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Abstract: The angle of arrival (AOA) is widely used to locate a wireless signal emitter in unmanned
aerial vehicle (UAV) localization. Compared with received signal strength (RSS) and time of arrival
(TOA), AOA has higher accuracy and is not sensitive to the time synchronization of the distributed
sensors. However, there are few works focusing on three-dimensional (3-D) scenarios. Furthermore,
although the maximum likelihood estimator (MLE) has a relatively high performance, its compu-
tational complexity is ultra-high. Therefore, it is hard to employ it in practical applications. This
paper proposed two center of inscribed sphere-based methods for 3-D AOA positioning via multiple
UAVs. The first method could estimate the source position and angle measurement noise at the same
time by seeking the center of an inscribed sphere, called the CIS. Firstly, every sensor measures two
angles, the azimuth angle and the elevation angle. Based on that, two planes are constructed. Then,
the estimated values of the source position and the angle noise are achieved by seeking the center
and radius of the corresponding inscribed sphere. Deleting the estimation of the radius, the second
algorithm, called MSD-LS, is born. It is not able to estimate angle noise but has lower computational
complexity. Theoretical analysis and simulation results show that proposed methods could approach
the Cramér–Rao lower bound (CRLB) and have lower complexity than the MLE.

Keywords: UAV; 3-D; angle of arrival; center of inscribed sphere

1. Introduction

Source localization has attracted much attention for decades. In recent years, it has
been used in many new applications, such as wireless sensor networks (WSN), the Internet
of Things (IoT), and unmanned aerial vehicles (UAV) localization [1–3]. It is worth noting
that integrated sensing and communications (ISAC) is regarded as a key technology in
6G and demands higher requirements [4]. Therefore, source localization will be a hot
research topic in the future of wireless communications. As presented in [5], high-precision
localization is essential in many scenarios and use cases, such as vehicle positioning in
vehicle-to-everything (V2X) networks, fall detection in smart homes, drone swam synthetic
aperture radar (SAR) imaging in remote sensing, user tracking in cellular networks, and so
on. As a promising unified waveform in ISAC, orthogonal time frequency space (OTFS)
modulation also demands accurate locations of mobile users. In addition, as massive
multiple-input, multiple-output (MIMO) became widespread in all equipment, it is easy to
achieve high-precision angle information. Thus, the angle of arrival (AOA) has become
popular in recent years.

In the literature, there are two kinds of passive wireless signal positioning algo-
rithms [6]. The first kind is called scene analysis. It needs to know the channel state
information (CSI) of all cells in advance. Then, the source can be located by matching the
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received CSI with the CSI in the database. Thus, there is an offline training phase in this
system [6]. That means its accuracy is related to training. In the other words, once there is
a significant change in the surrounding scene, these methods are unable to estimate the
location of the source. However, these methods are low-cost and can be used in non-line-
of-sight (NLOS) conditions. Thus, they are mainly employed in indoor positioning, such as
fingerprint-based methods [7].

The second kind of localization method is triangulation. Time of arrival (TOA),
the time difference of arrival (TDOA) [8–12], received signal strength (RSS) [13–17], and
AOA [2,18,19] all fall into this category. These kinds of methods measure some physical
variables related to the source location first, such as the strength of the received wireless
signals, the time it takes the signal to travel from the source to the receiver, and the angle
of signals emitted from the source. Therefore, these systems can be used to estimate the
source position through received real-time information and can be used in both indoor
and outdoor environments. Among them, the TDOA is a modified version of the TOA.
The famous global positioning system (GPS) locates the source by adopting TOA. In [20],
the authors focused on 2-D positioning. The maximum likelihood estimator (MLE) for
RSS, TOA, and AOA was derived. Furthermore, estimator accuracy was also presented.
Two bias-reduction methods were proposed in [11] to improve the accuracy. To provide
guidance, the performance of the TDOA in multi-satellite localization was analyzed in [21].
In sensors that can only be equipped with one antenna, RSS is the lowest-cost scheme.
Thus, many RSS-based algorithms have been studied for practical applications, such as
cellular location [13], UAV localization [17], and so on.

Different from TOA, which requires accurate time synchronization between sensors,
and RSS, which is sensitive to the differences in the antenna patterns of all sensors, the
AOA just needs sensors to be equipped with multiple antennas, which is not a threshold
to the development of MIMO. In practical applications, UAV networks will first detect a
target. Then, the angles can be measured by direction of arrival (DOA) estimation [22–24].
In [22], the authors investigate DOA estimation in hybrid analog and digital (HAD) struc-
tures. Three conventional beamforming-based methods and a multiple signal classification
(MUSIC)-based method are proposed to eliminate the angle ambiguity caused by the HAD
structure. In order to accelerate the process of ambiguity elimination in [22], a fast elimina-
tion method was proposed in [23]. Considering that the power consumption and circuit
cost is more and more unacceptable in massive MIMO, the authors adopted low-resolution
ADCs for DOA estimation. Furthermore, they analyzed the performance and energy effi-
ciency of the DOA estimation in a low-resolution architecture. In [25], polarized massive
MIMO is adopted, which is considered to be a promising solution to millimeter-wave
(mmWave) communication systems In [26], the authors integrated decoupled atomic norm
minimization (D-ANM) into 2-D harmonic retrieval techniques for multiple measurement
vectors (MMV). This algorithm is gridless and can achieve high computational efficiency.

After collecting DOAs from all sensors, the AOA is able to be conducted. There
are many closed-form estimators for 2-D AOA [18,27–32] and a few methods for 3-D
scenarios [2,19,33–35]. Two MLE-based algorithms were studied in [27]. The authors
proved that the proposed location-penalized MLE has higher performance in real-world
experiments. In [29], a novel AOA-based source localization estimator was developed
for wideband signals. The corresponding CRLB was also derived as a benchmark. To
address the AOA-based self-localization problem, several efficient closed-form methods
resorting to auxiliary variables were proposed in [31]. However, 2-D approaches cannot
be applied to 3-D scenes. In [33], a closed-form, three-dimensional AOA was presented.
It has less computational requirements than MLE by adopting instrumental variables. A
noisy approximation of MLE was shown in [34]. To reduce the bias in that estimator, the
authors employed weighted instrumental variables and bias compensation. In addition, the
bias of sensors was not considered in most existing works. Thus, a bias-free, closed-form
algorithm for 3-D AOA was proposed in [2]. Moreover, the corresponding Cramér–Rao
lower bound (CRLB) was derived to provide a reference. In [19], the authors pointed out
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that the hybrid Bhattacharyya–Barankin (HBB) bound is more suitable than CRLB for use
as a benchmark when the noise level is high. A hybrid AOA-TDOA positioning estimator
was also proposed. In addition, when the source is far enough away, the scene is considered
far-field, and AOA positioning will convert to a DOA estimation. In [35], a novel 3-D
AOA method for UAV positioning was proposed by adopting bistatic MIMO radar. A
transmitting and receiving array measured the 2-D angle-of-departure and angle-of-arrival,
respectively. Then, the 3-D position of the UAV was calculated using these angles.

The comparison of the advantages and disadvantages between three methods is listed
in Table 1. A perfect omnidirectional antenna is unavailable in practice. Furthermore,
antenna patterns are becoming more and more nonuniform as the development of modern
communications continues. Thus, the measurement noise of RSS is high in many applica-
tions. It will be hard to employ RSS in the future due to its unsatisfactory performance. It
is also difficult to obtain high-accuracy positioning with TOA because the speed of light
is too fast and it is impossible to equip every sensor with an atomic clock, which is very
expensive. With the rapid development of massive MIMO, it is common for sensors to
be equipped with multiple antennas. Thus, we can achieve high-precision angles to serve
the AOA positioning. In addition, the measurement of the angle can be taken during
wireless communications. Thus, it has a relatively low communication cost. Therefore,
AOA location has been adopted in Bluetooth technology and has the potential to provide
sensing ability for multi-UAV networks, 6G, and other applications in the future. Moreover,
there will definitely be an LOS and almost no NLOS when AOA is employed in UAVs. This
condition guarantees the high accuracy angle information for source positioning by using
multiple UACVs.

Table 1. Comparison of different localization methods.

Methods Advantages Disadvantages

RSS 1. Low circuit cost
2. Easy to be implemented

Performance is easily influenced by
electromagnetic energy

TOA
1. The speed of light is fixed

2. Interfered with by the structure
of array

Requires ultra-high-precision time
measurement synchronization accuracy

AOA Relatively low communications cost Multiple antennas are essential

For a multi-UAV network, all UAVs should detect the source firstly. Then, DOA
estimation is performed to achieve the angle in every UAV [36]. Given the source is moving,
the time synchronization method should be conducted in UAVs, like time synchronous pro-
tocol for sensor networks (TPSN) [37] and reference broadcast synchronization (RBS) [38].
In addition, all UAVs should send the measured angles and location to a host UAV or
a master control computer [39], where positions of UAVs could be achieved by GPS or
other position system. Finally, the location of the source is estimated in the master control
computer by AOA. However, we focused on the method itself and detailed implementation
of hardware will be our future work.

AOA positioning is a suitable and promising location algorithm for a multi-UAV
network to locate the signal source. Moreover, existing high-performance estimators for
3-D AOA localization have relatively high computational complexity, which is hard to
adapt to UAVs. Although the proposed method in [2] was able to achieve a good trade-off
between performance and computational complexity, it requires a prior knowledge of noise
variance and a rough location, which is unavailable in practical applications. Thus, in this
paper, we aim to develop high-performance and low-complexity 3-D AOA methods for
source positioning using a multi-UAV network with no prior knowledge that strikes a
better balance. The main contributions of this paper are summarized as follows:

1. Three-dimensional AOA positioning is considered in this paper. Inspired by the
inscribed sphere of a tetrahedron, we extend every angle to a plane. Then, the 3-D



Drones 2023, 7, 318 4 of 15

AOA localization can be used to seek out the centers of inscribed spheres for these
multiple planes. Our method can not only accurately estimate the source position and
the noise level at the same time, but it also has very low computational complexity,
which is similar to the conventional least square (LS) estimator.

2. To further reduce computational complexity, the estimation for variance of angle noise
is removed. Then, the second algorithm is born. This algorithm is based on the sum
of the minimum squared distance from the estimated point to all planes. The original
optimization problem can be converted to a LS problem. Thus, this method has lower
computational complexity due to its closed-formed solution. The simulation results
show that these two methods have similar performance. Furthermore, compared with
conventional LS, the proposed methods have about 8 dB of gain.

3. The CRLB and computational complexity are presented. Theoretical analysis and
simulation results respectively unveiled that the performance of the proposed methods
is close to CRLB and the computational complexity is reduced significantly. The
proposed methods could achieve a satisfactory balance between the performance and
computational complexity.

Notations: Throughout the paper, vectors, and matrices are denoted by x and X in bold
typeface, while normal typeface is used to represent scalars, such as x. Signs (·)T , (·)H , | · |,
and ‖ · ‖ represent transpose, conjugate transpose, modulus, and norm, respectively. IM
denotes the M×M identity matrix. Furthermore, E[·] represents the expectation operator,
and x ∼ CN (m, R) denotes a circularly symmetric complex Gaussian stochastic vector
with mean vector m and covariance matrix R. x̂ denotes the estimated value of x.

The rest of this paper is organized as follows. The system model of the 3-D AOA
positioning for a multi-UAV network is presented in Section 2. Then, two high-performance
and low-complexity methods are proposed in Section 3. The performance accuracy and
computational complexity of the methods are investigated in Section 4. In Section 5,
simulated and numerical results are provided to analyze the performance and convergence
of the proposed methods. Finally, we present our conclusions in Section 6.

2. System Model

In this paper, a 3-D AOA localization system with M UAVs is considered. Every
UAV is able to measure the azimuth angle and elevation angle of the signal transmitted
by the source. As shown in Figure 1, the position of the source and UAVs is defined by
u0 = [x0, y0, z0]

T and um = [xm, ym, zm]T , m = 1, 2, · · · , M, respectively. For the mth UAV,
the azimuth angle θm and elevation angle φm related to the coordinate of the UAVs and
source can be expressed by

In practice, the angles estimated by UAVs contain noise. Thus, we denote azimuth
angles θr and elevation angles φr as

θr = θ+ nθ (1)

φr = φ + nφ, (2)

respectively, where θ = [θ1, θ2, · · · , θM]T and φ = [φ1, φ2, · · · φM]T are true values.
nθ = [nθ1 , nθ2 , · · · , nθM ]T and nφ = [nφ, nφ, · · · , nφ]T are the additive zero mean Gaus-
sian noises, where nθ ∼ CN (0, σ2

θ IM) and nφ ∼ CN (0, σ2
φIM).

θm = arctan
(

ym − y0

xm − x0

)
, (3)

φm = arctan
(

zm − z0

(xm − x0) cos θm + (ym − y0) sin θm

)
(4)
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where θm ∈ (−π, π) and θm ∈ (−π/2, π/2).

1

1

0u

1u

Mu

x

y

z
z

y

x

M

M

2u

Figure 1. System model for 3-D AOA localization.

3. Proposed Center of Inscribed Sphere-Based Methods for AOA Localization

In this section, we integrate the idea based on the center of inscribed sphere into
AOA localization, as shown in Figure 2. Two center of inscribed sphere-based methods are
proposed to estimate the position of the signal.

For the mth UAV, according to (3) and the system model, the wireless signal is sent
from uo to ui. The direction of the signal received by the mth UAV normal to the horizontal
plane can be seen as a line. The plane containing this line and normal to the horizontal
plane can be written as:

tan θmx− y− tan θmxm + ym = 0. (5)

where x and y are positions of the point on the plane. Similarly, referring to (4) and the
system model, we can define another plane related to φm. This plane also contains the line
defined by the direction of the signal. In addition, this plane is required to make an angle
of φm with the horizontal plane. Thus, it can be expressed as

For an arbitrary fixed point in the space, denoted by ũ = [x̃, ỹ, z̃]T , the values of the
Euclidean distance to the above two surfaces, (5) and (14), are given by

dm,θ(ũ) =
| tan θm x̃− ỹ− tan θmxm + ym|√

(tan θm)2 + 1
, (6)

and

dm,φ(ũ) =
| tan φm cos θm x̃ + tan φm sin θmỹ− z̃− tan φm cos θmxm − tan φm sin θmym + zm|√

(tan φm cos θm)2 + (tan φm sin θm)2 + 1
. (7)

Then, to simplify the expressions of (6) and (7), let us define

am,θ = [sin θm,− cos θm, 0]T (8)

bm,θ = sin θmxm − cos θmym (9)



Drones 2023, 7, 318 6 of 15

am,φ = [sin φm cos θm, sin φm sin θm,− cos φm]
T (10)

bm,φ = sin φm cos θmxm + sin φm sin θmym − cos φmzm. (11)

Thus, (6) and (7) can be rewritten as some direct matrix manipulations, which are given by

dm,θ(ũ) =
∥∥∥aT

m,θũ− bm,θ

∥∥∥ (12)

dm,φ(ũ) =
∥∥∥aT

m,φũ− bm,φ

∥∥∥ (13)

tan φm cos θmx + tan φm sin θmy− z

− tan φm cos θmxm − tan φm sin θmym + zm = 0. (14)

where x, y, and z are the position of the point on the plane.

Figure 2. The center of inscribed sphere for a tetrahedron.

3.1. Proposed Center of the Inscribed Sphere Method

Let us denote the radius of inscribed sphere as r. According to the property of the
inscribed sphere, distances from the center to all planes are equal to r. In other words,
dm,θ = dm,φ = r, m = 1, 2, . . . , M. To minimize the squared sum of errors, the cost function
can be written as

min
u,r

M

∑
m=1

(dm,θ(u)− r)2 +
(
dm,φ(u)− r

)2 (15)

Referring to [40], (15) is a nonsmooth, nonconvex problem. It is unable to be solved using
conventional methods. Fortunately, the standard fixed-point (SFP) scheme, belonging to



Drones 2023, 7, 318 7 of 15

the class of maximization–minimization approaches, is suitable for use in this case. Firstly,
partial derivatives of (15) with respect to u and r are given by

∂ f (u, r)
∂r

= 4Mr− 2
M

∑
m=1

∥∥∥aT
m,θu− bm,θ

∥∥∥+ ∥∥∥aT
m,φu− bm,φ

∥∥∥ (16)

and

∂ f (u, r)
∂u

= 2
M

∑
m=1

am,θ

(
aT

m,θu− bm,θ

)
− ram,θ

aT
m,θu− bm,θ∥∥∥aT
m,θu− bm,θ

∥∥∥
+ 2

M

∑
m=1

am,φ

(
aT

m,φu− bm,φ

)
− ram,φ

aT
m,φu− bm,φ∥∥∥aT
m,φu− bm,φ

∥∥∥ . (17)

Then, according to SFP, the solution of (15) can be obtained by the following iterations

rk+1 =
1

2M

M

∑
m=1

∥∥∥aT
m,θuk − bm,θ

∥∥∥+ ∥∥∥aT
m,φuk − bm,φ

∥∥∥ (18)

uk+1 = Ã−1(b̃ + rk+1ã(uk)
)

(19)

where

Ã =
M

∑
m=1

am,θaT
m,θ + am,φaT

m,φ, (20)

b̃ =
M

∑
m=1

am,θbm,θ + am,φbm,φ (21)

and

ã(u) =
M

∑
m=1

am,θ
aT

m,θu− bm,θ∥∥∥aT
m,θu− bm,θ

∥∥∥ + am,φ
aT

m,φu− bm,φ∥∥∥aT
m,φu− bm,φ

∥∥∥ . (22)

So far, u0 and r can be estimated by iteration. An initial solution can be generated by LS or
a random number generator. Details about the effects of different initial solutions will be
investigated in Section 5.

Let us now analyze the radius of the inscribed sphere. Given that the angle error is
small, we have the following approximation:

sin(θm + nθm) ≈ sin θm + nθm cos θm (23)

cos(θm + nθm) ≈ cos θm − nθm sin θm (24)

r can be expressed as

r =
1

2M

M

∑
m=1

E
[∥∥∥aT

m,θu− bm,θ

∥∥∥+ ∥∥∥aT
m,φu− bm,φ

∥∥∥] (25)

Thus, substituting (23) and (24) into (25), we have∥∥∥aT
m,θu− bm,θ

∥∥∥ = ‖nθm((x0 − xm) cos θm + (y0 − ym) sin θm)‖ (26)
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Observing Figure 1, the Euclidean distance of the 2-D coordinate is introduced on the
xy plane:

dxy,m =
√
(xm − x0)2 + (ym − y0)2 (27)

We can thus derive a simple equation

(x0 − xm) cos θm + (y0 − ym) sin θm = dxy,m cos2 θm + dxy,m sin2 θm

= dxy,m = dm cos φm (28)

where dm = ‖um − u0‖ is the Euclidean distance from um to u0. Thus, (26) could be
simplified as

∥∥∥aT
m,θu− bm,θ

∥∥∥ = ‖nθm dm cos φm‖. Similarly,∥∥∥aT
m,φu− bm,φ

∥∥∥
=
∥∥nφm((x0 − xm) cos θm cos φm + (y0 − ym) sin θm cos φm + (z0 − zm) sin φm)

∥∥ (29)

In addition, the component of (29) can also be simplified by

(x0 − xm) cos θm cos φm + (y0 − ym) sin θm cos φm + (z0 − zm) sin φm

= dxy,m cos φ + (z0 − zm) sin φm = dm (30)

Then, substituting (30) into (29), we have
∥∥∥aT

m,φu− bm,φ

∥∥∥ =
∥∥nφm dm

∥∥. Therefore, r can be
reduced to a simple form, as follows:

r =
1

2M

M

∑
m=1

σθdm‖ cos φm‖+ σφdm (31)

It is obvious that the value of r is related to the measurement noise. Consider a special case,
σ2

θ = σ2
φ = σ2; σ2 can be estimated by

σ̂2 =
4M2r2

∑M
m=1 d2

m(cos2 φm + 1)
(32)

Hence, this method can estimate the source location and variance of the angle measure-
ment error at the same time. We shall call this method the center of the inscribed sphere
(CIS) method.

3.2. Proposed Minimum Squared Distance Method

It is obvious that r could make the optimization problem complex. In addition, in
many applications, it is not necessary to estimate the variance of angle measurement noise.
Thus, r is useless in these applications. Moreover, considering σ2

φ = σ2
θ = 0, all planes will

intersect at the source point. In this case, r = 0. So, we can simplify the (15) by removing r,
which yields

min
u

M

∑
m=1

d2
m,θ(u) + d2

m,φ(u) (33)

Let us reduce (33) to a simple form, as follows:

min
u
‖Au− b‖2 (34)

where

A =
[
AT

θi, AT
φi

]T
(35)
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b =
[
bT

θi, bT
φi

]T
(36)

where

Aθi = [a1,θ , a2,θ , · · · , aM,θ ]
T (37)

bθi = [b1,θ , b2,θ , · · · , bM,θ ]
T (38)

Aφi =
[
a1,φ, a2,φ, · · · , am,φ

]T (39)

bφi =
[
b1,φ, b2,φ, · · · , bM,φ

]T (40)

Obviously, (34) is an LS problem. Hence, the solution can be given by

û =
(

ATA
)−1

ATb (41)

This approach can be called the minimum squared distance-based least square (MSD-LS).
Compared with CIS, this method has lower computational complexity because it directly
employs LS. However, A in (35) is not a noiseless matrix. In other words, both A and b
contain measurement noise. Thus, to improve the accuracy, total least square (TLS) can
be adopted.

4. Analysis

In this section, we show the CRLB of the 3-D AOA and compare the computational
complexity of the proposed methods with other related algorithms from the literature.

4.1. Performance Accuracy

The CRLB is considered as the minimum error variance of an unbiased estimator.
Therefore, we present the CRLB for the 3-D AOA as a benchmark to analyze the perfor-
mance of the proposed methods. By referring to [41], the expression of CRLB is given by

CRLB = F−1 (42)

where F is the Fisher information matrix, which is shown as

FIM = −E
[

∂2ln f (θ, φ)

∂u∂uT

]
(43)

With the help of [2], when the covariance matrices of the angle noise are given by σ2
θ IM and

σ2
φIM, we can easily derive the corresponding CRLB for 3-D AOA positioning, which is

given by

CRLB =

M
∑

m=1
σ2

θ
sin2 θm

d2
m cos2 φm

+ σ2
φ

sin2 φm cos2 θm
d2

m

M
∑

m=1
σ2

θ
sin2 φm sin θm cos θm

d2
m

− σ2
φ

sin θm cos θm
d2

m cos2 φ2
m
−σ2

φ

M
∑

m=1

sin φm cos φm cos θm
d2

m cos2 φ2
m

M
∑

m=1
σ2

θ
sin2 φm sin θm cos θm

d2
m

− σ2
φ

sin θm cos θm
d2

m cos2 φ2
m

M
∑

m=1
σ2

θ
cos2 θm

d2
m cos2 φm

+ σ2
φ

sin2 φm sin2 θm
d2

m
−σ2

φ

M
∑

m=1

sin φm cos φm sin θm
d2

m cos2 φ2
m

−σ2
φ

M
∑

m=1

sin φm cos φm cos θm
d2

m cos2 φ2
m

−σ2
φ

M
∑

m=1

sin φm cos φm sin θm
d2

m cos2 φ2
m

σ2
φ

M
∑

m=1

cos2 φm
d2

m



−1

(44)

In Section 5, we will compare the performance of proposed methods with other existing
algorithms and adopt (44) as a benchmark.

4.2. Computational Complexity

Note that values of (20) and (21) can be computed once in CIS. Thus, the computational
complexity of CIS is O(31M + 7 + 6K(M + 2)), where K is the number of iterations. In
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other words, the initial value has an effect on the computational complexity. How to
obtain a suitable initial value to achieve a relative low computational complexity will be
discussed in Section 5. By employing LS, MSD-LS is also a low complexity method, and
its computational complexity is O(28M + 27). The computational complexity of [2] is
O(165M + 897). For the ease of comparison between different methods, the computational
complexity of the proposed two methods are shown in Table 2. Meanwhile, two commonly
used algorithms, LS and the MLE, are also listed for comparison. Although the MLE can
approach the CRLB, its complexity grows at O(M3). Compared with the bias reduction
pseudolinear estimator (BR-PLE) in [2], when the number of iterations is over 23, the
computational complexity of CIS will be higher. Conversely, CIS has lower complexity.
MSD-LS needs no iteration. Thus, it always has lower complexity. The computational
complexity of the two proposed algorithms is a linear function of M, which is similar to LS.

Table 2. Computational complexity of different methods.

Algorithms Complexity

Conventional LS O(23M + 27)

MLE in [19] O(K(27M3 + 9M2 + 124M + 9) + 5M)

BR-PLE in [2] O(165M + 897)

Proposed CIS O(31M + 7 + 6K(M + 2))

Proposed MSD-LS O(28M + 27)

5. Simulation Results and Analysis

In this section, simulation results are presented to evaluate the performance of the
proposed methods with existing approaches. In addition, the performance of CIS with
initial values generated by different methods and iterations of CIS are presented. Then, the
MSE over the number of UAVs is investigated. Finally, we analyze the iterations of the CIS
method. Detailed values of simulation parameters are shown in Table 3. Mean square error
(MSE) is chosen as the metric of performance, which is given by

MSE =
N

∑
n=1
‖ûn − u0‖2. (45)

All simulation results are averaged over 8000 Monte Carlo simulations.

Table 3. Values of simulation parameters.

Parameter Value

Source location [25, 25, 25] m

The range of UAVs’ locations 50× 50× 50 m

The number of UAVs 20

Angle measurement variance −5 dB

In Figure 3, we demonstrate the MSE of different 3-D AOA methods versus the
variance in the angle measurement noise. All parameters and results are shown in dB.
For comparison, we consider the conventional LS in [42], MLE in [19], and BR-PLE in [2].
σ2 increases from −20 dB to 0 dB. The MLE is almost identical to the CRLB, which is in
accordance with general knowledge. Furthermore, the proposed CIS and MSD-LS methods
have similar performance as BR-PLE in [2] and are able to approach the CRLB with all
angle variances. In addition, compared with LS, both of the proposed methods have a gain
of about 8 db. More importantly, referring to Section 4, the proposed CIS and MSD-LS
methods have much less computational complexity than BR-PLE and MLE.
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Figure 3. MSE of different AOA localization methods with different angle noise.

Figure 4 shows the MSE over the number of UAVs using different 3-D AOA methods.
UAVs are randomly distributed in space. It can be seen that both of the proposed methods
also have a gain of about 8 db over LS, and they have similar performance as BR-PLE in [2],
and even better in certain cases. This may be because of the configuration of multiple
UAV networks. An insightful observation is that the performance differences in all these
methods have similar values. Especially when the number of UAVs becomes small, all of
the methods approach the CRLB’s performance. To sum up, the proposed CIS and MSD-LS
methods have a satisfactory performance with less computational complexity.
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Figure 4. MSE of different AOA localization methods with different numbers of UAVs.

The MSE of the CIS method versus the number of iterations with different noise levels
is plotted in Figure 5, where a random generator and conventional LS are adopted to
generate an initial value in Figure 5a,b, respectively. It can be seen that CIS is convergent
with any initial values in Figure 5a. Furthermore, the convergence speed is about 16.5 dB
per iteration. Thus, as noise decreases, the convergence speed becomes faster. Observing
Figure 5b, we find that two or three iterations are enough when LS is used. In this case,
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the computational complexity is about O(66M + 58), which is faster when noise is very
low. According to Table 2, when the number of iterations is greater than four, it is better to
adopt LS to generate an initial solution. Therefore, random generators can be replaced by
conventional LS to generate an initial value in low-noise regions. To sum up, the highest
computational complexity of CIS is about O(66M + 58), which is still lower than BR-PLE
in [2].
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Figure 5. MSE of CIS method with iterations and different angle noise levels.

6. Conclusions

In this work, two low-complexity, center of inscribed sphere-based approaches are
proposed in a 3-D AOA model for source localization via a multi-UAV network. The
location of the signal source and the angle measurement noise could be estimated at the
same time using the CIS method. MSD-LS is a reduced form of CIS obtained by deleting the
angle noise estimator, and it has a closed-formed solution. Compared with conventional
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LS, both of the proposed methods have a gain of about 8 db, which is very close to the MLE
and CRLB. The computational complexity of these methods is a function of the number
of UAVs, M, which is close to LS and much lower than the MLE. More importantly, our
proposed methods are able to estimate the source position with no prior knowledge of
angel measurement variance. What is more, when MSD-LS is employed, recursive least
square can be adopted to uniformly assign computational tasks to all UAVs. Then, the
multi-UAV network is able to estimate the source location independently. Therefore, our
methods have the potential to be widely used in 3-D AOA localization for to locate wireless
signal sourcez in multi-UAV networks.
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