
Citation: Lavezzi, G.; Guye, K.;

Cichella, V.; Ciarcià, M. Comparative

Analysis of Nonlinear Programming

Solvers: Performance Evaluation,

Benchmarking, and Multi-UAV

Optimal Path Planning. Drones 2023,

7, 487. https://doi.org/10.3390/

drones7080487

Academic Editor: Diego

González-Aguilera

Received: 30 May 2023

Revised: 11 July 2023

Accepted: 19 July 2023

Published: 25 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

drones

Article

Comparative Analysis of Nonlinear Programming Solvers:
Performance Evaluation, Benchmarking, and Multi-UAV
Optimal Path Planning
Giovanni Lavezzi 1,* , Kidus Guye 2 , Venanzio Cichella 3 and Marco Ciarcià 4

1 Department of Aeronautics and Astronautics, Massachusetts Institute of Technology,
Cambridge, MA 02139, USA

2 Department of Mechanical Engineering, University of Maryland, College Park, MD 20742, USA;
kguye@umd.edu

3 Department of Mechanical Engineering, University of Iowa, Iowa City, IA 52242, USA;
venanzio-cichella@uiowa.edu

4 Department of Mechanical Engineering, South Dakota State University, Brookings, SD 57006, USA;
marco.ciarcia@sdstate.edu

* Correspondence: glavezzi@mit.edu

Abstract: In this paper, we propose a set of guidelines to select a solver for the solution of nonlinear
programming problems. We conduct a comparative analysis of the convergence performances of
commonly used solvers for both unconstrained and constrained nonlinear programming problems.
The comparison metrics involve accuracy, convergence rate, and computational time. MATLAB is
chosen as the implementation platform due to its widespread adoption in academia and industry.
Our study includes solvers which are either freely available or require a license, or are extensively
documented in the literature. Moreover, we differentiate solvers if they allow the selection of different
optimal search methods. We assess the performance of 24 algorithms on a set of 60 benchmark
problems. We also evaluate the capability of each solver to tackle two large-scale UAV optimal path
planning scenarios, specifically the 3D minimum time problem for UAV landing and the 3D minimum
time problem for UAV formation flying. To enrich our analysis, we discuss the effects of each solver’s
inner settings on accuracy, convergence rate, and computational time.

Keywords: NLP; unconstrained; constrained; UAV; path planning; optimization

1. Introduction

The current technological era prioritizes, more than ever, high performance and
efficiency of complex processes controlled by a set of variables. Examples of these processes
are [1–8]: engineering designs, chemical plant reactions, manufacturing processes, grid
power management, power generation/conversion process, path planning for autonomous
vehicles, climate simulations, etc. Quite often, the search for the best performance, or the
highest efficiency, can be transcribed into a nonlinear programming (NLP) problem, namely,
the need to minimize (or maximize) a scalar cost function subjected to a set of constraints.
In some instances, these functions are linear but in general, one or both of them are
characterized by nonlinearities. For simple one-time use problems, one might successfully
use any of the solvers available, such as FMINCON in MATLAB [9,10]. Nevertheless, if the
NLP derives from some specific applications, such as real-time process optimization, then
the solver choice begs a more accurate selection.

The first research efforts toward the characterization of optimization solvers began
in the 1960s. In [11], the authors compare eight solvers on twenty benchmark uncon-
strained NLP problems containing up to 20 variables. Notably, they illustrate techniques
to transform particular constrained NLPs into equivalent unconstrained problems. The
authors of [12] analyze the convergence properties of two gradient-based solvers applied

Drones 2023, 7, 487. https://doi.org/10.3390/drones7080487 https://www.mdpi.com/journal/drones

https://doi.org/10.3390/drones7080487
https://doi.org/10.3390/drones7080487
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/drones
https://www.mdpi.com
https://orcid.org/0000-0002-1990-4574
https://orcid.org/0000-0002-7980-1956
https://orcid.org/0000-0002-1876-9526
https://orcid.org/0000-0001-7236-7520
https://doi.org/10.3390/drones7080487
https://www.mdpi.com/journal/drones
https://www.mdpi.com/article/10.3390/drones7080487?type=check_update&version=1

Drones 2023, 7, 487 2 of 27

to 16 test problems. In the last few decades, with the development of new methodologies
and optimization applications, more studies aimed to illustrate difference in performance
among NLP solvers. Schittkowski et al. [13] performed the comparison of eleven differ-
ent mathematical programming codes applied to structural optimization through finite
element analysis. George et al. summarize a qualitative comparison of few optimization
methodologies reported by several other sources [14]. In the research document prepared
by Sandia National Laboratory [15], a study was conducted on four open source Linear
Programming (LP) solvers applied to 201 benchmark problems. In [16], Kronqvist et al.
carried out a performance comparison of mixed integer NLP solvers limited to convex
benchmark problems. The work in [17] presents a comparison between linear and nonlinear
programming techniques on the diet formulation for animals. In [18], the authors use the
programming language R to analyze multiple nonlinear optimization methods applied to
real-life problems. State-of-the-art optimization methods were used to compare their appli-
cation on L1-regularized classifiers [19]. On a similar note, multiple global optimization
solvers were compared in a work done by Arnold Neumaier [20]. Authors from [21–24]
conducted a performance comparison of optimization techniques for specific applications
such as: aerodynamic shape design, integrated manufacturing planning and scheduling,
solving electromagnetic problems, and building energy design problems, respectively. Sim-
ilarly, Frank et al. conducted a comparison between three optimization methods for solving
aerodynamic design problems [25]. In [26], Karaboga et al. compared the performance of
the artificial bee colony algorithm with the differential evolution, evolutionary and particle
swarm optimization algorithms using multi-dimensional numerical problems.

In this paper, we aim to provide an explicit comparison of a set of NLP solvers.
In our comparison, we incorporate widely used solvers available in MATLAB, several
gradient descent methods that have been extensively utilized in the literature, and a
particle swarm optimization algorithm. Because of its widespread use among research
groups, both in academia and the private sector, we have decided to use MATLAB as a
common implementation platform. For this reason, we will focus on all the solvers that
are either written on or can be implemented in MATLAB. The NLP problems used in this
comparison have been selected amongst the standard benchmark problems [27–29] with
up to thirty variables and up to nine scalar constraints.

In addition to the selected benchmark problems, two large-scale minimum-time un-
manned aerial vehicle (UAV) optimal path planning problems are included in the analysis.
UAVs represent a low-cost and effective alternative in many practical applications, such as
precision agriculture, environmental monitoring, product deliveries, or military missions,
and interest has increasingly growing in the past two decades [30]. UAV path planning
is an important research area since it aims to improve their autonomous and safety ca-
pabilities. Path planning often employs optimal control formulations as a key strategy.
Utilizing this method, one can generate trajectories that not only minimize a specified cost
function, but also adhere to both vehicle-related and problem-specific constraints. When
path planning/optimal control problems are “simple”, they can be solved analytically
using one of two classical methods: the Bellmann [31,32] and the Pontryagin methods [33].
However, when dealing with complex (e.g., large-scale, non-convex, nonlinear) optimal
control problems, it is very hard or even impossible to find solutions analytically using one
of these methods, and numerical methods must be sought. Numerical methods are based
on discretizing/transcribing the optimal control problem into a finite-dimensional NLP
problem, which can be solved using ready-to-use NLP solvers (e.g., FMINCON, SNOPT,
SciPy, IPOPT). In this paper, we employ Bernstein polynomial approximations to solve UAV
path planning problems by generating 3D trajectories, thereby converting optimal control
problems into NLP problems [34]. The approach is inspired by prior research on optimal
control using Bernstein polynomials [35,36], which demonstrated the efficient generation of
feasible and collision-free trajectories for both single and multiple vehicles. Moreover, this
approach can be applied to real-time safety-critical applications in complex environments.

Drones 2023, 7, 487 3 of 27

Therefore, the analysis is further improved by evaluating the performance of the solvers in
a realistic case scenario.

The paper is organized as follows: Section 2 describes the statement of unconstrained
and constrained NLP problems; in Section 3, we briefly enumerate the NLP solvers included
in our analysis, provide an overview of the different convergence metrics, and finally,
carry out the solvers’ implementations; the results of the comparison with the benchmark
equations are discussed in Section 4; in Section 5, each solver is tested to solve two real-
world UAV path planning optimal control problems. Finally, the main contributions of the
paper are outlined in Section 6.

2. Nonlinear Programming Problem Statements

In general, a constrained NLP problem aims to minimize a nonlinear real scalar
objective function with respect to a set of variables while satisfying a set of nonlinear
constraints. If the problem entails the minimization of a function without the presence of
constraints, then the problem is defined as unconstrained [37]. In the following section,
the general forms of nonlinear unconstrained and constrained optimization problems
are stated.

2.1. Unconstrained Optimization Problem
2.1.1. Statement

Let x ∈ Rn be a real vector with n ≥ 1 components and let f : Rn → R be a smooth
function. Then, the unconstrained optimization problem is defined as

min
x∈Rn

f (x). (1)

2.1.2. Optimality Conditions

Given a function f (x) defined and differentiable over an interval (a, b), the necessary
condition for a point x∗ ∈ (a, b) to be a local maximum or minimum is that f ′(x∗) = 0.
This is also known as Fermat’s theorem. The multidimensional extension of this condition
states that the gradient must be zero at local optimum point, namely,

∇ f (x∗) = 0. (2)

Equation (2) is referred to as a first-order optimality condition.

2.2. Constrained Optimization Problem
2.2.1. Statement

The constrained optimization problem is formulated as

min
x∈Rn

f (x) (3)

subject to
gi(x) ≤ 0, i = 1, 2, . . . , w, (4)

hj(x) = 0, j = 1, 2, . . . , l, (5)

with gi(x) and hj(x) smooth real-valued functions on a subset of Rn. Notably, gi(x)
and hj(x) represent the sets of inequality constraints and equality constraints, respec-
tively. The feasible set is identified as the set of points x that satisfy just the constraints
(Equations (4) and (5)). It must be pointed out that some of the solvers considered in
this study are only able to support equality constraints. In these instances, we will in-
troduce a set of slack variables si, and convert Equation (5) into the following set of
equality constraints

gi(x) + s2
i = 0, i = 1, 2, . . . , w. (6)

Drones 2023, 7, 487 4 of 27

Such necessary expedients will obviously induce more computational burden on the
particular solvers affected by this constraint-type limitation, since the slack variables si
become additional optimization variables. In this scenario, the constrained optimization
problem can be reformulated as

min
x,s∈Rn

f (x, s) (7)

subject to
gi(x) + s2

i = 0, i = 1, 2, . . . , w, (8)

hj(x) = 0, j = 1, 2, . . . , l. (9)

2.2.2. Optimality Conditions

The Karush–Kuhn–Tucker (KKT) conditions measure the first-order optimality for
constrained problems [38]. These necessary conditions are defined as follows. Let the
objective function f and the constraint functions gi and hj be continuously differentiable
functions at x∗ ∈ Rn. If x∗ is a local optimum and the optimization problem satisfies some
regularity conditions [37], then there exist the two constants µi (i = 1, . . . , w) and λj (j =
1, . . . , `), called KKT multipliers, such that the following four groups of conditions hold:

• Stationarity:

f (x) : ∇ f (x∗) +
m

∑
i=1

µi∇gi(x∗) +
`

∑
j=1

λj∇hj(x∗) = 0. (10)

• Primal feasibility:
gi(x∗) ≤ 0, for i = 1, . . . , w. (11)

hj(x∗) = 0, for j = 1, . . . , `. (12)

• Dual feasibility:
µi ≥ 0, for i = 1, . . . , w. (13)

• Complementary slackness:
m

∑
i=1

µigi(x∗) = 0. (14)

3. NLP Solvers and Convergence Metrics

This section briefly introduces the 24 solvers included in our study, narrates the key
implementation steps for each solver, and provides the description of the convergence
metrics used in our analysis.

3.1. NLP Solvers Selection

The selection of the NLP solvers considered in this work is based on the following
aspects. First of all, we only examine algorithms that are available in MATLAB. Secondly,
we have included solvers that are either free source or, for commercial software, have a
trial version. The following is a list of the 24 solvers and algorithms that we have included
in the benchmark analysis:

• Accelerated Particle Swarm Optimization (APSO): an algorithm developed by Yang
at Cambridge University in 2007, and based on swarm-intelligent search of the opti-
mum [39]. Due to the nature of the algorithm, only constrained nonlinear program-
ming problems can be solved.

• Branch and Reduced Optimization Navigator (BARON): a commercial global op-
timization software that solves both NLP and mixed-integer nonlinear programs
(MINLP) by using deterministic global optimization algorithms of the branch and

Drones 2023, 7, 487 5 of 27

bound search type [40–42]. It comes with embedded linear programming (LP) and
NLP solvers, such as CLP/CBC [43], IPOPT [44,45], FilterSD [46] and FilterSQP [47].
BARON selects the NLP solver by default and may switch between other NLP solvers
during the search based on problem characteristics and solver performance. To refer
to the default option, the name BARON (auto) is chosen. For this study, we have
acquired the monthly license of the software to be used in conjunction with the MAT-
LAB interface. Such choice reflects the fact that the free demo version is characterized
by some limitations, namely, it can only handle problems with up to ten variables, ten
constraints, and it does not support trigonometric functions.

• FMINCON: a MATLAB optimization toolbox used to solve constrained NLP prob-
lems [37]. FMINCON provides the user the option to select amongst five different al-
gorithms to solve nonlinear problems: Active-set , Interior-point, Sequential Quadratic
Programming (SQP), Sequential Quadratic Programming legacy (SQP-legacy), and
Trust region reflective. Four out of the five algorithms are implemented in our analysis
as one of them, the Trust Region Reflective algorithm, does not support most of the
constraints considered in our benchmark cases.

• FMINUNC: a MATLAB optimization toolbox used to solve unconstrained NLP prob-
lems [48]. In this case, FMINUNC gives the user the option of choosing between two
different algorithms to solve nonlinear minimization problems [49]: Quasi-Newton
and Trust region.

• Globally Convergent Method of Moving Asymptotes (GCMMA): is a modified version
of the MMA that evaluates the global optimum value [50–52].

• Nonlinear Interior point Trust Region Optimization (ARTELYS KNITRO): a com-
mercially available nonlinear optimization software package developed by Zienna
Optimization since 2001 [53] for finding local solutions to both continuous and dis-
crete optimization problems with integer or binary variables, with or without con-
straints [53,54]. In this work, the software free trial license is used, in conjunction
with the MATLAB interface. Several algorithms are included in the software, such as
Interior-point/Direct, Interior-point/CG, Active-set, and Sequential Quadratic Pro-
gramming. Interior-point/CG mainly differs from the Interior-point/Direct algorithm
because of the primal-dual KKT system solved using a projected conjugate gradient
iteration [54].

• Mixed Integer Distributed Ant Colony Optimization (MIDACO): a global optimization
solver that combines an extended evolutionary probabilistic technique, called the Ant
Colony Optimization algorithm, with the Oracle Penalty method for constrained
handling [55,56]. In this work, we have obtained a license; otherwise, it must be noted
that the free trial version has a limitation, namely, that it does not support more than
four variables per problem.

• Method of Moving Asymptotes (MMA): it solves nonlinear problem function by
generating an approximate subproblem [51,52,57].

• Modified Quasilinearization Algorithm (MQA): the modified version of the Standard
Quasilinearization Algorithm (SQA) [58,59]. The goal is the progressive reduction
of the performance index. Convergence to the desired solution is achieved when
the performance index Q̃ ≤ ε1 or R̃ ≤ ε2, with ε1 and ε2 small preselected positive
constants, for the unconstrained and constrained case, respectively [60,61]. Regarding
NLP problems, it must be noted that the MQA can only handle equality constraints.
As a result, slack variables are introduced to convert the inequality constraints into
equality constraints.

• PENLAB: a MATLAB free open source software package suitable for nonlinear, lin-
ear semidefinite, and nonlinear semidefinite optimization, based on a generalized
Augmented Lagrangian method [62–65].

• Sequential Gradient-Restoration Algorithm (SGRA): a first-order NLP solver, charac-
terized by a restoration phase, followed by a gradient phase [66,67]. The goal is the
progressive reduction of the performance index. The performance index is expressed

Drones 2023, 7, 487 6 of 27

by R̃, which includes both the feasibility index P̃, and the optimality index Q̃. Con-
vergence is achieved when the constraint error and the optimality condition error are
P̃ ≤ ε1, Q̃ ≤ ε2, respectively, with ε1, ε2 small preselected positive constants. It must
be noted that only equality constraints can be handled by the SGRA. As a result, slack
variables are introduced to convert the inequality constraints into equality constraints.

• Sparse Nonlinear OPTimizer (SNOPT): a commercial software package for solving
large-scale optimization problems, linear and nonlinear programs [68]. In this paper,
we use the free trial version of the software in conjunction with the MATLAB interface,
which can be retrieved at [69].

• SOLNP: originally implemented in MATLAB to solve general nonlinear program-
ming problems, characterized by nonlinear smooth functions in the objective and
constraints [70,71]. Inequality constraints are converted into equality constraints by
means of slack variables.

• Standard Quasilinearization Algorithm (SQA): the standard version of the QA, and it
uses QA techniques for solving nonlinear problems by generating a sequence of linear
problems solutions [58,59]. As the MQA, SQA can only handle equality constraints.
As a result, slack variables are introduced to convert the inequality constraints into
equality constraints.

Unless stated otherwise, the solvers and algorithms are freely available. Mathematical
details, description and documentation, the most direct source to each solver and algorithm,
and all the benchmark test functions can be found in [72]. For each of the test functions,
dimension, domain and search space, objective function, constraints, and minimum solution
are listed.

3.2. Convergence Metrics

The main goal of this study is to characterize the convergence performance, in terms of
accuracy and computational time, of the different solvers under analysis. We have selected
a number of benchmark NLPs and compared the numerical solutions returned by each
solver with the true analytical solution. Moreover, considering that the choice of the initial
guesses critically affects the convergence process, we want to assess also the capability to
converge to the true optimum, rather than converging to a local minima or not converging
at all. With this in mind, we define as converging robustness the quality of a solver to
achieve the solution when the search process is initiated from a broad set of initial guesses
randomly chosen within the search domain. Finally, to have an accurate assessment of
the computational time, we require the solver to repeat the same search several times
and average out the total CPU time. As a result, given N benchmark test functions, M
solvers/algorithms, K randomly generated initial guesses, and Z repeated identical search
runs, a total of N ×M× K× Z runs must be executed.

The following performance metrics are in order:

• Mean error [%]:

Ēm =
1
N

N

∑
n=1

Ēn, Ēn =
1
K

K

∑
k=1

Ek, Ek = 100
| f (x)− f (x∗)|

max(| f (x∗)|, 0.001)
(15)

with f (x) the benchmark test function evaluated at the numerical solution x provided
by the solver, f (x∗) the benchmark test function evaluated at the optimal solution
f (x∗), Ek the error associated to the run from the k-th randomly generated initial
guess, Ēn the mean error associated to the n-th benchmark test function, and Ēm the
mean error delivered by the m-th solver. The biunivocal choice of the denominator
of Ek is based on the fact that some benchmark test functions at the optimal solution
have zero value; in this case, a value of 0.001 is chosen instead as reference value.

Drones 2023, 7, 487 7 of 27

• Mean variance [%]:

σ̄m =
1
N

N

∑
n=1

σn, σn =
1

K− 1

K

∑
k=1
|Ek − Ēn|2 (16)

where σn is the variance correspondent to the n-th benchmark test function, and σ̄m
the mean variance delivered by the m-th solver.

• Mean convergence rate [%]:

γ̄m =
1
N

N

∑
n=1

γn, γn = 100
K− Kconv

K
(17)

with Kconv the number of runs (from a pool of K distinct initial guesses) which suc-
cessfully reach convergence for the n-th function, γn the convergence rate for the n-th
function, and γ̄m the mean convergence rate delivered by the m-th solver. The con-
vergence rate is computed considering successful a run that satisfies the converging
threshold conditions Ek ≤ Emax = 5%, and CPUk ≤ CPUmax = 10 s, with CPUk the
CPU time required to the run starting from the k-th initial guess.

• Mean CPU time [s]:

CPUm =
1
N

N

∑
n=1

CPUn, (18)

CPUn =
1
Z

Z

∑
z=1

CPUz, CPUz =
1
K

K

∑
k=1

CPUk (19)

where CPUz is the mean CPU time per z-th repetition, CPUn is the mean CPU time
related to the n-th benchmark test function, and CPUm is the mean CPU time delivered
by the m-th solver.

3.3. Solvers Implementation

In this paper, we analyze the convergence performances of the different solvers in
terms of robustness, accuracy, and CPU time. Considering that the user might decide
to tune the convergence parameters to favor one of these metrics, we have decided to
perform the comparison for three separate implementation scenarios: plug and play (P&P),
high accuracy (HA), and quick solution (QS). The plug and play settings, as the name
suggests, are the “out-of-the-box” settings of each solver. The high accuracy settings are
based on more stringent tolerances and/or on a higher number of maximum iterations
with respect to the plug and play settings. This tuning aims to achieve a more precise
solution. Finally, the quick solution settings are characterized by more relaxed convergence
tolerances, and a lower number of maximum iterations with respect to the plug and play
settings. In this scenario, the algorithms should reach a less accurate solution but in a
shorter time. In general, the objective function, its gradient, the initial conditions, the
constraint function (for constrained problems only), and the solver options are elements
which are inputted to each solver. The objective function gradient is not necessary for
APSO, BARON, MIDACO, and SOLNP, but it is optional for FMINCON/FMINUNC and
KNITRO. For GCMMA/MMA, SGRA, and SNOPT, the gradient of both the objective and
constraint functions is necessary. MQA/SQA and PENLAB, in addition to these inputs,
require the Hessian of the objective function. In the following subsection, details on each
solver and on the three different solver settings per each solver are described. It must be
noted that, in most cases, the settings’ names here reported are the same as the solver’s
options names used in the code implementation. In this way, the reader can have a better
understanding of which solver’s parameter has been tuned.

Drones 2023, 7, 487 8 of 27

3.3.1. APSO

The three settings considered in the analysis are reported in Table 1, where no. particles
is the number of particles, no. iterations is the total number of iterations, and γ is a control
parameter that multiplies α, one of the two learning parameters or acceleration constants, α
and β, the random amplitude of roaming particles and the speed of convergence, respec-
tively. APSO does also require the number of problem variables, no. vars, to be defined but
this parameter is, obviously, invariant for the three settings.

Table 1. APSO settings.

Settings P&P HA QS

no. particles 15 50 10
no. iterations 300 500 100
γ 0.9 0.95 0.95

3.3.2. BARON

The three settings considered in the analysis are reported in Table 2, with EpsA the ab-
solute termination tolerance, EpsR the relative termination tolerance, and AbsConFeasTol
the absolute constraint feasibility tolerance. Due to the limitations of the solver, trigonomet-
ric functions are not supported; for this reason, the following test functions are excluded in
the analysis: A.2, A.3, A.4, A.5, A.17, A.18, A.26 for unconstrained problems, and B.2, B.5,
B.8, for constrained problems (refer to Appendix in [72]).

Table 2. BARON settings.

Settings P&P HA QS

EpsA 10−6 10−10 10−3

EpsR 10−4 10−10 10−3

AbsConFeasTol 10−5 10−10 10−3

3.3.3. FMINCON/FMINUNC

The three settings considered in the analysis are reported in Table 3, with StepTolerance
the lower bound on the size of a step, ConstraintTolerance the upper bound on the magni-
tude of any constraint functions, FunctionTolerance the lower bound on the change in the
value of the objective function during a step, and OptimalityTolerance the tolerance for the
first-order optimality measure.

Table 3. FMINCON/FMINUNC settings.

Settings P&P HA QS

FMINCON
StepTolerance 10−10 10−10 10−6

ConstraintTolerance 10−6 10−10 10−3

FunctionTolerance 10−6 10−10 10−3

OptimalityTolerance 10−6 10−10 10−3

FMINUNC
(quasi-newton)
StepTolerance 10−6 10−12 10−6

FunctionTolerance 10−6 10−12 10−3

OptimalityTolerance 10−6 10−12 10−3

FMINUNC
(trust-region)
StepTolerance 10−6 10−12 10−6

FunctionTolerance 10−6 10−12 10−3

OptimalityTolerance 10−6 10−6 10−3

Drones 2023, 7, 487 9 of 27

3.3.4. GCMMA/MMA

The three settings considered in the analysis are reported in Table 4, where epsimin is
a prescribed small positive tolerance that terminates the algorithm, whereas maxoutit is the
maximum number of iterations for MMA, and the maximum number of outer iterations
for GCMMA.

Table 4. GCMMA/MMA settings.

Settings P&P HA QS

epsimin 10−7 10−10 10−3

maxoutit 80 150 30

3.3.5. KNITRO

The three settings considered in the analysis are reported in Table 5, where xtol and
f tol are tolerances that terminate the optimization process if the relative change of the
solution point estimate or of the objective function are less than that values, opttol and
opttol_abs specify the final relative and absolute stopping tolerance for the KKT (optimality)
error, and f eastol and f eastol_abs specify the final relative and absolute stopping tolerance
for the feasibility error.

Table 5. KNITRO settings.

Settings P&P HA QS

xtol 10−6 10−10 10−3

f tol 10−6 10−10 10−3

opttol 10−6 10−10 10−3

opttol_abs 10−6 10−10 10−3

f eastol 10−6 10−10 10−3

f eastol_abs 10−6 10−10 10−3

3.3.6. MIDACO

The three settings considered in the analysis are reported in Table 6, where maxeval
is the maximum number of function evaluation. It is a distinctive feature of MIDACO
that allows the solver to stop exactly after that number of function evaluation. It must be
noted that another tunable parameter is accuracy, namely, the accuracy tolerance for the
constraint violation, that is not considered in the settings since no beneficial effect has been
found compared to maxeval.

Table 6. MIDACO settings.

Settings P&P HA QS

maxeval 50,000 150,000 10,000

3.3.7. MQA

The three settings considered in the analysis are reported in Table 7, with ε1 and ε2
the prescribed small positive tolerances that allow the solver to stop, when the inequality
Q̃ ≤ ε1 or R̃ ≤ ε2 is met. As mentioned in Section 3, regarding NLP problems, MQA can
only handle equality constraints. As a result, slack variables are introduced to convert
the inequality constraints into equality constraints. In this study, for all the three settings
considered in the analysis, a value of 1 is chosen as initial guess for all the slack variables.

Drones 2023, 7, 487 10 of 27

Table 7. MQA settings.

Settings P&P HA QS

ε1 10−5 10−8 10−2

ε2 10−4 10−5 10−3

3.3.8. PENLAB

The three settings considered in the analysis are reported in Table 8, where max_inner
_iter is the maximum number of inner iterations, max_outer_iter is the maximum number of
outer iterations, mpenalty_min is the lower bound for penalty parameters, inner_stop_limit
is the termination tolerance for the inner iterations, outer_stop_limit is the termination
tolerance for the outer iterations, kkt_stop_limit is the termination tolerance KKT opti-
mality conditions, and unc_dir_stop_limit is the stopping tolerance for the unconstrained
minimization.

Table 8. PENLAB settings.

Settings P&P HA QS

max_inner_iter 100 1000 25
max_outer_iter 100 1000 25
mpenalty_min 10−6 10−9 10−3

inner_stop_limit 10−2 10−9 10−1

outer_stop_limit 10−6 10−9 10−3

kkt_stop_limit 10−4 10−6 10−2

unc_dir_stop_limit 10−2 10−9 10−1

3.3.9. SGRA

The three settings considered in the analysis are reported in Table 9, with ε1 the
tolerance related to the constraint error P̃, and ε2 the tolerance related to the optimality
condition error Q̃. Considering that the SGRA can only treat equality constraints, slack
variables are introduced to convert the inequality constraints into equality constraints. In
this study, for all the three settings considered in the analysis, a value of 1 is chosen for all
the slack variables.

Table 9. SGRA settings.

Settings P&P HA QS

ε1 10−9 10−10 10−8

ε2 10−4 10−6 10−2

3.3.10. SNOPT

The three settings considered in the analysis are reported in Table 10, where major
_iterations_limit is the limit on the number of major iterations in the SQP method, minor
_iterations_limit is the limit on minor iterations in the QP subproblems, major_ f easibility
_tolerance is the tolerance for feasibility of the nonlinear constraints, major_optimality
tolerance is the tolerance for the dual variables, and minor f easibility_tolerance is the
tolerance for the variables and their bounds.

Drones 2023, 7, 487 11 of 27

Table 10. SNOPT settings.

Settings P&P HA QS

major_iterations_limit 1000 10,000 100
minor_iterations_limit 500 5000 100
major_ f easibility_tolerance 10−6 10−12 10−3

major_optimality_tolerance 10−6 10−12 10−3

minor_ f easibility_tolerance 10−6 10−12 10−3

3.3.11. SOLNP

The three settings considered in the analysis are reported in Table 11, with ρ the penalty
parameter in the augmented Lagrangian objective function, maj the maximum number
of major iterations, min the maximum number of minor iterations, δ the perturbation
parameter for numerical gradient calculation, and ε the relative tolerance on optimality and
feasibility. During the HA scenario implementation, we learned that different convergence
settings are required for unconstrained and constrained problems. This peculiarity might
be induced by the stringent tolerances adopted in this scenario.

Table 11. SOLNP settings. Tuning values for the HA scenario are divided for unconstrained (left-side)
and constrained (right-side) problems.

Settings P&P HA QS

ρ 1 1 1
maj 10 500|10 10
min 10 500|10 10
δ 10−5 10−10 | 10−6 10−3

ε 10−4 10−12 | 10−7 10−3

3.3.12. SQA

The three settings considered in the analysis are reported in Table 12, with ε1 and ε2
the prescribed small positive tolerances that allow the solver to stop, when the inequality
Q̃ ≤ ε1 or R̃ ≤ ε2 is met. As mentioned earlier, SQA can only treat equality constraints. To
overcome this limitation, slack variables are introduced to convert the inequality constraints
into equality constraints. In this study, for all the three settings considered in the analysis, a
value of 1 is chosen for all the slack variables.

Table 12. SQA settings.

Settings P&P HA QS

ε1 10−5 10−8 10−2

ε2 10−4 10−5 10−3

4. Benchmark Test Functions Analysis

We present a collection of unconstrained and constrained optimization test problems
that are used to validate the performance of the various optimization algorithms presented
above for the different implementation scenarios. The comparison results are also discussed
in depth in this section.

For performance comparison purposes, an equivalent environment and control pa-
rameters have been created to run each NLP solver. All outputs tabulated in this paper are
calculated using MATLAB software running on a desktop computer with the following
specs: Intel(R) Core(TM) i7-6700 CPU 3.40GHz processor, 16.0 GB of RAM, running a
64-bit Windows 10 operating system. To assess the true computational time required by
each algorithm to reach convergence, implementation steps that are expected to have an
impact on the computer’s performance are deactivated during the run for the solution.
The internet connection and other unrelated applications are turned off throughout the

Drones 2023, 7, 487 12 of 27

analysis, ensuring that unnecessary background activities are not accessing computational
resources throughout the solvers’ performance. The unconstrained and constrained NLP
problems are selected amongst the standard benchmark problems [27–29], and they are
reported in [72]. Specifically, the benchmark problems include combinations of logarithmic,
trigonometric, and exponential terms, non-convex and convex functions, a minimum of
two to a maximum of thirty variables, and a maximum of nine constraint functions for the
constrained optimization problems. As mentioned in Section 3.3, the comparison between
each solver is carried out by considering three different settings: plug and play, high ac-
curacy, and quick solution. In this way, we want to assess the robustness, accuracy, and
computational time of every solver. For each benchmark problem, all solvers use the same
set of randomly generated initial guesses.

4.1. Results for Unconstrained Optimization Problems

A collection of 30 unconstrained optimization test problems is used to validate the
performance of the optimization algorithms. For the purpose of this analysis, given N = 30
benchmark test functions, M = 17 solvers and algorithms, K = 50 randomly generated
initial guesses, and Z = 3 iterations, a set of N×M×K× Z runs are executed. Tables 13–15
report the results for the plug and play (P&P), high accuracy (HA), and quick solution (QS)
settings, respectively. From the analysis of the results for the P&P settings, Table 13, we
observe that all the versions of BARON have the highest convergence rate. BARON (auto)
and BARON (ipopt) are able to reach the minimum mean error and variance, but they are
not the fastest ones to reach the solution. Moreover, BARON (sd), BARON (sqp), SNOPT,
and PENLAB are able to obtain good results in terms of mean error and variance. Overall,
PENLAB is also able to reach a convergence rate similar to BARON (auto) and BARON
(ipopt), with the advantage of being considerably faster than them. The worst results in
terms of accuracy and convergence rate are obtained by SOLNP and SGRA. For the HA
settings, Table 14, we can observe similar trends. In general, as expected, all the solvers
manage to achieve a more accurate solution as they reduce the average error, increase
their convergence rate, and increase the average convergence time. MIDACO is now able
to reach the second highest convergence rate, after all the versions of BARON. Overall
PENLAB is the solver which delivers a good trade-off in performance. With respect to
the P&P settings, SOLNP significantly improves its convergence rate, whereas SGRA just
slightly increase its performances. It is interesting to observe that KNITRO (sqp), aside
from improving its convergence rate, increases its mean error and variance. Despite our
effort, we are not sure how to explain this unexpected behaviour. Regarding the QS settings,
Table 15, generally all the solvers reduce their convergence time and also decrease their
convergence rate except for BARON (auto), BARON (ipopt), and BARON (sqp) which
remain unaltered. SQA, FMINUNC (quasi-newton), SNOPT, and SOLNP are amongst the
fastest to reach the solution but their convergence rate is quite low, except for SNOPT. In
addition, conversely to all the other solvers that experience a smaller CPU time, BARON is
not always able to achieve a faster CPU time with respect to the P&P settings. The same
happens to the SGRA, probably due to its intrinsic iterative nature. Finally, KNITRO (sqp)
delivers, in all cases, the slowest CPU time amongst the other subsolvers. This might
be due to the fact that it implements, internally, Quadratic Programming subproblems
characterized by computationally expensive iterations.

Drones 2023, 7, 487 13 of 27

Table 13. All unconstrained problems, plug and play (P&P) settings. Solvers ranked with respect to
convergence rate.

Ranking Solver Ē [%] σ̄ [%] γ̄ [%] CPU [s] Free

1 BARON (auto) 2.766 × 10−6 1.448 × 10−31 94.7 0.208 No
2 BARON (ipopt) 2.766 × 10−6 1.443 × 10−31 94.7 0.205 No
3 BARON (sd) 8.469 × 10−5 1.743 × 10−9 94.7 0.216 No
4 BARON (sqp) 1.690 × 10−7 2.821 × 10−20 94.7 0.195 No
5 PENLAB 1.016 × 10−3 5.340 × 10−37 88.5 0.0125 Yes
6 MIDACO 1.435 × 10−1 1.445 × 10−1 88.4 0.349 No
7 SNOPT 7.008 × 10−3 2.444 × 10−2 73.8 0.0071 No
8 FMINUNC (trust-region) 7.836 × 10−2 2.068 × 10−2 68.8 0.0153 No
9 KNITRO (sqp) 8.139 × 10−2 9.254 × 10−2 60.8 0.049 No

10 KNITRO (interior-point/D) 1.045 × 10−1 1.279 × 10−1 60.3 0.019 No

11 KNITRO
(interior-point/CG) 1.045 × 10−1 1.066 × 10−1 59.9 0.017 No

12 KNITRO (active-set) 1.163 × 10−1 1.409 × 10−1 59.8 0.017 No
13 FMINUNC (quasi-newton) 8.643 × 10−2 1.669 × 10−1 52.8 0.0045 No
14 SQA 2.362 × 10−1 1.383 × 10−1 52.5 0.0005 Yes
15 MQA 2.031 × 10−1 8.748 × 10−2 51.7 0.1345 Yes
16 SOLNP 4.648 × 10−1 1.908 × 10−1 48.2 0.0097 Yes
17 SGRA 5.921 × 10−1 8.627 × 10−2 40.8 0.2227 Yes

Table 14. All unconstrained problems, high accuracy (HA) settings. Solvers ranked with respect to
mean error.

Ranking Solver Ē [%] σ̄ [%] γ̄ [%] CPU [s] Free

1 BARON (sqp) 1.690 × 10−7 2.821 × 10−20 94.7 0.194 No
2 BARON (auto) 2.107 × 10−7 1.448 × 10−31 94.7 0.208 No
3 BARON (ipopt) 2.107 × 10−7 1.443 × 10−31 94.7 0.206 No
4 BARON (sd) 1.433 × 10−6 2.408 × 10−13 94.7 0.301 No
5 PENLAB 4.042 × 10−6 8.944 × 10−42 88.5 0.0121 Yes
6 SOLNP 9.420 × 10−4 7.900 × 10−4 69.1 0.0095 Yes
7 SNOPT 1.260 × 10−3 1.298 × 10−3 74.2 0.0099 No
8 MQA 3.160 × 10−3 5.835 × 10−5 52.1 0.1520 Yes

9 FMINUNC
(quasi-newton) 3.526 × 10−3 8.852 × 10−4 59.2 0.0062 No

10 SQA 3.984 × 10−3 9.000 × 10−5 53.2 0.0003 Yes

11 FMINUNC
(trust-region) 1.860 × 10−2 1.423 × 10−2 68.8 0.0238 No

12 KNITRO
(interior-point/D) 7.130 × 10−2 1.921 × 10−1 67.8 0.021 No

13 KNITRO (active-set) 7.200 × 10−2 1.883 × 10−1 67.8 0.022 No

14 KNITRO
(interior-point/CG) 7.467 × 10−2 1.381 × 10−1 68.0 0.022 No

15 MIDACO 7.754 × 10−2 7.188 × 10−2 92.0 1.035 No
16 KNITRO (sqp) 1.034 × 10−1 1.785 × 10−1 68.9 0.074 No
17 SGRA 2.709 × 10−1 1.335 × 10−1 44.9 0.2555 Yes

Drones 2023, 7, 487 14 of 27

Table 15. All unconstrained problems, quick solution (QS) settings. Solvers ranked with respect to
mean CPU time.

Ranking Solver Ē [%] σ̄ [%] γ̄ [%] CPU [s] Free

1 SQA 1.964 × 10−1 1.609 × 10−1 43.3 0.0002 Yes

2 FMINUNC
(quasi-newton) 6.076 × 10−1 8.157 × 10−1 33.8 0.0024 No

3 SNOPT 1.581 × 10−1 1.367 × 10−1 66.4 0.0040 No
4 SOLNP 5.357 × 10−1 3.847 × 10−1 41.2 0.0093 Yes

5 FMINUNC
(trust-region) 1.924 × 10−1 1.997 × 10−1 49.3 0.0108 No

6 PENLAB 5.452 × 10−5 5.623 × 10−39 84.6 0.0118 Yes

7 KNITRO
(interior-point/D) 4.555 × 10−1 4.975 × 10−1 45.5 0.014 No

8 KNITRO
(interior-point/CG) 4.851 × 10−1 3.918 × 10−1 44.2 0.014 No

9 KNITRO (active-set) 4.927 × 10−1 4.737 × 10−1 44.1 0.014 No
10 KNITRO (sqp) 5.821 × 10−1 5.660 × 10−1 46.9 0.022 No
11 MIDACO 2.455 × 10−2 2.985 × 10−2 74.6 0.070 No
12 MQA 2.405 × 10−1 2.930 × 10−1 42.2 0.1819 Yes
13 BARON (sqp) 1.690 × 10−7 2.821 × 10−20 94.7 0.198 No
14 BARON (ipopt) 2.602 × 10−6 1.443 × 10−31 94.7 0.204 No
15 BARON (auto) 2.602 × 10−6 1.448 × 10−31 94.7 0.205 No
16 BARON (sd) 3.929 × 10−6 1.846 × 10−9 89.5 0.206 No
17 SGRA 8.640 × 10−1 2.211 × 10−1 23.8 0.3033 Yes

4.2. Results for Constrained Optimization Problems

A collection of 30 constrained optimization test problems is used to validate the
performance of the optimization algorithms. For the purpose of the analysis, given N = 30
benchmark test functions, M = 22 solvers and algorithms, K = 50 randomly generated
initial guesses, and Z = 3 iterations, a set of N×M×K× Z runs are executed. Tables 16–18
report the results for the P&P, HA, and QS settings, respectively. From the analysis of the
results for the P&P settings, Table 16, we observe that all the versions of BARON are able to
reach the highest accuracy and the best convergence rate but they are not the fastest to reach
the solution. KNITRO (interior-point/D) is able to achieve the second best convergence rate,
with an average CPU time that is two order of magnitude faster than BARON. PENLAB
obtains the best mean error and variance but this performance is tempered by a low
convergence rate, together with the SGRA, MQA, and SQA which are also quite slow to
reach a solution. SNOPT reaches a convergence rate slightly lower than KNITRO (interior-
point/D), KNITRO (interior-point/CG), FMINCON (interior-point), and KNITRO (sqp)
but is significantly faster. Regarding the HA settings, Table 17, similar consideration can
be made for BARON, but in this case the CPU time is increasing. MIDACO shows an
improvement in the convergence rate, reaching values very similar to BARON. PENLAB
still obtains the best mean error and variance, but it has one of the lowest convergence rates,
together with the SGRA. In general, most of the solvers increase their convergence rate, and
decrease their mean error, except for GCMMA and PENLAB. Regarding the QS settings,
Table 18, generally all the solvers decrease their convergence rate except for BARON and
PENLAB. The same considerations about BARON and PENLAB can be done as in the
two previous scenarios. MIDACO reports a significant decrease in the convergence rate.
SNOPT, FMINCON, and KNITRO algorithms reach a convergence rate lower than BARON,
but not as low as other solvers (SONLP, APSO, PENLAB), and they are significantly faster.
Also for the constrained problems, KNITRO (sqp) delivers the slowest CPU time amongst
the other subsolvers. Again, this might be a consequence of the computationally heavy
internal Quadratic Programming subproblems. The worst results in terms of convergence
rate and CPU time are obtained by MQA and SQA.

Drones 2023, 7, 487 15 of 27

Table 16. All constrained problems, plug and play (P&P) settings. Solvers ranked with respect to
convergence rate.

Ranking Solver Ē [%] σ̄ [%] γ̄ [%] CPU [s] Free

1 BARON (auto) 1.299 × 10−1 2.141 × 10−7 92.0 1.497 No
2 BARON (ipopt) 1.298 × 10−1 2.894 × 10−7 92.0 1.767 No
3 BARON (sd) 1.296 × 10−1 5.178 × 10−7 92.0 1.379 No
4 BARON (sqp) 1.298 × 10−1 2.332 × 10−7 92.0 1.412 No

5 KNITRO
(interior-point/D) 1.782 × 10−1 2.035 × 10−1 77.7 0.034 No

6 KNITRO
(interior-point/CG) 1.756 × 10−1 2.085 × 10−1 77.5 0.033 No

7 FMINCON
(interior-point) 1.985 × 10−1 2.413 × 10−1 75.9 0.0271 No

8 KNITRO (sqp) 1.851 × 10−1 2.102 × 10−1 75.7 0.160 No
9 SNOPT 1.689 × 10−1 2.010 × 10−1 72.1 0.0040 No
10 FMINCON (active-set) 1.795 × 10−1 2.123 × 10−1 71.9 0.0204 No
11 FMINCON (sqp-legacy) 1.893 × 10−1 2.429 × 10−1 69.4 0.0111 No
12 KNITRO (active-set) 1.994 × 10−1 2.702 × 10−1 72.2 0.070 No
13 FMINCON (sqp) 1.908 × 10−1 2.446 × 10−1 69.3 0.0093 No
14 MIDACO 7.348 × 10−1 3.500 × 10−1 66.9 0.353 No
15 SOLNP 3.243 × 10−1 3.211 × 10−1 48.1 0.0095 Yes
16 GCMMA 4.490 × 10−1 3.742 × 10−1 45.7 0.9681 Yes
17 MMA 7.188 × 10−1 5.743 × 10−1 44.1 0.5856 Yes
18 APSO 1.512 1.025 39.2 0.1772 Yes
19 PENLAB 1.127 × 10−4 3.258 × 10−41 31.0 0.0379 Yes
20 SGRA 6.360 × 10−1 7.011 × 10−1 30.3 0.9815 Yes
21 MQA 5.125 × 10−1 3.460 × 10−1 20.8 3.1559 Yes
22 SQA 3.990 × 10−1 5.778 × 10−1 20.2 3.1822 Yes

Table 17. All constrained problems, high accuracy (HA) settings. Solvers ranked with respect to
mean error.

Ranking Solver Ē [%] σ̄ [%] γ̄ [%] CPU [s] Free

1 PENLAB 1.502 × 10−4 6.711 × 10−39 31.0 0.0488 Yes
2 BARON (auto) 1.943 × 10−3 5.777 × 10−18 92.0 2.056 No
3 BARON (sd) 1.943 × 10−3 1.405 × 10−16 92.0 2.469 No
4 BARON (sqp) 1.943 × 10−3 4.745 × 10−17 92.0 2.041 No
5 BARON (ipopt) 8.074 × 10−2 9.457 × 10−10 90.8 3.568 No
6 SNOPT 1.689 × 10−1 2.010 × 10−1 72.4 0.0069 No

7 KNITRO
(interior-point/CG) 1.754 × 10−1 2.085 × 10−1 77.7 0.040 No

8 FMINCON (active-set) 1.770 × 10−1 2.082 × 10−1 72.3 0.0214 No

9 KNITRO
(interior-point/D) 1.782 × 10−1 2.035 × 10−1 78.0 0.039 No

10 FMINCON (sqp-legacy) 1.857 × 10−1 2.365 × 10−1 69.7 0.0110 No
11 KNITRO (sqp) 1.872 × 10−1 2.120 × 10−1 75.6 0.209 No
12 FMINCON (sqp) 1.881 × 10−1 2.388 × 10−1 69.4 0.0082 No
13 KNITRO (active-set) 1.951 × 10−1 2.791 × 10−1 73.4 0.078 No

14 FMINCON
(interior-point) 1.985 × 10−1 2.413 × 10−1 75.9 0.0326 No

15 SQA 2.754 × 10−1 2.838 × 10−1 20.1 3.1838 Yes
16 SOLNP 2.949 × 10−1 3.106 × 10−1 44.8 0.0112 Yes
17 MIDACO 3.662 × 10−1 2.938 × 10−1 87.0 1.053 No
18 GCMMA 5.112 × 10−1 5.668 × 10−1 45.2 1.0599 Yes
19 MQA 5.358 × 10−1 4.601 × 10−1 20.8 3.2012 Yes
20 SGRA 6.248 × 10−1 7.673 × 10−1 30.0 0.9632 Yes
21 MMA 9.786 × 10−1 5.748 × 10−1 42.1 0.7101 Yes
22 APSO 1.173 1.014 45.9 1.0168 Yes

Drones 2023, 7, 487 16 of 27

Table 18. All constrained problems, quick solution (QS) settings. Solvers ranked with respect to mean
CPU time.

Ranking Solver Ē [%] σ̄ [%] γ̄
[%] CPU [s] Free

1 SNOPT 1.767 × 10−1 2.045 × 10−1 70.2 0.0027 No
2 FMINCON (sqp) 1.916 × 10−1 2.448 × 10−1 69.0 0.0071 No
3 SOLNP 4.790 × 10−1 6.452 × 10−1 46.6 0.0087 Yes
4 FMINCON (sqp-legacy) 1.902 × 10−1 2.431 × 10−1 69.1 0.0092 No
5 FMINCON (active-set) 2.850 × 10−1 3.484 × 10−1 68.9 0.0165 No
6 KNITRO (interior-point/D) 2.221 × 10−1 2.700 × 10−1 72.7 0.024 No
7 FMINCON (interior-point) 2.166 × 10−1 2.554 × 10−1 72.3 0.0262 No

8 KNITRO
(interior-point/CG) 3.082 × 10−1 3.585 × 10−1 72.2 0.028 No

9 KNITRO (active-set) 2.212 × 10−1 2.975 × 10−1 69.3 0.030 No
10 PENLAB 1.896 × 10−4 1.454 × 10−37 31.0 0.0323 Yes
11 APSO 1.531 5.677 × 10−1 35.2 0.0538 Yes
12 KNITRO (sqp) 2.458 × 10−1 3.221 × 10−1 72.5 0.063 No
13 MIDACO 9.737 × 10−1 8.263 × 10−1 53.0 0.070 No
14 SGRA 8.774 × 10−1 1.198 27.5 0.9369 Yes
15 MMA 1.161 1.189 41.0 0.1324 Yes
16 GCMMA 6.967 × 10−1 4.256 × 10−1 45.5 0.5574 Yes
17 BARON (sqp) 1.395 × 10−1 8.212 × 10−5 92.0 0.869 No
18 BARON (auto) 1.374 × 10−1 4.647 × 10−5 92.0 0.874 No
19 BARON (ipopt) 1.369 × 10−1 2.163 × 10−5 92.0 0.880 No
20 BARON (sd) 1.370 × 10−1 1.291 × 10−5 92.0 0.999 No
21 MQA 5.844 × 10−1 4.193 × 10−1 20.8 3.1174 Yes
22 SQA 3.316 × 10−1 3.131 × 10−1 20.1 3.1361 Yes

5. UAV Path Planning: Real-World Application Benchmark

Path planning poses a significant challenge for autonomous UAVs, especially when
specific mission criteria must be fulfilled. In general, path planning problems can be
formulated as optimal control problems. i.e., letting the states trajectories and control
inputs of the vehicles be denoted by x(t) and u(t), respectively; the path planning problem
can formally be stated as follows:

min
x(t),u(t)

I(x(t), u(t)) (20)

subject to

ẋ(t) = f (x(t), u(t)) , ∀t ∈ [0, t f], (21)

e(x(0), x(t f)) = 0 , (22)

h(x(t), u(t)) ≤ 0 , ∀t ∈ [0, t f] , (23)

where I : Rnx ×Rnu → R is a cost function, f : Rnx ×Rnu → Rnx represents the vehicles
dynamics, e : Rnx ×Rnx → Rne and h : Rnx ×Rnu → Rnh are constraints.

One common criterion is optimizing the path for either minimal energy consumption
or minimum time of arrival at the destination. The constraint in Equation (22) enforces
the boundary conditions, e.g., initial and final position, speed, and heading angles of
the vehicles, and Equation (23) describes feasibility and mission specific constraints, e.g.,
minimum and maximum speed, acceleration, and collision avoidance constraints. With
these considerations in mind, we present a path planning example that caters to both single
and multiple rotorcraft UAV scenarios. In particular, this work considers two problems,
namely, a single drone landing mission, and a multiple-drone-formation flight. Both
problems consider 3D trajectories, and the chosen optimization criteria is mission time.
The generation of the 3D trajectories is based on Bernstein polynomial approximations of
vehicles’ trajectories to transcribe the infinite dimensional path planning problems into

Drones 2023, 7, 487 17 of 27

NLP problems [30,73]. In turn, the trajectory of vehicle i is parameterized by the no-th
order Bernstein polynomials

x(t) =
no

∑
i=0

x̄ibi,no(t), t ∈ [0, t f], (24)

where x̄i, i = 0, . . . , no, are Bernstein polynomial coefficients and bi,no(t), i = 0, . . . , no,
are Bernstein polynomial basis functions of order. The following properties of Bernstein
polynomials are used in this paper:

(1) Differentiation and integration: the `-th derivative, with ` ∈ N, of the Bernstein
polynomial x(t) defined above is computed as

d`xk(t)
dt`

=
no

∑
i=0

no

∑
j=0

x̄jD`
j,ibi,no(t), (25)

where D`
j,i is the (j, i)-th entry of a square differentiation matrix [74].

(2) Arithmetic operations: the sum (difference) of two no-th order Bernstein polynomials
is an no-th order Bernstein polynomial. The product between two Bernstein polynomials of
orders no1 and no2 is a Bernstein polynomial of order no1 + no2 [75] (Chapter 5).

Using these properties, the following functions can be expressed as Bernstein polynomials:

speed: ‖ẋ(t)‖2 =
2no

∑
j=0

v̄jbj,2no(t),

acceleration: ‖ẍ(t)‖2 =
2no

∑
j=0

ājbj,2no(t),

distance: ‖x(t)− x̂‖2 =
2no

∑
j=0

d̄jbj,2no(t).

(26)

In the equation above, v̄j, āj and d̄j, ∀j ∈ {0, . . . , 2N}, can be obtained from algebraic
manipulation of the Bernstein coefficients x̄0, . . . , x̄no. With this setup, the planning problem
amounts at finding optimal Bernstein polynomial coefficients such that trajectory x(t)
minimizes some objective function and satisfies a set of constraints.

This benchmark comparison is performed considering the solvers’ plug and play (P&P)
setting. Every test problem has been initially evaluated by using FMINCON (sqp) with
ad hoc settings, as reported in Table 19. These settings are characterized by very stringent
tolerances and a high number of maximum iterations. This provide us with the candidate
optimal solution f (x∗) for each randomly generated initial guess. The setting exit f lag = 1
means that the first-order optimality measure is less than OptimalityTolerance, and the
maximum constraint violation is less than ConstraintTolerance. It must be noted that only
for the evaluation of the candidate optimal solution referring to the UAV formation flying
problem with nv = 25 (see Section 5.2), the tolerances have been relaxed to 10−6. This allow
us to adopt the convergence metrics defined in Section 3.2. In turn, the convergence rate is
computed considering successful a run that satisfies the converging threshold conditions
Ek ≤ Emax = 5%, and CPUk ≤ CPUmax for every test problem (see Tables 20 and 24), for the
run starting from the k-th initial guess. The CPUmax are chosen by adequately increasing
the CPU time required by the ad hoc settings to solve each problem.

Drones 2023, 7, 487 18 of 27

Table 19. FMINCON (sqp) ad hoc settings.

Settings Ad hoc

exit f lag 1
MaxFunctionEvaluations 3,000,000
MaxIterations 100,000
StepTolerance 10−14

ConstraintTolerance 10−14

FunctionTolerance 10−14

OptimalityTolerance 10−14

5.1. The 3D Minimum Time Problem: UAV Landing

The first problem is a minimum time problem for a simplified 3D model of a multi-rotor
drone. The vehicle is required to reach the origin in minimum time from a given initial
condition with all the control inputs bounded by ±1. The problem is defined as follows:

min
x,u,t f

J = t f , (27)

subject to 

ẋ1 = x4 , ẋ2 = x5 , ẋ3 = x6 ,
ẋ4 = u1 , ẋ5 = u2 , ẋ6 = −g + u3 ,
x1(0) = k1 x2(0) = k2 , x3(0) = k3 ,
x4(0) = k4 , x5(0) = k5 , x6(0) = k6 ,
x1(t f) = x2(t f) = x3(t f) = 0 ,
x4(t f) = x5(t f) = x6(t f) = 0 ,
|u1(t)| ≤ 1 , |u2(t)| ≤ 1 , | − g + u3(t)| ≤ 1 , ∀t ∈ [0, t f] ,

(28)

where x1, x2, x3, x4, x5, x6 are the Bernstein polynomials associated to the drone position
and velocity, u1, u2, u3 are Bernstein polynomials associated to the control input, g is
the gravitational acceleration, k1,..,6 are the randomly generated initial conditions, and t f
is the final maneuver time to be minimized. The Bernstein polynomials are vectors of
dimension no+1, being no the polynomial order of approximation. More accurate results
can be obtained for larger no, at the expense of the computational time. The dimension of
the problem is 9× (no + 1) + 1, with the last 1 being the final time t f , with 6× (no + 1) + 12
equality constraints, and 6× (no + 1) inequality constraints. The derivative is computed
using the squared differentiation matrix for Bernstein polynomials [30]. Figure 1 reports
an example of solution for the 3D minimum time UAV landing problem with no = 50.
Additional details regarding the problem can be found in [35].

(a) (b)
Figure 1. Example of solution for UAV Landing problem. (a) UAV position. (b) UAV control inputs.

Drones 2023, 7, 487 19 of 27

In our analysis, given N = 3 benchmark test problems, each of them characterized by
a different order of approximation no, M = 22 solvers and algorithms, K = 50 randomly
generated initial guesses, and Z = 3 iterations, a set of M × K × Z runs are executed
for each test problem. Table 20 reports the number of variables, equality and inequality
constraints for the different order of approximation no. Due to the increased complexity of
the problems with higher values of no, and the way some solvers are implemented, not
all the solvers are used for every benchmark test problem. In particular, for no = 50, 150,
MQA and SQA are omitted, as they require to evaluate additional slack variables for every
inequality constraints, and the Hessian of the constraint functions, which needs to be loaded
from stored MATLAB binary files at each iteration. We have noticed that this is extremely
computationally expensive, going over the CPUmax limit. For no = 50, 150, PENLAB is
omitted because the Hessians of the constraint functions need to be loaded from stored
MATLAB binary files at each iteration, whereas SGRA is left out for no = 150 because of
the use of slack variables. In both cases, this is overly computationally expensive.

Table 20. UAV Landing: problem dimensions, and max CPU time threshold.

no 5 50 150

Variables 48 460 1360
Equality constr. 36 318 918
Inequality const. 55 306 906
CPUmax [s] 20 75 500

Table 21 reports the results for the UAV landing problem with no = 5. It can be
seen that BARON (auto), BARON (ipopt), BARON (sqp), FMINCON (sqp), FMINCON
(active-set), SNOPT, KNITRO (active-set), and KNITRO (sqp) reach 100% convergence
rate and similar accuracy in terms of mean error and variance. The BARON algorithms
have the highest CPU time, together with the SGRA. APSO, MMA/GCMMA, MIDACO,
MQA and SQA are not able to find any successful solutions that satisfy the converging
threshold conditions in terms of maximum error Emax. It is interesting to note instead
that PENLAB reaches a 100% convergence rate, but without satisfying the maximum CPU
time. This shows how the need to load the Hessian of the constraint functions from stored
MATLAB binary files at each iteration affects the computational time of PENLAB. From the
UAV landing problem solutions with no = 50 reported in Table 22, the results show that
fewer solvers are able to reach full convergence, specifically BARON (auto), BARON (ipot),
BARON (sqp), KNITRO (active-set), and SNOPT, with SNOPT being the fastest solver. In
this case, an additional solver is not able to satisfy the converging threshold conditions,
namely, FMINCON (interior-point). Regarding the UAV landing problem solutions with
no = 150 reported in Table 23, only BARON (auto), BARON (ipopt), and SNOPT reach
100% of convergence rate, whereas FMINCON (sqp-legacy) is not able to converge to any
acceptable solutions, together with the same solvers mentioned in the previous cases. As
expected, the average computational time is increasing for all the solvers, but SNOPT is
able to outperform all the other solvers with a CPU time of one or two orders of magnitude
less than them. The fact that KNITRO and FMINCON are no more able to reach full
convergence and, at the same time, increase their CPU time is probably due to the general
increase in the problem complexity (i.e., higher number of variables and constraints), and
to the absence of a warm-start, since the initial conditions are randomly generated.

Table 21. UAV landing problem solution for no = 5.

Ranking Solver Ē [%] σ̄ [%] γ̄ [%] CPU [s]

1 BARON (auto) 4.076 × 10−6 7.082 × 10−12 100.0 0.499
2 BARON (ipopt) 4.076 × 10−6 7.084 × 10−12 100.0 0.475
3 BARON (sqp) 4.084 × 10−6 7.084 × 10−12 100.0 0.359
4 FMINCON (sqp) 4.084 × 10−6 7.084 × 10−12 100.0 0.061
5 FMINCON (active-set) 3.957 × 10−6 7.372 × 10−12 100.0 0.059
6 SNOPT 4.101 × 10−6 7.348 × 10−12 100.0 0.023

Drones 2023, 7, 487 20 of 27

Table 21. Cont.

Ranking Solver Ē [%] σ̄ [%] γ̄ [%] CPU [s]

7 KNITRO (active-set) 4.084 × 10−6 7.084 × 10−12 100.0 0.072
8 KNITRO (sqp) 4.084 × 10−6 7.083 × 10−12 100.0 0.178

9 KNITRO
(interior-point/CG) 2.144 × 10−5 2.125 × 10−10 98.0 0.145

10 FMINCON (sqp-legacy) 3.900 × 10−6 6.299 × 10−12 96.0 0.082
11 BARON (sd) 4.076 × 10−1 1.144 78.0 0.920
12 SOLNP 4.015 × 10−4 8.380 × 10−7 76.0 0.073
13 SGRA 1.908 × 10−4 5.960 × 10−8 46.0 0.804
14 KNITRO (interior-point/D) 4.573 × 10−6 9.251 × 10−12 42.0 0.234
15 FMINCON (interior-point) 6.862 × 10−1 1.392 26.0 0.142
- APSO >Emax - - -
- GCMMA >Emax - - -
- MIDACO >Emax - - -
- MMA >Emax - - -
- MQA >Emax - - -
- PENLAB 3.863 × 10−6 8.382 × 10−12 100.0 > CPUmax
- SQA >Emax - - -

Table 22. UAV landing problem solution for no = 50.

Ranking Solver Ē [%] σ̄ [%] γ̄ [%] CPU [s]

1 BARON (auto) 4.148 × 10−6 9.990 × 10−12 100.0 5.802
2 BARON (ipopt) 4.148 × 10−6 9.990 × 10−12 100.0 5.647
3 BARON (sqp) 4.141 × 10−6 9.977 × 10−12 100.0 5.115
4 KNITRO (active-set) 4.141 × 10−6 9.977 × 10−12 100.0 5.763
5 SNOPT 4.101 × 10−6 1.000 × 10−11 100.0 1.001
6 KNITRO (sqp) 4.125 × 10−6 1.017 × 10−11 98.0 16.402
7 FMINCON (active-set) 3.155 × 10−4 3.774 × 10−7 92.0 26.765
8 KNITRO (interior-point/CG) 9.074 × 10−2 1.511 × 10−1 84.0 46.202
9 KNITRO (interior-point/D) 1.351 × 10−1 6.208 × 10−1 68.0 23.080
10 BARON (sd) 6.585 × 10−1 2.221 32.0 48.799
11 FMINCON (sqp-legacy) 4.991 × 10−6 1.371 × 10−11 58.0 24.868
12 FMINCON (sqp) 4.973 × 10−6 1.325 × 10−11 60.0 19.498
13 SOLNP 1.424 × 10−2 4.673 × 10−4 44.0 4.863
- APSO >Emax - - -
- FMINCON (interior-point) >Emax - - -
- GCMMA >Emax - - -
- MIDACO >Emax - - -
- MMA >Emax - - -
- SGRA >Emax - - -

Table 23. UAV landing problem solution for no = 150.

Ranking Solver Ē [%] σ̄ [%] γ̄ [%] CPU [s]

1 BARON (auto) 3.679 × 10−6 7.324 × 10−12 100.0 70.685
2 BARON (ipopt) 3.678 × 10−6 7.352 × 10−12 100.0 70.194
3 SNOPT 3.766 × 10−6 6.505 × 10−12 100.0 7.396
4 KNITRO (sqp) 8.930 × 10−2 2.950 × 10−1 74.0 211.029
5 KNITRO (active-set) 6.241 × 10−2 1.285 × 10−1 66.0 186.258
6 KNITRO (interior-point/D) 4.840 × 10−1 1.237 62.0 352.009
7 SOLNP 1.141 × 10−1 1.665 × 10−3 18.0 178.791
8 BARON (sd) 1.558 3.421 12.0 424.121
9 FMINCON (sqp) 3.041 × 10−3 2.228 × 10−5 12.0 411.148
10 BARON (sqp) 1.870 3.548 10.0 430.064
11 FMINCON (active-set) 1.196 × 10−2 3.600 × 10−4 8.0 386.340
12 KNITRO (interior-point/CG) 4.848 × 10−4 4.374 × 10−7 6.0 371.203
- APSO >Emax - - -
- FMINCON (interior-point) >Emax - - -
- FMINCON (sqp-legacy) >Emax - - -
- GCMMA >Emax - - -
- MIDACO >Emax - - -
- MMA >Emax - - -

Drones 2023, 7, 487 21 of 27

5.2. The 3D Minimum Time Problem: UAV Formation Flying

The second problem is a minimum time UAV formation flying problem. Starting from
a grid at altitude zaltin

= 0, i.e., the initial condition, nv drones need to form a circle-shaped
formation at zalt f

= 10, i.e., the final condition. The trajectories must satisfy zero speed at
arrival, minimum and maximum acceleration rates, and collision avoidance constraints.
The vehicles need to arrive at destination at the same final time t f . As in the previous test
case, no is the Bernstein polynomial order of approximation, representing the number of
nodes for each trajectory, whereas, nv is the number of vehicles involved in the mission.
Because the complexity can grow up quite quickly, a fixed value of nodes is selected, no = 4.
The initial and final conditions are randomly generated by varying the initial grid size,
the final radius of the circle-shaped formation, and the final position on the circle for each
drone. The control inputs are bounded by ±1, and the collision avoidance constraints are
implemented to maintain a minimum distance greater or equal than 0.1 between the drones.
The problem is defined as follows:

min
x1,...,xnv
u1,...,unv

t f

J = t f , (29)

subject to

ẋj,1 = xj,4 , ẋj,2 = xj,5 , ẋj,3 = xj,6 ,
ẋj,4 = uj,1 , ẋj,5 = uj,2 , ẋj,6 = −g + uj,3 ,
xj,1(0) = xgridj

, xj,2(0) = ygridj
, xj,3(0) = zaltin

,

xj,4(0) = xj,5(0) = xj,6(0) = 0 ,
xj,1(t f) = xcirclej

, xj,2(t f) = ycirclej
, xj,3(t f) = zalt f

,

xj,4(t f) = xj,5(t f) = xj,6(t f) = 0 ,
|uj,1(t)| ≤ 1 , |uj,2(t)| ≤ 1 , | − g + uj,3(t)| ≤ 1 , ∀t ∈ [0, t f] ,
‖pj(t)− pi(t)‖ ≥ dsafe, ∀t ∈ [0, t f],

(30)

for all j, i = 1, . . . , nv where nv is the number of vehicles involved in the mission. In the
problem above, xj,1, xj,2, xj,3, xj,4, xj,5, xj,6 are the Bernstein polynomials associated to the
j-th multi-rotor drone position and velocity, uj,1, uj,2, uj,3 are the Bernstein polynomials
associated to its control input, g is the gravitational acceleration, t f is the final maneuver
time to be minimized and shared by all the vehicles, and xgrid, ygrid and xcircle, ycircle are
random vectors in R3, representing random points on a grid and a circle, respectively.
In other words, the vehicles start from a grid formation and eventually converge into a
circle formation. The Bernstein polynomials are vectors of dimension no+1, being no the
polynomial order of approximation. The dimension of the problem is nv× 9× (no + 1) + 1,
with the last 1 being the final time t f , with nv× (6× (no + 1)+ 12) equality constraints, and
nv× 6× (no + 1) + ∑nv−1

i=1 i× (no + 1) inequality constraints. Figure 2 reports an example
of solution for the 3D minimum time UAV formation flying problem with nv = 25.

In our analysis, given N = 3 benchmark test problems, each of them characterized
by a different number of vehicles nv, M = 19 solvers and algorithms, K = 50 randomly
generated initial guesses, and Z = 3 iterations, a set of M×K×Z runs are executed for each
test problem. Table 24 reports the number of variables, equality and inequality constraints
for the different number of vehicles nv. Similarly to the UAV landing problem, some solvers
are neglected. In particular, PENLAB, MQA, and SQA are disregarded. For nv = 10, 25,
SGRA is omitted. The reasons for this choice have been discussed in Section 5.1.

Drones 2023, 7, 487 22 of 27

Figure 2. Example of solution for UAV Formation Flying problem.

Table 24. UAV Formation Flying: problem dimensions and max CPU time threshold.

nv 5 10 25

Variables 271 541 1351
Equality constr. 240 480 1200
Inequality const. 240 630 2700
CPUmax [s] 20 75 200

Table 25 reports the results for the UAV formation flying problem with nv = 5. It
can be seen that BARON (auto), BARON (ipopt), BARON (sd), BARON (sqp), FMINCON
(sqp), FMINCON (sqp-legacy), KNITRO (active-set), KNITRO (interior-point/D), and
KNITRO (sqp) reach 100% convergence rate and similar accuracy in terms of mean error
and variance. Almost all the algorithms have similar CPU time, except SNOPT and SOLNP
that are one order of magnitude faster and slower, respectively. APSO, MMA/GCMMA,
MIDACO, and SGRA instead are not able to find any successful solutions that satisfy the
converging threshold conditions in terms of maximum error Emax. The UAV formation
flying problem solutions with no = 10 reported in Table 26 show a similar situation, except
that now KNITRO (active-set) is no more able to reach full convergence rate, and in general
the computational times are increased. FMINCON (interior-point) is not able to converge
to any acceptable solutions, together with the same solvers mentioned in the previous
case. Regarding the UAV formation flying problem solutions with nv = 25 reported in
Table 27, all the BARON algorithms have the highest convergence rate and the lowest
CPU time. Between all the KNITRO algorithms, instead, only KNITRO (interior-point/D)
is able to maintain a quite high convergence rate, probably due to its capability to deal
with large-scale problems. It is interesting to note that also KNITRO (interior-point/CG)
should be able to deal with large-scale problems, but its performances are not as good as
KNITRO (interior-point/D). This can be due to the different way the KKT system is solved
by this particular solver [54]. Furthermore, the presence of non-convex collision avoidance
constraints in the UAV formation flying problem, together with randomly generated initial
conditions, negatively affect the performances of SNOPT, as shown in [76].

Drones 2023, 7, 487 23 of 27

Table 25. UAV formation flying problem solution for nv = 5.

Ranking Solver Ē [%] σ̄ [%] γ̄ [%] CPU [s]

1 BARON (auto) 3.681 × 10−4 7.563 × 10−8 100.0 0.755
2 BARON (ipopt) 3.681 × 10−4 7.563 × 10−8 100.0 0.795
3 BARON (sd) 3.681 × 10−4 7.563 × 10−8 100.0 0.727
4 BARON (sqp) 3.681 × 10−4 7.560 × 10−8 100.0 0.734
5 FMINCON (sqp) 3.681 × 10−4 7.563 × 10−8 100.0 0.397
6 FMINCON (sqp-legacy) 3.681 × 10−4 7.563 × 10−8 100.0 0.446
7 KNITRO (active-set) 3.681 × 10−4 7.563 × 10−8 100.0 0.761
8 KNITRO (interior-point/D) 3.681 × 10−4 7.564 × 10−8 100.0 0.498
9 KNITRO (sqp) 3.681 × 10−4 7.563 × 10−8 100.0 0.680
10 KNITRO (interior-point/CG) 3.678 × 10−4 7.963 × 10−8 98.0 0.862
11 SNOPT 3.632 × 10−4 7.401 × 10−8 96.0 0.071
12 FMINCON (interior-point) 1.400 2.390 76.0 0.594
13 FMINCON (active-set) 2.811 × 10−4 3.926 × 10−8 30.0 0.535
14 SOLNP 1.125 × 10−3 8.907 × 10−7 34.0 2.846
- APSO >Emax - - -
- GCMMA >Emax - - -
- MIDACO >Emax - - -
- MMA >Emax - - -
- SGRA >Emax - - -

Table 26. UAV formation flying problem solution for nv = 10.

Ranking Solver Ē [%] σ̄ [%] γ̄ [%] CPU [s]

1 BARON (auto) 3.492 × 10−4 6.299 × 10−8 100.0 1.481
2 BARON (ipopt) 3.492 × 10−4 6.299 × 10−8 100.0 1.530
3 BARON (sd) 3.492 × 10−4 6.299 × 10−8 100.0 1.415
4 BARON (sqp) 3.492 × 10−4 6.299 × 10−8 100.0 1.432
5 FMINCON (sqp) 3.492 × 10−4 6.299 × 10−8 100.0 1.785
6 FMINCON (sqp-legacy) 3.492 × 10−4 6.299 × 10−8 100.0 2.047
7 KNITRO (interior-point/D) 3.492 × 10−4 6.299 × 10−8 100.0 3.172
8 KNITRO (sqp) 3.492 × 10−4 6.299 × 10−8 100.0 9.651
9 KNITRO (interior-point/CG) 3.400 × 10−4 6.397 × 10−8 96.0 6.333
10 KNITRO (active-set) 3.233 × 10−4 4.785 × 10−8 96.0 10.044
11 SNOPT 8.069 × 10−4 1.035 × 10−5 96.0 2.811
12 FMINCON (active-set) 3.803 × 10−4 4.417 × 10−8 36.0 1.963
13 SOLNP 1.064 × 10−3 8.218 × 10−7 12.0 16.013
- APSO >Emax - - -
- FMINCON (interior-point) >Emax - - -
- GCMMA >Emax - - -
- MIDACO >Emax - - -
- MMA >Emax - - -

Table 27. UAV formation flying problem solution for nv = 25.

Ranking Solver Ē [%] σ̄ [%] γ̄ [%] CPU [s]

1 BARON (auto) 1.953 × 10−4 6.562 × 10−8 96.0 5.782
2 BARON (ipopt) 1.953 × 10−4 6.562 × 10−8 96.0 13.923
3 BARON (sd) 1.953 × 10−4 6.563 × 10−8 96.0 5.052
4 BARON (sqp) 1.953 × 10−4 6.562 × 10−8 96.0 5.299
5 KNITRO (interior-point/D) 3.117 × 10−3 3.899 × 10−4 90.0 119.081
6 FMINCON (sqp) 2.506 × 10−2 2.302 × 10−2 74.0 48.901
7 FMINCON (sqp-legacy) 2.506 × 10−2 2.302 × 10−2 74.0 54.861
8 SNOPT 2.083 × 10−4 7.497 × 10−8 44.0 45.408
9 KNITRO (sqp) 2.025 × 10−4 7.837 × 10−8 22.0 133.070
10 FMINCON (active-set) 4.678 × 10−5 2.198 × 10−9 10.0 21.308
11 KNITRO (active-set) 3.933 × 10−5 4.017 × 10−9 6.0 65.720
12 KNITRO (interior-point/CG) 1.484 0.000 2.0 165.145
- APSO >Emax - - -
- FMINCON (interior-point) >Emax - - -
- GCMMA >Emax - - -
- MIDACO >Emax - - -
- MMA >Emax - - -
- SOLNP >Emax - - -

Drones 2023, 7, 487 24 of 27

6. Conclusions

In this paper, we provide an explicit comparison of a set of NLP solvers for the solution
of unconstrained and constrained NLP problems. Because of its widespread use among
research groups, both in academia and the private sector, we have used MATLAB as a com-
mon implementation platform. The benchmark analysis aims to compare popular solvers
which are readily available in MATLAB, a few gradient descent methods that have been
extensively used in the literature, and a particle swarm optimization in terms of accuracy,
convergence rate, and computational time. In addition, three different implementation
scenarios per each solver are taken into consideration, namely, plug and play (P&P), high
accuracy (HA), and quick solution (QS). With this is mind, at first, each solver has been
tested on a selection of constrained and unconstrained standard benchmark problems with
up to thirty variables and a up to nine scalar constraints. Results for the unconstrained
problems show that BARON is the algorithm that delivers the best convergence rate and
accuracy but it is the slowest. PENLAB is the algorithm that has the best trade-off between
accuracy, convergence rate, and speed. For the constrained NLP problems, again, BARON
showcases exceptional accuracy and convergence rate, yet it falls within the slower range
of algorithms. FMINCON, KNITRO, and SNOPT are the ones that are able to deliver a fair
compromise of accuracy, convergence rate, and speed. Then, we have tested each solver
to solve two large scale real-world minimum-time UAV optimal path planning problems
for UAV landing and formation flying. Results for the UAV landing problems show that
BARON and SNOPT deliver the best convergence rate and accuracy, with SNOPT being
the fastest solver. Some solvers instead are not able to converge to any acceptable solutions.
Finally, results for UAV formation flying problem show that overall BARON still reaches the
best convergence rate and accuracy, but also the lowest CPU time. KNITRO and FMINCON
follow closely behind BARON.

Author Contributions: Conceptualization, M.C. and G.L.; methodology, G.L., V.C. and M.C.; soft-
ware, G.L. and K.G.; validation, G.L. and K.G.; formal analysis, G.L., V.C. and M.C.; investigation,
M.C. and G.L.; resources, G.L., K.G., V.C. and M.C.; data curation, G.L.; writing—original draft
preparation, M.C. and G.L.; writing—review and editing, G.L., K.G., V.C. and M.C.; visualization,
G.L.; supervision, V.C. and M.C.; project administration, M.C. and G.L.; funding acquisition, M.C.
and V.C. All authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by Amazon (Amazon Research Award 2021), by the Office of
Naval Research (grants N000142212634 and N000142112091), and by the National Science Foundation
(grant 2136298).

Data Availability Statement: Data available on request from the authors.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Lasdon, L.A.; Warren, A.D. Survey of Nonlinear Programming Applications. J. Oper. Res. Soc. Am. 1980, 28, 1029–1073. [CrossRef]
2. Grossmann, I.E. Global Optimization in Engineering Design; Springer-Science+Business, B.V.: Berlin/Heidelberg, Germany, 1996.

[CrossRef]
3. Charalambous, C. Acceleration of the Least pth Algorithm for MiniMax Optimization with Engineering Applications. Math.

Program. 1979, 17, 270–297. [CrossRef]
4. Grossmann, I.E.; Kravanja, Z. Mixed-Integer Nonlinear Programming: A Survey of Algorithms and Applications. In Large-Scale

Optimization with Applications; Biegler, L.T., Coleman, T.F., Conn, A.R., Santosa, F.N., Eds.; Springer: New York, NY, USA, 1997;
Volume 93, pp. 73–100. [CrossRef]

5. Wu, X.; William, S.L. Assimilation of ERBE Data with a Nonlinear Programming Technique to Improve Cloud-Cover Diagnosis.
Am. Meteorol. Soc. 1992, 120, 2009–2024. [CrossRef]

6. Wansuo, D.; Haiying, L. A New Strategy for Solving a Class of Constrained Nonlinear Optimization Problems Related to Weather
and Climate Predictability. Adv. Atmos. Sci. 2010, 27, 741–749. [CrossRef]

7. Rustagi, J. Optimization Techniques in Statistics; Academic Press Limited: Cambridge, MA, USA, 1994. [CrossRef]
8. Ziemba, W.T.; Vickson, R.G. Stochastic Optimization Models in Finance; Academic Press INC.: Cambridge, MA, USA, 1975.

[CrossRef]

http://doi.org/10.1287/opre.28.5.1029
http://dx.doi.org/10.1007/978-1-4757-5331-8
http://dx.doi.org/10.1007/BF01588251
http://dx.doi.org/10.1007/978-1-4612-1960-6_5
http://dx.doi.org/10.1175/1520-0493(1992)120<2009:AOEDWA>2.0.CO;2
http://dx.doi.org/10.1007/s00376-009-9141-0
http://dx.doi.org/10.1016/C2009-0-21327-4
http://dx.doi.org/10.1016/C2013-0-11739-4

Drones 2023, 7, 487 25 of 27

9. MathWorks. Fmincon. 2020. Available online: https://www.mathworks.com/help/optim/ug/fmincon.html#busp5fq-6
(accessed on 1 September 2021).

10. MATLAB. The MathWorks Inc. 2020. Available online: https://www.mathworks.com/products/matlab.html (accessed on 1
September 2021).

11. Box, M.J. A comparison of several current optimization methods, and the use of transformations in constrained problems. Comput.
J. 1966, 9, 67–77. [CrossRef]

12. Levy, A.V.; Guerra, V. On the Optimization of Constrained Functions: Comparison of Sequential Gradient-Restoration Algorithm and
Gradient-Projection Algorithm; American Elsevier Publishing Company: Amsterdam, The Netherlands, 1976. [CrossRef]

13. Schittkowski, K.; Zillober, C.; Zotemantel, R. Numerical Comparison of Nonlinear Programming Algorithms for Structural
Optimization. Struct. Optim. 1994, 7, 1–19. [CrossRef]

14. George, G.; Raimond, K. A Survey on Optimization Algorithms for Optimizing the Numerical Functions. Int. J. Comput. Appl.
2013, 61, 41–46. Available online: https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.303.5096&rep=rep1&type=pdf
(accessed on 1 September 2021). [CrossRef]

15. Gearhart, J.L.; Adair, K.L.; Detry, R.J.; Durfee, J.D.; Jones, K.A.; Martin, N. Comparison of Open-Source Linear Programming Solvers;
Technical Report; Sandia National Laboratory: Albuquerque, NM, USA, 2013. [CrossRef]

16. Kronqvist, J.; Bernal, D.E.; Lundell, A.; Grossmann, I.E. A Review and Comparison of Solvers for Convex MINLP. Optim. Eng.
2018, 20, 397–455. [CrossRef]

17. Saxena, P. Comparison of Linear and Nonlinear Programming Techniques for Animal Diet. Appl. Math. 2012, 1, 106–108.
[CrossRef]

18. Pucher, H.; Stix, V. Comparison of Nonlinear Optimization Methods on a Multinomial Logit-Model in R. Int. Multi-Conf. Eng.
Technol. Innov. 2008. Available online: https://www.iiis.org/cds2009/cd2009sci/imeti2009/PapersPdf/F216BU.pdf (accessed on
1 September 2021).

19. Yuan, G.; Chang, K.; Hsieh, C.; Lin, C. A Comparison of Optimization Methods and Software for Large-scale L1-regularized
Linear Classification. J. Mach. Learn. Res. 2010, 11, 3183–3234. Available online: https://www.jmlr.org/papers/volume11/yuan1
0c/yuan10c.pdf (accessed on 1 September 2021).

20. Neumaier, A.; Shcherbina, O.; Huyer, W.; Vinko, T. A Comparison of Complete Global Optimization Solvers. Math. Program.
2005, 103, 335–356. [CrossRef]

21. Obayash, S.; Tsukahara, T. Comparison of Optimization Algorithms for Aerodynamic Shape Design. AIAA J. 1997, 35, 1413–1415.
[CrossRef]

22. McIlhagga, M.; Husbands, P.; Ives, R. A Comparison of Optimization Techniques for Integrated Manufacturing Planning and
Scheduling. In Parallel Problem Solving from Nature; Voigt, H.M., Ebeling, W., Rechenberg, I., Schwefel, H.P., Eds.; Springer:
Berlin/Heidelberg, Germany, 1996; Volume 1141, pp. 604–613. [CrossRef]

23. Haupt, R. Comparison Between Genetic and Gradient-Based Optimization Algorithms for Solving Electromagnetics Problems.
IEEE Trans. Magn. 1995, 31, 1932–1935. [CrossRef]

24. Hamdy, M.; Nguyen, A.; Hensen, J.L. A Performance Comparison of Multi-objective Optimization Algorithms for Solving
Nearly-zero-energy-building Design Problems. Energy Build. 2016, 121, 57–71. [CrossRef]

25. Frank, P.D.; Shubin, G.R. A Comparison of Optimization-Based Approaches for a Model Computational Aerodynamics Design
Problem. J. Comput. Phys. 1992, 98, 74–89. [CrossRef]

26. Karaboga, D.; Basturk, B. On the Performance of Artificial Bee Colony (ABC) Algorithm. Appl. Soft Comput. 2008, 8, 687–697.
[CrossRef]

27. Hedar, A.R. Global Optimization Test Problems. 2020. Available online: http://www-optima.amp.i.kyoto-u.ac.jp/member/
student/hedar/Hedar_files/TestGO.htm (accessed on 1 September 2021).

28. Schittkowski, K. Test Examples for Nonlinear Programming Codes; Technical Report; University of Bayreuth: Bayreuth, Germany,
2009. Available online: http://www.apmath.spbu.ru/cnsa/pdf/obzor/Schittkowski_Test_problem.pdf (accessed on 1 September
2021).

29. Floudas, C.; Pardalos, P.M.; Adjiman, C.; Esposito, W.R.; Gümüs, Z.H.; Harding, S.T.; Klepeis, J.L.; Meyer, C.A.; Schweiger, C.A.
Handbook of Test Problems in Local and Global Optimization. In Nonconvex Optimization and Its Applications; Kluwer Academic
Publishers: Dordrecht, The Netherlands, 1999; Volume 33. [CrossRef]

30. Kielas-Jensen, C.; Cichella, V.; Berry, T.; Kaminer, I.; Walton, C.; Pascoal, A. Bernstein Polynomial-Based Method for Solving
Optimal Trajectory Generation Problems. Sensors 2022, 22, 1869. [CrossRef]

31. Bellman, R.E. Dynamic Programming; Princeton University Press: Princeton, NJ, USA 1957.
32. Clarke, F.H.; Ledyaev, Y.S.; Stern, R.J.; Wolenski, P.R. Nonsmooth Analysis and Control Theory; Springer Science & Business Media:

New York, NY, USA, 2008; Volume 178.
33. Bryson, A.E.; Ho, Y.C. Applied Optimal Control; Hemisphere: New York, NY, USA, 1975.
34. Cichella, V.; Kaminer, I.; Walton, C.; Hovakimyan, N. Optimal motion planning for differentially flat systems using Bernstein

approximation. IEEE Control. Syst. Lett. 2017, 2, 181–186. [CrossRef]
35. Cichella, V.; Kaminer, I.; Walton, C.; Hovakimyan, N.; Pascoal, A. Consistency of Approximation of Bernstein Polynomial-Based

Direct Methods for Optimal Control. Machines 2022, 10, 1132. [CrossRef]

https://www.mathworks.com/help/optim/ug/fmincon.html#busp5fq-6
https://www.mathworks.com/products/matlab.html
http://dx.doi.org/10.1093/comjnl/9.1.67
http://dx.doi.org/10.1016/0096-3003(76)90006-0
http://dx.doi.org/10.1007/BF01742498
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.303.5096&rep=rep1&type=pdf
http://dx.doi.org/10.5120/9935-4570
http://dx.doi.org/10.2172/1104761
http://dx.doi.org/10.1007/s11081-018-9411-8
http://dx.doi.org/10.5923/j.am.20110102.17
https://www.iiis.org/cds2009/cd2009sci/imeti2009/PapersPdf/F216BU.pdf
https://www.jmlr.org/papers/volume11/yuan10c/yuan10c.pdf
https://www.jmlr.org/papers/volume11/yuan10c/yuan10c.pdf
http://dx.doi.org/10.1007/s10107-005-0585-4
http://dx.doi.org/10.2514/2.251
http://dx.doi.org/10.1007/3-540-61723-X_1024
http://dx.doi.org/10.1109/20.376418
http://dx.doi.org/10.1016/j.enbuild.2016.03.035
http://dx.doi.org/10.1016/0021-9991(92)90174-W
http://dx.doi.org/10.1016/j.asoc.2007.05.007
http://www-optima.amp.i.kyoto-u.ac.jp/member/student/hedar/Hedar_files/TestGO.htm
http://www-optima.amp.i.kyoto-u.ac.jp/member/student/hedar/Hedar_files/TestGO.htm
http://www.apmath.spbu.ru/cnsa/pdf/obzor/Schittkowski_Test_problem.pdf
http://dx.doi.org/10.1007/978-1-4757-3040-1
http://dx.doi.org/10.3390/s22051869
http://dx.doi.org/10.1109/LCSYS.2017.2778313
http://dx.doi.org/10.3390/machines10121132

Drones 2023, 7, 487 26 of 27

36. Cichella, V.; Kaminer, I.; Walton, C.; Hovakimyan, N.; Pascoal, A.M. Optimal multivehicle motion planning using bernstein
approximants. IEEE Trans. Autom. Control 2020, 66, 1453–1467. [CrossRef]

37. Nocedal, J.; Wright, S.J. Numerical Optimization; Springer Science+Business Media, LLC.: Berlin/Heidelberg, Germany, 2006.
Available online: https://link.springer.com/book/10.1007/978-0-387-40065-5 (accessed on 1 September 2021).

38. Boyd, S.; Vandenberghe, L. Convex Optimization; Cambridge University Press: Cambridge, UK, 2004. Available online: https:
//web.stanford.edu/~boyd/cvxbook/bv_cvxbook.pdf (accessed on 1 September 2021).

39. Yang, X. Nature-Inspired Metaheuristic Algorithms; Luniver Press: Bristol, UK, 2014. [CrossRef]
40. Firm, T.O. Analytics and Optimization Software. 2021. Available online: https://minlp.com/baron-downloads (accessed on 1

September 2021).
41. Tawarmalani, M.; Sahinidis, N.V. Global Optimization of Mixed-integer Nonlinear Programs: A Theoretical and Computational

Study. Math. Program. 2004, 99, 563–591. [CrossRef]
42. Sahinidis, N. BARON User Manual. The Optimization Firm LLC. Available online: http://www.minlp.com/ (accessed on 1

September 2021).
43. COIN-OR. Computational Optimization Infrastructure for Operations Research. 2016. Available online: https://www.coin-or.

org/ (accessed on 1 September 2021).
44. Wächter, A.; Biegler, L. On the Implementation of an Interior-Point Filter Line-Search Algorithm for Large-Scale Nonlinear

Programming. Math. Program. 2006, 106, 25–57. [CrossRef]
45. COIN-OR. IPOPT. 2021. Available online: https://coin-or.github.io/Ipopt/ (accessed on 1 September 2021).
46. FilterSD. Computational Infrastructure for Operations Research, COIN-OR Project. 2020. Available online: https://projects.coin-

or.org/filterSD/export/19/trunk/filterSD.pdf (accessed on 1 September 2021).
47. Fletcher, R.; Leyffer, S. User Manual for Filter SQP; Technical Report, University of Dundee, Department of Mathematics: Dundee,

UK, 1999. Available online: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.139.7769&rep=rep1&type=pdf (accessed
on 1 September 2021).

48. MathWorks. Fminunc. 2020. Available online: https://www.mathworks.com/help/optim/ug/fminunc.html#but9q82-2_head
(accessed on 1 September 2021).

49. MathWorks. Quasi-Newton Algorithm. 2020. Available online: https://www.mathworks.com/help/optim/ug/unconstrained-
nonlinear-optimization-algorithms.html#brnpcye (accessed on 1 September 2021).

50. Svanberg, K. A Class of Globally Convergent Optimization Methods Based on Conservative Convex Separable Approximations.
SIAM J. Optim. 2002, 12, 555–573. [CrossRef]

51. Svanberg, K. MMA and GCMMA—Two Methods for Nonlinear Optimization. 2014. Available online: https://people.kth.se/
~krille/mmagcmma.pdf (accessed on 1 September 2021).

52. Svanberg, K. MMA and GCMMA Matlab Code. 2020. Available online: http://www.smoptit.se/ (accessed on 1 September 2021).
53. Artelys Knitro. Artelys Optimization Solutions. 2021. Available online: https://www.artelys.com/solvers/knitro/ (accessed on

1 September 2021).
54. Artelys Knitro. Artelys Knitro User’s Manual. 2021. https://www.artelys.com/docs/knitro//index.html (accessed on 1

September 2021).
55. MIDACO-Solver, User Manual. MIDACO-SOLVER: Numerical High-Performance Optimization Software. 2021. Available

online: http://www.midaco-solver.com/index.php/download (accessed on 1 September 2021).
56. Schlueter, M.; Erb, S.O.; Gerdts, M.; Kemble, S.; Rückmann, J. MIDACO on MINLP space applications. Adv. Space Res. 2013, 51,

1116–1131. [CrossRef]
57. Svanberg, K. The method of moving asymptotes—A new method for structural optimization. Int. J. Numer. Methods Eng. 1987,

24, 359–373. [CrossRef]
58. Eloe, P.W.; Jonnalagadda, J. Quasilinearization and boundary value problems for Riemann-Liouville fractional differential

equations. Electron. J. Differ. Equations 2019, 2019, 1–15. Available online: https://ejde.math.txstate.edu/Volumes/2019/58/eloe.
pdf (accessed on 1 September 2021). [CrossRef]

59. Yeo, B.P. A quasilinearization algorithm and its application to a manipulator problem. Int. J. Control 1974, 20, 623–640. [CrossRef]
60. Miele, A.; Iyer, R.R. Modified quasilinearization method for solving nonlinear, two-point boundary-value problems. J. Math.

Anal. Appl. 1971, 36, 674–692. [CrossRef]
61. Miele, A.; Mangiavacchi, A.; Aggarwal, A.K. Modified quasilinearization algorithm for optimal control problems with nondiffer-

ential constraints. J. Optim. Theory Appl. 1974, 14, 529–556. [CrossRef]
62. Fiala, J.; Kočvara, M.; Stingl, M. PENLAB: A MATLAB solver for nonlinear semidefinite optimization. arXiv 2013, arXiv:1311.5240.

https://doi.org/10.48550/arXiv.1311.5240.
63. Kocvara, M.; Stingl, M. PENNON—A generalized augmented Lagrangian method for semidefinite programming. In High

Performance Algorithms and Software for Nonlinear Optimization; Applied Optimization; Gianni Di Pillo, A.M., Ed.; Springer: Boston,
MA, USA, 2003; Volume 82, pp. 303–321. [CrossRef]

64. Polyak, R. Modified barrier functions (theory and methods). Math. Program. Ser. B 1992, 54, 177–222. [CrossRef]
65. Kocvara, M. PENLAB. 2017. Available online: http://web.mat.bham.ac.uk/kocvara/penlab/ (accessed on 1 September 2021).

http://dx.doi.org/10.1109/TAC.2020.2999329
https://link.springer.com/book/10.1007/978-0-387-40065-5
https://web.stanford.edu/~boyd/cvxbook/bv_cvxbook.pdf
https://web.stanford.edu/~boyd/cvxbook/bv_cvxbook.pdf
http://dx.doi.org/10.1016/C2013-0-01368-0
https://minlp.com/baron-downloads
http://dx.doi.org/10.1007/s10107-003-0467-6
http://www.minlp.com/
https://www.coin-or.org/
https://www.coin-or.org/
http://dx.doi.org/10.1007/s10107-004-0559-y
https://coin-or.github.io/Ipopt/
https://projects.coin-or.org/filterSD/export/19/trunk/filterSD.pdf
https://projects.coin-or.org/filterSD/export/19/trunk/filterSD.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.139.7769&rep=rep1&type=pdf
https://www.mathworks.com/help/optim/ug/fminunc.html#but9q82-2_head
https://www.mathworks.com/help/optim/ug/unconstrained-nonlinear-optimization-algorithms.html#brnpcye
https://www.mathworks.com/help/optim/ug/unconstrained-nonlinear-optimization-algorithms.html#brnpcye
http://dx.doi.org/10.1137/S1052623499362822
https://people.kth.se/~krille/mmagcmma.pdf
https://people.kth.se/~krille/mmagcmma.pdf
http://www.smoptit.se/
https://www.artelys.com/solvers/knitro/
https://www.artelys.com/docs/knitro//index.html
http://www.midaco-solver.com/index.php/download
http://dx.doi.org/10.1016/j.asr.2012.11.006
http://dx.doi.org/10.1002/nme.1620240207
https://ejde.math.txstate.edu/Volumes/2019/58/eloe.pdf
https://ejde.math.txstate.edu/Volumes/2019/58/eloe.pdf
http://dx.doi.org/10.3934/dcdss.2020220
http://dx.doi.org/10.1080/00207177408932764
http://dx.doi.org/10.1016/0022-247X(71)90048-5
http://dx.doi.org/10.1007/BF00932847
https://doi.org/10.48550/arXiv.1311.5240
http://dx.doi.org/10.1007/978-1-4613-0241-4_14
http://dx.doi.org/10.1007/BF01586050
http://web.mat.bham.ac.uk/kocvara/penlab/

Drones 2023, 7, 487 27 of 27

66. COKER, E.M. Sequential Gradient-Restoration Algorithm for Optimal Control Problems with Control Inequality Constraints and
General Boundary Conditions. Ph.D. Thesis, Rice University, Houston, TX, USA, 1985. Available online: https://www.proquest.
com/dissertations-theses/sequential-gradient-restoration-algorithm-optimal/docview/303398376/se-2?accountid=15159 (ac-
cessed on 1 September 2021).

67. Miele, A.; Huang, H.Y.; Heideman, J.C. Sequential gradient-restoration algorithm for the minimization of constrained functions—
Ordinary and conjugate gradient versions. J. Optim. Theory Appl. 1969, 4, 213–243. [CrossRef]

68. Gill, P.; Murray, W.; Saunders, M.; Drud, A.; Kalvelagen, E. SNOPT: An SQP algorithm for large-scale constrained optimization.
SIAM Rev. 2001, 47, 99–131. [CrossRef]

69. Gill, P.E.; Murray, W.; Saunders, M.A.; Wong, E. User’s Guide for SNOPT 7.7: Software for Large-Scale Nonlinear Programming; Center
for Computational Mathematics Report CCoM 18-1, Department of Mathematics, University of California, San Diego, CA, USA,
2018.

70. Ye, Y. SOLNP USERS’ GUIDE—A Nonlinear Optimization Program in MATLAB. 1989. Available online: https://web.stanford.
edu/~yyye/matlab/manual.ps (accessed on 1 September 2021).

71. Ye, Y. SOLNP. 2020. Available online: https://web.stanford.edu/~yyye/matlab.html (accessed on 1 September 2021).
72. Lavezzi, G.; Guye, K.; Ciarcià, M. Nonlinear Programming Solvers for Unconstrained and Constrained Optimization Problems:

A Benchmark Analysis. arXiv 2022, arXiv:2204.05297. https://doi.org/10.48550/arXiv.2204.05297.
73. Kielas-Jensen, C.; Cichella, V. BeBOT: Bernstein polynomial toolkit for trajectory generation. In Proceedings of the 2019 IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS), Macau, China, 3–8 November 2019; IEEE: Piscataway, NJ,
USA, 2019; pp. 3288–3293.

74. Cichella, V.; Kaminer, I.; Walton, C.; Hovakimyan, N.; Pascoal, A. Bernstein approximation of optimal control problems. arXiv
2018, arXiv:1812.06132.

75. Farouki, R.T. The Bernstein polynomial basis: A centennial retrospective. Comput. Aided Geom. Des. 2012, 29, 379–419. [CrossRef]
76. Kalczynski, P.; Drezner, Z. Extremely non-convex optimization problems: The case of the multiple obnoxious facilities location.

Optim. Lett. 2022, 16, 1153–1166. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://www.proquest.com/dissertations-theses/sequential-gradient-restoration-algorithm-optimal/docview/303398376/se-2?accountid=15159
https://www.proquest.com/dissertations-theses/sequential-gradient-restoration-algorithm-optimal/docview/303398376/se-2?accountid=15159
http://dx.doi.org/10.1007/BF00927947
http://dx.doi.org/10.1137/S0036144504446096
https://web.stanford.edu/~yyye/matlab/manual.ps
https://web.stanford.edu/~yyye/matlab/manual.ps
https://web.stanford.edu/~yyye/matlab.html
https://doi.org/10.48550/arXiv.2204.05297
http://dx.doi.org/10.1016/j.cagd.2012.03.001
http://dx.doi.org/10.1007/s11590-021-01731-2

	Introduction
	Nonlinear Programming Problem Statements
	Unconstrained Optimization Problem
	Statement
	Optimality Conditions

	Constrained Optimization Problem
	Statement
	Optimality Conditions

	NLP Solvers and Convergence Metrics
	NLP Solvers Selection
	Convergence Metrics
	Solvers Implementation
	APSO
	BARON
	FMINCON/FMINUNC
	GCMMA/MMA
	KNITRO
	MIDACO
	MQA
	PENLAB
	SGRA
	SNOPT
	SOLNP
	SQA

	Benchmark Test Functions Analysis
	Results for Unconstrained Optimization Problems
	Results for Constrained Optimization Problems

	UAV Path Planning: Real-World Application Benchmark
	The 3D Minimum Time Problem: UAV Landing
	The 3D Minimum Time Problem: UAV Formation Flying

	Conclusions
	References

