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Abstract: Sliding mode control, an algorithm known for its stability and robustness, has been
widely used in designing robot controllers. Such controllers inevitably exhibit chattering; numerous
methods have been proposed to deal with this problem in the past decade. However, in most
scenarios, ensuring that the specified form and the parameters selected are optimal for the system
is challenging. In this work, the reinforcement-learning method is adopted to explore the optimal
nonlinear function to reduce chattering. Based on a conventional reference model for sliding mode
control, the network output directly participates in the controller calculation without any restrictions.
Additionally, a two-step verification method is proposed, including simulation under input delay
and external disturbance and actual experiments using a quadrotor. Two types of classic chattering
reduction methods are implemented on the same basic controller for comparison. The experiment
results indicate that the proposed method could effectively reduce chattering and exhibit better
tracking performance.

Keywords: chattering reduction; reinforcement learning; reference model; sliding mode control

1. Introduction

Unmanned aerial vehicles (UAVs) have been widely integrated into industrial produc-
tion and civil use, such as aerial photography, plant protection, and military operations,
owing to their simple structure and high mobility. However, UAVs represent a highly intri-
cate system characterized by complicated coupling and nonlinear behaviors. Additionally,
environmental factors such as wind, air pressure, and temperature changes can further
introduce interference. Over the past decades, numerous methods have been proposed to
address these challenges.

Nonlinearity and unknown external disturbances are inherent in UAV systems. To
enhance the robustness of proportional–integral–derivative control (PID) [1], several robust
methods, such as intelligent control [2–4], fuzzy control [5–7], model predictive control [8],
and sliding mode control (SMC) [9–13], have been proposed. Among them, SMC is a model-
based method with strong robustness to external disturbances and uncertainties, including
equivalent control for realizing target tracking and switching control for suppressing
nonlinear parts. The switching control can drive the system state to slide on the sliding
surface according to the state error, and the nonlinear part can be shown as a linear behavior
near the sliding surface, hence realizing the suppression and control of the nonlinear
part [14].

Thus, this algorithm is effective for nonlinear systems and can fit well with UAVs.
However, unmodeled higher-order dynamics and input delays are not conducive to the
nonlinear output from tiny switching. They render it difficult to keep the state entirely at
the sliding surface and are manifested as state transfer between the two sides of the sliding
surface; this phenomenon is called chattering [15].
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The chattering frequency is related to the controller, and the high-frequency switching
output will harm the system. Over the years, numerous solutions have been proposed to
deal with this problem.

Matouk et al. proposed a super twist algorithm based on a second-order SMC to design
the UAV’s position and attitude controller [16]. Jayakrishnan et al. [17] used a cascaded
inner and outer structure and a super-torsional SMC to design a quadrotor controller
and demonstrated its superiority by comparing it with the linear quadratic regulator PD
method. Adaptive methods are often used to deal with chattering. Lei and Li [18] used
the sigmoid function to design an adaptive gain-tuning law that can effectively relax
restrictions on prior information about system uncertainty. Yang and Yan [19] proposed a
fuzzy system based on Gaussian membership functions to adaptively tune the switching
gain in the attitude controller. Additionally, disturbance observers are widely used in
controller design [20]. To deal with the external disturbances, Zhang et al. proposed a
chattering-free discrete SMC based on disturbance observers [21]. Xu et al. combined an
extended state observer and fast terminal SMC, thereby proposing a composite method to
improve tracking performance while reducing chattering [22]. Subsequently, the symbolic
function was replaced with a smoothing function to resolve chattering [23]. Le and Kang
proposed a terminal SMC to guarantee that the tracking error converged to zero in finite
time [24]. However, this method is limited by a low convergence rate and singularity.
Consequently, fast TSMC [25], nonsingular TSMC [26], and nonsingular fast TSMC [27]
were proposed to overcome these problems.

Nonetheless, these approaches commonly encounter a challenge: identifying the
optimal mechanism for a specific system. For instance, in various methods, challenges
arise in designing adaptive rules, determining the symbolic function strategy, and choosing
optimal parameters for each mechanism. Consequently, intelligent learning methods were
considered to explore the optimal mechanisms applicable to the system. By employing
intelligent learning methods, these studies aim to overcome the aforementioned challenges
and identify the most suitable agents for the determined system.

Reinforcement learning (RL) is a mechanism that learns to map states to actions for
maximum rewards. It has been widely used in many fields [28–30]. As the potential of
learning algorithms is explored, some learning-based methods have been proposed to solve
the chattering in SMC. Farjadian et al. [31] introduced an adaptive gradient saturation
function to replace the discontinuous switching function and used RL to adjust the slope
to trade off control accuracy for a decrease in chattering. Their study is based on the
saturation function and uses RL to realize adaptive control; however, the selected saturation
function limits the final effect. Another study [32] proposed a method to solve the optimal
control under constraints by applying the hyperbolic tangent and symmetry radial basis
functions to design the saturating function. Subsequently, integral Q-learning was used
to approximate it to reduce chattering. However, the Q-learning algorithm relies on the
Q table, which limits the state’s dimension and makes the algorithm unsuitable for complex
systems. Existing intelligent chattering reduction methods always accompany custom
functions. This results in the network being limited by the selected function, which restricts
the advantage of reinforcement learning.

Based on the above discussion, to avoid the problems of state dimension limitation [32]
and auxiliary function limitation [31] in the existing works, this study combines a policy-
based RL method to solve the chattering problem in SMC. Specifically, a reference model-
based SMC was adopted as the base controller. In the nonlinear part, the reward function
is designed based on the state tracking error, and the network output that produces the
maximum reward is directly involved in the controller as the switching control. Notably,
no additional functions are employed to restrict the network output. The contributions of
this study can be summarized as follows:

1. A method using RL to reduce chattering in SMC was proposed. The reference model-
based SMC was designed and implemented based on the easy-obtained fitted model.
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2. The policy-based DDPG algorithm was employed to explore optimal switching control
and produce continuous nonlinear outputs. In contrast to [31], no auxiliary function
was utilized; the actions generated by the network were regarded as switching outputs
and contributed to the final control output.

3. Two classical methods were selected to improve the same basic SMC and compared
with the proposed method. Experiment results revealed that the proposed method
can solve chattering well and better tolerate the delay and disturbance of the system
compared to the two classical methods.

The remainder of this paper is organized as follows: Section 2 analyzes the dynamics
of the UAV system. Section 3 describes the proposed RL-based controller design process
in detail. Section 4 demonstrates the validation of the proposed algorithm. Finally, the
conclusions are summarized in Section 5.

2. Chattering Problem and Attitude Dynamics
2.1. Chattering in Sliding Mode Control

In UAV systems, external disturbances inevitably exist, and the controller output
is also relatively delayed owing to the system’s inertia, making the chatter more likely.
Subsequently, chattering causes vibrations in the UAV and leads to the heating of the rotor,
which increases energy consumption and reduces the service life of the power system.

According to the studies mentioned in Section 1, the classic methods to reduce chatter-
ing can be mainly classified into the following categories:

Class A: These methods design a time-varying switching gain, whereby the controller’s
sensitivity to external disturbances is reduced by changing the switching gain, consequently
reducing chattering, such as in [18,19].

Class B: These methods replace the symbolic functions with the self-defined functions
and use switch control outside the boundary layer, whereas linear feedback control is used
inside, such as in [23–27].

Class C: These methods estimate the disturbance and compensate for it, such as
in [21,22].

Methods in Class A need to formulate suitable adaptive laws, whereas Class B needs
to select the appropriate nonlinear function, and Class C must design reasonable observers
for the system. In different method design processes, the mechanism and the parameters
used are influenced by the subjective factors of the researchers. Thus, verifying whether
the proposed method is optimal for the specific system is challenging.

2.2. Attitude Dynamics

Owing to the underactuated characteristics of the classic quadrotor, the control system
is generally developed based on the cascade structure. Taking the horizontal direction
as an example, the control system can be divided into position control, attitude control,
and stability control. The attitude control is based on attitude feedback and is crucial
to maintaining the balance of the UAV. The accuracy and stability of the controller can
significantly affect the performance of the UAV in practical applications.

Newton–Euler equations usually express UAV models; however, accurate parameters
are generally difficult to obtain. Therefore, ignoring the coupling effect and sacrificing the
model’s accuracy, a simple and easy-to-obtain approximate model based on fitting data
is an excellent alternative. Considering attitude dynamics, the controller’s output ωr is
the input of the inner stabilize controller. Considering the attitude system with input ωr
and output µ, a second-order transfer function (1) can well characterize the behavior of the
system [23,33,34].

G(s) =
b0

s2 + a0s + a1
(1)

where a0, a1, and b0 can be obtained according to the pre-collected flight data of the UAV.
The pre-collected data can be obtained and recorded by operating the actual UAV under
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stabilize control; ωr was given directly from the remote control during the collection process.
According to the fitted model, the target attitude rate and the feedback satisfy.

ω̈ = −a0ω̇− a1ω + b0ωr. (2)

According to [35], the motion in each axis can be neglected if the changes in UAV
amplitude are less than 0.45 rad. Assume that the UAV satisfies the following conditions:
the altitude does not change when the UAV moves in the horizontal direction; the heading
always remains unchanged. Then, the attitude variables µ and ω can be approximated as
µ̇ = ω.

Considering X = [ω̇, ω, µ]T , and µ as the output, (2) can be rewritten as follows:{
Ẋ = AX + Bu,

Y = CX.
(3)

The specific forms of A, B, and C in (3) are as follows:

A =

 −a0 −a1 0
1 0 0
0 1 0

, B =

 b0
0
0

, C =
[

0 0 1
]

(4)

3. Controller Design
3.1. System Overview

In this study, a reference model sliding mode controller was adopted as the basic
controller; its outstanding performance was verified in our previous work [34]. The
proposed method consists of a reference model, Kalman filter, neural network, and sliding
mode controller; its structure is shown in Figure 1.

UAV

Kalman

Ref Model

-

+

DDPG

SMC with RL

eq swu u u= +

swu

u
Out

mXmr

E

X

Figure 1. System structure of the RL–based reference model SMC.

The reference model can expand the set of target states beyond the given original
target, such as the target of attitude rate and acceleration. The attitude model used herein
is based on the fitted system; thus, the attitude acceleration is considered in the controller.
However, as directly measuring the attitude acceleration is difficult, a steady Kalman
filter was adopted herein to estimate the difficult-to-measure state. Finally, the reference
signal and the estimate feedback states were used to calculate the equivalent control ueq,
combined with the usw output of the neural network; thus, the target could be well-tracked
without chattering.

The significant advantage of this structure is that it separates the tracking and regula-
tion stages. The time domain evaluation indicators, such as the rise time and settling time,
and the general indicators, such as stability and tracking performance, can be designed
individually by the reference model and the controller.



Drones 2023, 7, 420 5 of 18

3.2. Reference Model

The reference model is closely related to the UAV model. According to the attitude
model expressed in (3), the reference model can be designed as follows:{

Ẋm = AmXm + Bmrm,
Ym = CmXm.

(5)

rm is the original attitude target, Xm = [ω̇m, ωm, µm]T is the reference of each state,
and its structure is similar to X, and the output matrix Cm = C. Similar to (4), the structure
of Am in the reference model can be expressed as follows:

Am =

 am0 am1 am2
1 0 0
0 1 0

, (6)

where am0, am1, and am2 are negative constants that are tuned to realize the desired target
trajectory. It is assumed that the designed reference model converges to the target within
a finite time and that the state of the reference model remains constant after convergence.
Moreover, the output of (5) equals the input. Then,{

Ẋm = AmXm + Bmrm = 0,
Ym = CmXm = rm.

(7)

Assume that Am and Bm satisfy the conditions expressed in (8) and (9),

Bm = BK1, (8)

Am − A = BK2. (9)

When (8) is combined with (7), K1 can be expressed as follows:

K1 = (−Cm A−1
m B)−1. (10)

Then, the input matrix Bm in the reference model can be calculated by

Bm = B(−Cm A−1
m B)−1. (11)

3.3. RL-Based Controller Design

The output of the neural network is directly utilized as a nonlinear control part to
contribute to the total control output. Hence, the base controller should be introduced.

If the tracking error of the feedback and reference states is denoted as E = X − Xm,
then the switching function can be designed.

σ = ScE. (12)

The selection parameter Sc is a three-dimensional column vector corresponding to
each state error. By combining the time derivative of the switching function, σ̇ = ScĖ, with
Equations (3) and (5), and subject to the conditions (8) and (9), the resulting expression is

σ̇ = ScĖ,
= Sc(−BK2X + AmE + Bu− BK1r).

(13)

When the condition of the sliding mode is satisfied, the system states switch near
the sliding surface; once the sliding surface is reached, the states remain on it and satisfy
σ = σ̇ = 0. The equivalent control, denoted by ueq, can be calculated as follows:

ueq = −(ScB)−1Sc AmE + K2X + K1r. (14)
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Herein, the optimum theory was used to calculate Sc. The optimal feedback gain
was chosen as the hyperplane Sc = BT P, which satisfied the condition ScB > 0. The
matrix P could be calculated using the Riccati equation, while Q is a designed positive
diagonal matrix.

PA + AT P− PBBT P + Q = 0. (15)

Switching control (16) was introduced to suppress the nonlinear parts in the system,
such as model error, interference, and uncertainty.

usw = Ksw f (σ), (16)

where Ksw = −c(ScB)−1 is the gain coefficient, c > 0 is the adjustable gain related to the
unknown disturbance and model error, and f (σ) = sign(σ) is typically adopted in the
conventional scheme.

By combining (14) and (16), the result of reference model-based SMC can be obtained
as follows:

u = ueq + usw. (17)

To reduce chattering in a specific system, the selection of f (σ) always depends on
the researchers’ experience. In this work, the RL method was combined with powerful
exploration abilities to obtain the optimal output. Note that the output of the neural
network is denoted as Φ(σ), and the RL-improved nonlinear control usw is

usw = KswΦ(σ). (18)

By combining (14) and (18), the proposed RL-based sliding mode controller with
improved chattering reduction can be expressed as follows:

u = −(ScB)−1Sc AmE + K2X + K1r + KswΦ(σ). (19)

The method of obtaining Φ(σ) for the nonlinear control usw is described in detail,
as follows:

3.4. Nonlinear Output by RL

RL algorithms are often described in the context of the Markov decision process (MDP),
which can be represented by a quadruple (S, A, P, R, γ), the elements of which are a set
of states, actions in the corresponding state, transition probability between states, reward
after state transition, and decay factor, respectively.

Under policy π and state s, the cumulative discounted return obtained during the
period of taking a series of actions to reach the terminal state is called the value function
Vπ(s) = E(Rt|St = s), and E(∗) reflects the expectation. According to π, starting from s
and performing a, the expected return of all possible decision sequences is recorded as
an action-value function Qπ(s, a) = E(Rt|St = s, At = a). Each π corresponds to a value
function and state value function, whereas the optimal strategy π∗ corresponds to the
optimal value function V∗(s) and the optimal state-action value function Q∗(s, a). Let ∗′ be
the next moment of ∗, then the Bellman equation can be expressed as follows:

V∗(s) = max E[r(s) + γV∗(s′)]
Q∗(s, a) = E[r(s, a) + γ max

a′
Q∗(s′, a′)]. (20)

As the research object, the UAV system is characterized as complex and continuously
time-varying, and the output of each controller must be deterministic and unique dur-
ing the operation. Under such severe conditions, the deep deterministic policy gradient
(DDPG) [36] algorithm, which performs well in continuous systems, is typically used. Based
on actor-critic architecture, an RL scheme that includes an actor-network, an actor-target
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network, a critic-network, and a critic-target network was designed herein. A simplified
training structure diagram is shown in Figure 2.

𝑟𝑚
Reference Model

Environment

Actor Critic

Optimizer

Online Policy 

Network

Target Policy 

Network

Optimizer

Critic Network

Target Network

Action Selection

TD-Error

Update

𝑎𝑐𝑡𝑖𝑜𝑛(𝑢𝑠𝑤)

𝑠𝑡 , 𝑟𝑡, 𝑠𝑡+1

(32) (32) 𝑦𝑡

𝑄𝜋′

Figure 2. Schematic diagram of the training process.

Combined with the reference state, the reward corresponding to the current action can
be calculated according to the designed reward function (21). The aim of this study was to
track the state of the target as quickly as possible and reduce chattering. Therefore, in the
process of designing the reward, in addition to the attitude, the attitude rate, which is more
sensitive to changes, deserves more of our attention. Among them, Re f (sk) represents the
target value of the state, which is Ym in Section 3.2; sk means Y, and λk > 0 is the weight
represented by each state.

ri = −
n

∑
k=1

λk|Re f (sk)− sk| (21)

In the DDPG, the network update is based on the difference between predicted
and actual values. Under the deterministic strategy π′, the Bellman equation can be
rewritten as follows:

Qπ′(st, at) = Eπ′ [R(st, at) + γEat+1∼π′ [Q
π′(st+1, at+1)]]. (22)

To facilitate the distinction, θQ and θµ are used to represent the parameters of the critic
and actor-networks, respectively. Regarding the critic, the update of the neural network
parameter adopts the temporal difference (TD)-error method, which is realized by the mean
square error. Its loss function is defined as follows:

L(θQ) =
1
N

N

∑
t=1

(Q(st, at|θQ)− yt)
2
, (23)

where yt represents the output of the critic-target network with action reward, calculated
as expressed in (24).

yt = r(st, at) + γQ(st+1, µ(st+1)θ
Q) (24)

Thus, the gradient descent method is used to solve the gradient of the loss function
in (23); subsequently, the critic-network parameters are updated according to the calculation
results, as shown in (26), where aθQ is the critic-network learning rate.

∇θQ L(θQ) = 1
N

N
∑

t=1
[(yt −Q(st, at|θQ)) ∗ ∇θQ Q(st, at|θQ)], (25)

θQ
t+1 = θQ

t + aθQ∇θQ L(θQ). (26)
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Similarly, the actor-network is updated as shown in (27) and (28), where aθµ is the
update rate of the actor-network.

∇θµ J(θµ) = 1
N

N
∑

t=1
[∇θµ µ(st|θµ) ∗ ∇aQ(st, at|θQ)|at=µ(st)] (27)

θµ
t+1 = θµ

t + aθµ∇θµ J(θµ) (28)

Selecting the appropriate soft update rate τ, the actor- and critic-target networks can
be soft-updated by their respective non-target networks in the manner shown in (29).{

θQ′ ← τθQ + (1− τ)θQ′

θµ′ ← τθµ + (1− τ)θµ′ (29)

The pseudocode of the entire reinforcement learning training process is presented in
Algorithm 1.

Algorithm 1 Training process of the RL-based reference model SMC

Initialize the four network weights and replay buffer
Load the UAV model and the reference model

while episode < MaxEpisode do
Initialize noise process
Initialize UAV states
Initialize reference model states

while timestep < MaxTimeStep do
Calculate the reference states Xm
Select action at = πµ(st) + nt
Calculate usw, ueq and run the model
Obtain rt and st+1
Save quadruple to D
Sample quadruple from D randomly
Critic-network updated using (25) and (26)
Actor-network updated using (27) and (28)
Target network updated using (29)
if st+1 not safe then

Break
end if

end while
end while

4. Simulation and Experiment

The chattering reduction effect of the proposed RL-based SMC was verified by simula-
tion and actual flight experiments.

4.1. Experimental Verification Platform

The experimental platform for the proposed algorithm application was a positive
X-type quadrotor UAV with a 0.5 m wheelbase, and a self-developed flight control system
based on the STM32F4 was adopted. The overall system, shown in Figure 3, consisted of
a main control module, an inertial measurement unit (IMU) module, a global navigation
satellite system (GNSS) module, and a data logging module.
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Figure 3. Quadrotor platform.

The power system was composed of four 900 KV U2810 rotors and 11-inch propellers.
By collecting the attitude, attitude rate, and target attitude rate during flight, an

approximate model can be fitted. The fitted model of the attitude model is a0 = −49.5940,
a1 = −891.0671, b0 = 5.1682, and the reference model is designed as am0 = −49.5940,
am1 = −320, am2 = −700.

4.2. RL Network Training

Deep, fully connected networks were selected to build the networks. The actor-
network used the reference and feedback states as input, and its output was a single value.
Given that the actor-network is set up for the control system, the computational burden
must be considered.

Considering that the network contains four inputs, and the environment is simple, a
network with two hidden layers with an eight-neuron structure was selected. The trained
network took only 0.003 s to complete the calculation in STM32F4.

The rectified linear unit (Relu) function connects the transfer between the hidden
layers, and the Tanh function was used in the output. The Relu function speeds up
convergence during training and is robust to hyperparameter changes. The output interval
of the Tanh function was one and centered on zero; thus, it could well limit the network
output. The number of hidden layer neurons in training, which depends on the complexity
of the environment and is related to the input number of the network, was set to 64 layers.

The training was implemented in an Ubuntu 20.04 environment, and Python and
PyTorch were used to complete the network and model construction. The simulation
environment was equipped with an AMD Ryzen 7 5800X processor @ 3.8 GHz 8 cores with
an Nvidia 2080Ti graphics card to accelerate neural network calculations. The parameters
used in the training are presented in Table 1.

Table 1. Training parameters.

Parameter Value

aθQ 0.001
aθµ 0.003

Batch size 64
Replay buffer size 100,000

Discount factor 0.9
τ 0.002

Noise variance 0.1
Time step 0.02

Maximum step 300

‘aθQ ’ and ‘aθµ ’ correspond to the update rates of the actor and critic-networks, which
are set to small constants to pursue stability to reduce network instability and parameter
fluctuations; similarly, the parameter selection of ‘τ’ share the same consideration. The
‘Batch size’ needs to consider various factors, such as hardware resources and environmental
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complexity, and it is usually set to range from tens to hundreds. ‘Replay buffer’ stores state
and action experience, and its size determines how much experience can be saved. In the
case of abundant computing resources, a larger size is usually selected. ‘Discount factor’ is
a number between 0 and 1. In our case, it is set to 0.9 because more emphasis is placed on
long-term cumulative rewards, which means stable attitude tracking of the entire process.
‘Noise variance’ in RL introduces randomness and exploratory behavior, and the parameter
selection needs to affect the system without destroying the system’s stability. ‘Time step’
and ‘Maximum step’ are the control cycle and the maximum step size, which means that
6 s tracking is considered in our case.

Following the parameters, 4000 training episodes were conducted, depending on the
complexity of the training environment and the network size. The average cumulative
reward in each episode is shown in Figure 4.

Figure 4. Cumulative rewards during training.

In Figure 4, the training system uses the random output to generate initial samples in
0–170 episodes: according to the defined reward function, the random output results in a
large error, corresponding to a small reward. It is worth noting that for the designed reward
function (21), the opposite number of the cumulative result of the absolute tracking error is
considered, which means that a more significant cumulative tracking error has a smaller
reward. A small cumulative tracking error has a large reward. In the ideal situation, when
there is no tracking error, the reward function reaches a maximum value of 0. The reward
increases obviously during 700–1000 episodes. In the process of 1500–4000, the reward is
still increasing and gradually approaching 0. Therefore, the network training is complete.

Subsequently, the trained network was imported into the simulation environment.
Based on a standard step signal of 0.3 rad, the simulation results were compared with those
of conventional SMC, as shown in Figure 5.

The attitude and attitude rate tracking are presented in Figure 5a,b, respectively. In
Figure 5a, the green line is the original target signal, whereas the pink line represents
the reference value calculated from the reference model. Evidently, both the proposed
and conventional methods could adequately track the reference model output. However,
in Figure 5b, the traditional method encountered a noticeable chattering in the attitude
rate during tracking. By contrast, this phenomenon did not occur with the proposed
method. The same conclusion can be drawn from Figure 5c, which indicates the output of
the controller.
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Figure 5. Tracking performance: Comparing the conventional SMC with the proposed controller:
(a) roll tracking, (b) roll rate tracking, and (c) controller output of the two methods. Evidently, the
proposed method significantly reduces chattering.

4.3. Comparison Schemes Implement

Numerous studies have been proposed to reduce chattering, as described in Section 1.
This work selected two types of chattering reduction methods, Classes A and B, to com-
pare with the proposed method. Considering the diversity of different objects and SMC
methods, we summarized their improved parts and then applied them to the same basic
controller (17).

Regarding improvement based on Class A, ref. [18] designed an SMC scheme with
adaptive gain, and then used a sigmoid function to solve the chattering problem. Its sliding
mode surface is consistent with (12), and the adaptive nonlinear controller is:

us(t) = −(SB)−1Γ̂(t)Sα(s(t)). (30)

Among them, the designed adaptive gain ˙̂Γ(t) = 1
β s(t)Sα(s(t)), Γ̂(0) > 0, and the

sigmoid function is:

Sα(s(t)) =
1− e−αs(t)

1 + e−αs(t)
. (31)

where α and β are positive constants related to the steepness of the sigmoid function. In
this situation, α = 20, and β = 1.8 are selected.

Then, the method improvement based on Class B was realized. In class D, ref. [23]
replaced the sign function with the smooth function (32) to alleviate chattering.

f (σ) =
σ

|σ| + δ
(32)

δ > 0 represents the weight of the smooth function.
The tracking performance of the improved two-classes methods is shown in Figure 6,

and the tracking errors of each method are presented in Table 2. The attitude and attitude
rate tracking errors are the primary indicators.

Figure 6 presents the step responses of the two improved methods after parameter
tuning. The results depicted in Figure 6a,b demonstrate that both methods yield similar
outcomes, with each state accurately tracking its reference target. Figure 6d displays
the switching output during the tracking process; there is no chattering during tracking.
Furthermore, the switching outputs exhibit comparable magnitudes. Thus, it can be
concluded that both improvement methods have achieved satisfactory results for the
specific system.

Figure 6 proves that the improved controller based on Class A and B can accurately
track the target while avoiding chattering. In the tuning process, the same settings as in the
reference studies were adopted.
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Figure 6. Step response based on Class A and Class B improvement: (a,b) depict the accurate tracking
of the target attitude and rate for the two improved methods; (c) illustrates the total controller outputs,
and (d) represents the switching output. The output assignments of the two methods are similar,
indicating comparable performance between them.

Table 2. Tracking error statistics under initial conditions.

Class A Class B Proposed

Mean Att × 10−3 (rad) −0.3189 −0.2332 −0.167
Rate × 10−3 (rad/s) −0.0003 −0.0003 0.0559

Variance Att × 10−4 (rad) 0.0186 0.0117 0.0187
Rate × 10−4 (rad/s) 0.2861 0.1997 0.2959

Max Att (rad) 0.0043 0.0035 0.0041
Rate (rad/s) 0.025 0.0221 0.0245

In summary, this subsection compares two classic chattering reduction methods.
Considering the inconsistencies of the target system, the parameter selection for each
method followed the recommendations of the references. It was adjusted to the ideal state
without chattering to ensure fairness in the comparison.

4.4. Simulation under Input Delay and Disturbance

Chattering is inherent in sliding mode control and appears more noticeable under
input delays and external disturbances.

This section verifies the proposed method with the comparison methods in the MAT-
LAB environment, considering the system (1), setting the attitude target of 0.3 rad based on
the existing equivalent control (14), combined with the switching control calculated based
on the proposed RL-based (16), the improved Class A method (30), and the improved Class
B method (32), for target tracking. The system’s initial state X = [0, 0, 0]T .

To verify chattering suppression performance, a 20-cycle delay was performed on
the controller output to imitate the actual system, which depended on the UAV’s size and
maneuverability. Another factor that exacerbates chattering, the unknown disturbance,
was also considered herein. Based on the delayed input, a disturbance d(t) = 0.01sin(t)
rad was added to the system input. The response of each method and the controller output
are shown in Figures 7 and 8.

Figure 7 displays the target tracking performance in the presence of input delay and
external disturbance, while Figure 8 records the switching output during this process.
Notably, the switching outputs of all three methods exhibit the same magnitude, approxi-
mately 0.003 rad/s. Moreover, both Class A and Class B output waveforms depict similar
curves, while the RL network produces a distinct curve that closely resembles a square
wave, which can be considered an optimal mechanism for the current system. Finally,
the tracking errors of attitudes and attitude rates for the two simulation experiments are
summarized in Table 3.
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Figure 7. Target tracking under delayed input and disturbance.

Figure 8. Controller output under delayed input and disturbance.

Table 3. Tracking result statistics under input delay and disturbance.

Class A Class B Proposed

Mean Att × 10−3 (rad) −0.825 −0.4484 −0.1214
Rate × 10−3 (rad/s) 0.7965 0.71 0.7516

Variance Att × 10−3 (rad) 0.0239 0.0223 0.0197
Rate × 10−3 (rad/s) 0.2284 0.2196 0.185

Compared with the initial condition, after considering input delay and disturbance,
the mean errors of Class A and Class B can still be maintained. However, the attitude
variance in Class A and the attitude rate variance in Class B increased by 28.5% and 48.6%,
thus proving the occurrence of vibration. The proposed methods’ tracking error variance
changed within 5%. Therefore, under the premise of reducing chattering, the method based
on RL better tolerates system input delay.

After the increase in disturbance, the tracking effect of each method declined. Nonethe-
less, the chattering was still suppressed. Compared with the comparison methods, the
proposed method can better reduce chattering and tolerate input delay and disturbance.

4.5. Experimental Verification

The simulated and actual environments differ significantly; hence, more than the
simulation verification is needed to explain the effectiveness of the proposed method. This
section presents the performance of the discussed methods on a real quadrotor, including
the proposed and two classes comparison methods. During verification, each method’s
environment and tracking target were consistent, and the parameters were consistent with
the simulation situation.
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The experiment was conducted in an outdoor natural environment, as shown in
Figure 9, and the open area allowed the free flight of the UAV. A self-designed trajectory
was set as the attitude target, and no human intervention was allowed during tracking.

Figure 9. Quadrotor flight experiment in a natural environment.

It is worth mentioning that the controller was designed and implemented based on
the fitted model; modeling errors and input delays were expected as the primary reasons
for chattering. The attitude and attitude rate tracking results were recorded for evaluation,
and the experimental results are shown in Figures 10–12.

Figure 10. Target tracking experiment results of Class A improvements.

Figure 11. Target tracking experiment results of Class B improvements.
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Figure 12. Target tracking experiment results of the proposed improvements.

Figures 10a, 11a and 12a shows the designed attitude tracking performance, including
the original target, reference target, and actual state feedback. Figures 10b, 11b and 12b
shows the attitude rate tracking. Figures 10c, 11c and 12c shows the switching output of
each method. Since the equivalent control part is entirely consistent, the switching output
has better significance.

Based on the experimental results, it is evident that all three methods effectively track
the planned reference attitude and rate. However, the distinct output of the switching
output reveals notable differences among the three methods. Figure 10c shows that the
switching output amplitude of Class A improved by 0.02 rad/s, which has a significantly
larger magnitude than the other two. Nonetheless, compared with other methods, Class A
improvement was the least satisfactory, and a distinct tracking error was observed. To more
clearly reflect the experimental results, the tracking errors of attitude and rate are shown
separately in Figure 13, and the statistical results are listed in Table 4. It is worth noting
that a new evaluation mechanism, the integral square error (ISE) [37,38], was adopted to
evaluate the experimental results further; therefore, experiment results can be judged from
different indicators.

The comparison is depicted in Figure 13a,b, it is evident that the proposed method
exhibits the smallest tracking error for both attitude and rate, particularly in 3–6 s. This
conclusion is further supported by the statistical results presented in Table 4. According to
the statistical results in Table 4, during the actual flight, the target tracking error’s mean
value, variance, and ISE of the proposed method were smaller than the two comparison
methods. Therefore, it can be considered that the RL-based method achieves better tracking
accuracy and stability. Additionally, it is noteworthy that none of the three schemes
experienced chattering during flight.

Figure 13. Tracking error in the four methods.
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Table 4. Target tracking experiment result.

Class A Class B Proposed

Mean Att (rad) −0.0174 −0.0069 −0.0045
Rate (rad/s) 0.0167 0.0118 0.0074

Variance Att × 10−4 (rad) 0.2640 0.1340 0.0950
Rate (rad/s) 0.0036 0.0005 0.0005

ISE Att × 10−3 (rad) 5.5 1.8 1.1
Rate × 10−3 (rad/s) 37.9 6.5 5.8

Thus, according to the actual flight verification, the proposed improved reference
sliding mode controller based on RL can reduce chattering and accurately track the attitude
and attitude rate target.

5. Conclusions

This study proposed a reinforcement learning-based method to reduce chattering in
sliding mode control. The DDPG algorithm was employed to learn the switching output
in the sliding mode control based on a standard reference model. The reward function
was designed based on the tracking errors of attitude and attitude rate. Simulation and
actual flight experiments demonstrated the excellent performance of the proposed method
in terms of chattering reduction and accurate tracking. Additionally, two classic chattering
reduction solutions were implemented to improve the same basic controller for comparison.
The proposed method effectively reduced chattering while maintaining superior tracking
performance, even under conditions of input delay and disturbances.

It should be noted that reinforcement learning-based methods can avoid the design
process of nonlinear controllers and their parameter selection; however, the training results
may exhibit incompletely consistent properties. This study did not consider position
information, which will be addressed in future research. Additionally, the current study
did not account for the stability of the controller during the learning process. Future
investigations will focus on incorporating stability proofs and adding constraints during
training to address this issue.
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