

[124] X X X X IoT, big data

Scheduling,
Path

Planning,
Area

Coverage

Maximization of non-redundant
photos taken by the UAV. X LF, EC, SF Opt, H

[126] X X X X X IoT, big data Resource
Allocation

Minimization of the hovering time of
the UAV and the power consumption
of the D2D network.

X LF, CTC, S Opt, H

[176] X X X IoT, big data
Routing,

Task
Assignment

Minimization of task processing
latency and realization of computing
while transmitting.

X LF, CTC Co

[142] X X X

IoT, Cloud
and Edge

Computing,
big data

Scheduling,
Task

Assignment,
Resource

Allocation

Minimization of the maximum
computation delay among IoT devices. X LF, CTC,

SF Opt, H

[214] X X X X X X RCPS, big
data

Search,
Sampling,
Trajectory
Planning

Realization of a mock hazardous
chemical spill investigation and
sampling task within a large shipping
container requiring access to
increasingly constrained spaces.

X SF, HG, W Co

[207] X X X IoT, AI Path
Planning

Optimization of the location of drone
BSs by minimizing the collective
wireless received signal strength.

X LF, CTC,
SF Opt, H

[152] X X X IoT
Path

Planning,
Scheduling

Minimization of time consumption
and energy consumption of UAVs. X LF, EC,

CTC, W Opt, MH
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[217] X X X X RCPS, big
data

Path
Planning,
Supply

Allocation

Maximization of volume of supplies
and covered area. X LF, HG Opt, E

[146] X X X X
IoT, AI, edge
computing,

big data
Scheduling

Maximization of number of tasks
distributed to the UAVs and
minimization of the average energy
consumption.

X EC, CTC Opt, H.
MH

[215] X X X X RCPS, big
data

Path
planning,

search, area
coverage

Ground map generation and path
distance minimization. X CTC, SF,

HG
Opt, H,

MH

[211] X X RCPS, big
data Search

Autonomous take-off, tracking, and
landing of a UAV on a moving landing
platform, detection, and localization of
the mobile target using a
downward-looking camera and
vision-based tracking of the mobile
platform while in flight.

X LF, EqM,
S, HG Co

[122] X X X IoT Resource
allocation

Optimization of UAV network
coverage. X

LF, EC,
CTC, SF,

W
OM

[51] X X X X RCPS

Path
planning,

task
assignment,
scheduling

A reliable and stable control system
for aerial manipulation, successful
self-localization and mapping in 3D
space, fast planning and task
allocation.

X EC, CTC,
SF, HG Co

[208] X X X X AI, big data
Path

planning,
search

Autonomous UAV Navigation to
locate missing human. X EqM, SF Co

[178] X X X

IoT, AI,
blockchain,

edge
computing,

big data

Data
gathering

Minimization of energy consumption
from forking events. X CTC Opt, H
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[204] X X X X X AI, big data Area
coverage

Flooded zone segmentation from
aerial images that contain both water
and nonwater elements.

X S Opt, H

[185] X X X X X

IoT, AI,
blockchain,

RCPS, cloud
and edge

computing

Supply
Allocation

Optimization of delivery times in
last-mile UAV-truck networks,
optimization of resource distribution
to reduce the cases of surplus and
deficiency of resources at affected
target sites, and throughput
maximization.

X CTC, HG Opt, H

[202] X X AI, big data Area
coverage

Positioning of damaged poles with the
inputs of coordinates and necessary
information extracted from UAV
images.

LF, S OM

[150] X X X IoT, AI, big
data

Data
gathering

First responder allocation, victims’
coalition formation, UAV–first
responder association.

X LF, EC,
CTC OM

[196] X X X X X Social media,
AI, big data

Task
assignment,

path
planning

Minimization of the discrepancy
between the estimated validity of the
events and their ground truth.

X LF, EC, SF,
W

OM,
Game

[197] X X X X X Social media,
big data

Task
assignment,

path
planning

Minimization of the discrepancy
between the estimated validity of
events and their ground truth.

X LF, EC, SF OM,
Game

[194] X X X X X Social media,
AI, big data

Task
assignment,

path
planning

Minimization of the discrepancy
between the estimated truth of events
and their ground truth and
minimization of drone average power
consumption at each sensing cycle.

X LF, EqM,
EC, SF

Opt, H,
Game

[195] X X X X Social media,
big data

Task
assignment,

path
planning

Minimization of the discrepancy
between the estimated validity of
events and their ground truth.

X S, W Opt, H,
Game

[224] X X X AR, big data Area
coverage

Improvement in the geographic
registration (georegistration) accuracy. X S, W Co

[190] X X X IoT, AI, edge
computing

Task
assignment

Minimization of completion time for
all tasks in the system. X CTC, S Opt, H
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[179] X X X X IoT Scheduling Optimization of drone scheduling
time. X EC, CTC,

W Opt, E

[133] X X X X X X X
IoT, AI, edge
computing,

big data

Search, task
assignment

Minimization of average completion
time of a set of tasks. X CTC, S Co

[120] X X X X X X X

IoT, AI,
cloud and

fog
computing,

big data

Data
gathering

Panic-based on-time and orderly
evacuation of stranded persons. X EC, CTC,

SF, W OM

[134] X X X X X IoT, big data Area
coverage Improvement in UAV coverage area. X LF, EC,

CTC, S OM

[138] X X X X
IoT, AI, edge
computing,

big data

Task
assignment,

resource
allocation

Minimization of the overall network
computation cost in terms of energy
and delay.

X EC, CTC Opt, H,
Game

[182] X X X IoT, AI, big
data

Trajectory
planning,

data
gathering

Minimization of the age of network
information. X CTC OM

[155] X X X X X X X
IoT, cloud

computing,
big data

Search,
trajectory
planning

Crowd counting and localization. X SF Opt, MH

[144] X X X
IoT, edge

computing,
big data

Resource
allocation Delay minimization. X CTC Opt, H

[164] X X X
IoT, edge

computing,
big data

Task
assignment Service delay minimization. X EqM, CTC OM

[130] X X X X X IoT, AI, big
data

Trajectory
planning,
resource

allocation

Maximization of the coalition head
energy availability to find UAV’s
optimal position.

X LF, CTC,
SF

Opt, H,
Game

[180] X X X IoT, AI Routing Proactive vehicular routing using
mobility control information. X LF, CTC OM
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[177] X X X X X

IoT, AI, big
data,

blockchain,
RCPS

Scheduling,
trajectory
planning,

task
assignment

Autonomous path-finding of
miniature UAVs assisted by
task-offloading devices.

X CTC, S Co

[148] X X X X X IoT, AI, big
data

Search, path
planning

Minimization of the signal
propagation exponent and the
reference RSSI value.

X S, SF OM

[198] X X X X X Social media,
big data

Search, task
assignment Minimization of the total fly time cost. X LF, EC Opt, H

[140] X X X X IoT, big data

Resource
allocation,
trajectory
planning

Maximization of the total number of
served IoT devices and collected
throughput.

X LF, CTC,
SF Opt, H

[132] X X X X X X IoT, big data Data
gathering

Maximization of the number of
connected mobile ground nodes. X CTC, S, SF,

HG Opt, MH

[170] X X X IoT, AI, big
data

Path
planning,

data
gathering

Minimization of completion time and
total energy consumption of UAVs’
deployment procedure in data
collection missions.

X CTC, S, SF Opt, H

[191] X X X X X X X

IoT, edge
and cloud

computing,
big data

Task
assignment

Creation of a management layer
between the IoT application and
operating system to establish and
monitor network connectivity,
estimate failures, and adapt task
planning.

X CTC Co

[205] X X X X X IoT, AI, big
data

Resource
allocation

Creation of a transmission control
protocol for the 5G millimeter-wave
network.

X LF, CTC, S OM

[223] X X X X VR, big data Path
planning Path optimization. X LF, EqM,

SF, W Opt, MH

[165] X X X IoT, big data Resource
allocation

Optimization of the placement of a
group of drone-cells with limited
backhaul communication ranges to
maximize the number of served users.

X CTC Opt, E,
MH
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[128] X X X X IoT, big data Resource
allocation

Minimization of the transmission
power for relaying data at the UAV
mounted BSs to extend hovering time
and, thus, maximize the number of
human-portable machine-type devices
to establish connectivity and send
rescue messages with required data
rates.

X LF, EC,
CTC Opt, H

[127] X X X X X X IoT, big data
Routing,
resource

allocation

Minimization of the number of hops in
the uplink and downlink transmission
between the UAV and mobile devices.

X LF, EC,
CTC, S Opt, H

[163] X X X X IoT, AI, big
data

Data
gathering

Creation of a task distribution
mechanism to achieve trade-off
between data aggregation ratio and
energy cost.

X EC, CTC Opt, H

[212] X X X RCPS, big
data Search

Construction of an autonomous
landing platform and design of
cooperative target considering the
rapidity and stability of landing,
creation of a method that can detect
and track moving targets in real time.

X HG, W Co

[219] X X X X X

IoT,
blockchain,
RCPS, big

data

Search, data
gathering

Maximization of the utility of electric
vehicles. X

LF, EC,
CTC, S,

HG

Opt, H,
Game

[153] X X X X X

IoT,
blockchain,
RCPS, big

data

Search, data
gathering

Ensure secure blockchain offline
transactions among electric vehicles. X EC, CTC,

HG
Opt, E,
Game

[203] X X X X AI, big data
Scheduling,

path
planning

Autonomous path-finding of
miniature UAVs assisted by
task-offloading devices.

X CTC, S, SF Co

[189] X X X X X
IoT, big data,

edge
computing

Task
assignment

Minimization of service time and
energy consumption. X EqM, EC,

CTC Opt, H

[193] X X X X

AI,
blockchain,
RCPS, fog

computing,
big data

Search, task
assignment

Ensure secure, energy-efficient data
sharing for UAV-aided disaster relief
networks.

X
LF, EC,

CTC, HG,
W

OM
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[94] X X X IoT, big data
Scheduling,
trajectory-
planning

Optimization of mission completion
time and energy consumption with the
goal of serving IoT nodes as much as
possible based on their data needs.

X LF, EC,
CTC, SF

Opt, H,
DP

[156] X X X
IoT, edge

computing,
big data

Task
assignment,

trajectory
planning

Minimization of the energy
consumption of IoT devices. X LF, EC, SF Opt, H

[136] X X X IoT, Big data

Trajectory
planning,
resource

allocation

Maximization of the downlink
achievable sum rate of users. X LF, CTC,

SF Opt, H

[129] X X X X IoT, big data

Trajectory
planning,
resource

allocation

Maximization of the uplink average
achievable sum rate of IoT terminals. X LF, CTC,

SF
Opt, H,

LR

[161] X X X X

IoT, cloud
and edge

computing,
big data

Resource
allocation

Minimization of the total energy
consumed by the system for
computation and transmission.

X CTC, SF Opt, H

[201] X X X X X X AI, big data Area
coverage

Intelligent identification of UAV aerial
images, extraction of foreground
features of disasters, and timely
detection of abnormal hidden hazards.

SF, W OM
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