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Abstract: This work presents the development and evaluation of a real-time 3D reconstruction system
using drones. The system leverages innovative artificial intelligence techniques in photogrammetry
and computer vision (CDS-MVSNet and DROID-SLAM) to achieve the accurate and efficient recon-
struction of 3D environments. By integrating vision, navigation, and 3D reconstruction subsystems,
the proposed system addresses the limitations of existing applications and software in terms of speed
and accuracy. The project encountered challenges related to scheduling, resource availability, and
algorithmic complexity. The obtained results validate the applicability of the system in real-world
scenarios and open avenues for further research in diverse areas. One of the tests consisted of a
one-minute-and-three-second flight around a small figure, while the reconstruction was performed
in real time. The reference Meshroom software completed the 3D reconstruction in 136 min and
12 s, while the proposed system finished the process in just 1 min and 13 s. This work contributes to
the advancement in the field of 3D reconstruction using drones, benefiting from advancements in
technology and machine learning algorithms.
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1. Introduction

The automatic creation of three-dimensional (3D) representations of objects, buildings,
or scenarios using drones and artificial intelligence techniques is a current and highly
relevant research field in the realm of artificial intelligence, specifically in computer vision.
This work focuses on designing and developing an innovative system that integrates
the use of drones and advanced computer vision techniques to facilitate the automated
generation of point clouds and 3D meshes. The significance of this work lies in its ability
to address significant challenges in multiple areas, such as infrastructure inspection and
maintenance, the preservation of cultural heritage, urban planning and design, surveillance
of unauthorized constructions, the observation of terrain modifications in natural disaster
situations, assistance in forensic accident investigations, among others. Furthermore, this
work aims to overcome the limitations of traditional methods, which are often slow and
computationally expensive, by adapting and optimizing existing algorithms in the field of
computer vision and artificial intelligence.

This work is framed within a context where various photogrammetry tools already
exist for creating 3D models using drones. However, these tools employ manual and
conventional processes that require a high computational demand, hindering their practical
application in most challenges addressed by this field of research. Therefore, computer
vision and artificial intelligence models developed by other researchers are used as a
basis for processing the drone’s images. It is expected that the results of this research
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will significantly contribute to advancements in 3D model generation using drones. The
main expected outcomes include the development of an integrated and efficient system for
real-time image acquisition and 3D model generation, the improved accuracy and speed
of 3D reconstruction, and a comprehensive evaluation of the performance and robustness
of the proposed system in different environments and conditions, allowing for future
enhancements and a deeper understanding of the capabilities and applications of drones in
3D model generation.

This manuscript provides a detailed description of the design and development
process of the proposed system, starting with an exhaustive review of state-of-the-art
developments in the fields of photogrammetry and computer vision, as well as the use of
drones for the generation of 3D representation. The fundamental concepts related to the
employed technologies and techniques are presented, along with a discussion of currently
available commercial and open-source software and specialized libraries in computer
vision and 3D reconstruction. This study poses the research question of how real-time 3D
reconstruction can be achieved using images and videos captured by drones, employing
state-of-the-art algorithms to obtain representations of a similar quality to those obtained
using conventional techniques.

1.1. Aims of This Work

The main purpose of this research is to design and develop an innovative system that
incorporates the use of unmanned aerial vehicles (drones) and sophisticated computer
vision techniques to facilitate the automated generation of high-quality point clouds and
three-dimensional (3D) meshes. This approach responds to the growing demand for more
accurate and efficient technological tools for obtaining 3D models, which play a crucial
role in a wide range of disciplines such as engineering, architecture, cartography, and
topography. The implementation of this innovative system will significantly reduce the time
and costs associated with 3D model creation, while improving their quality and accuracy
through the synergy between drone technology and computer vision. Additionally, the
proposed system aims to achieve a high level of automation, which will increase efficiency
in the production of 3D models and allow for greater adaptability and flexibility under
various capture conditions.

The overall objective of this research lies in the conception and development of an
integrated system that leverages the advantages of drones and computer vision to automat-
ically generate high-quality point clouds and 3D meshes. This approach seeks to optimize
efficiency, precision, and cost reduction in acquiring 3D models used in multiple fields of
application. Specifically, the following specific objectives (SO) are presented, which break
down the overall objective into more precise and measurable goals. By achieving these
specific objectives, the overall objective of this work will be accomplished.

• Determine the requirements for the automatic reconstruction of point clouds and 3D
meshes using images.

• Design and develop a subsystem for exporting 3D meshes.

The hypothesis of this research is as follows: The combination of state-of-the-art algo-
rithms and drone technology enables real-time 3D reconstruction from captured images and
videos, achieving a high-quality representation similar to that obtained using conventional
techniques.

1.2. Concepts
1.2.1. Drones

A drone, also known as unmanned aerial vehicle (UAV) or unmanned aircraft system
(UAS), is a flying apparatus that does not require a human pilot on board [1]. These devices
can be equipped with cameras, sensors, and other instruments, enabling them to perform
a wide variety of tasks in both military and civilian domains. The most common type of
drone is the multirotor drone (see Figure 1 [2]).
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Figure 1. Common multirotor drones. Image by Eduardo Chamorro, 2018 [2].

Drones are used in surveillance and reconnaissance missions, as well as for aerial
attacks [3]. They are also used for inspections of critical infrastructures (such as power
lines or oil platforms), package deliveries, mapping and topography work, inspections,
the mapping of mines, monitoring of crops and construction sites, and capture of images
and videos for artistic or documentary purposes [1]. There are various types of drones,
which vary in design, size, and capabilities [4,5]. Multirotor drone can take off and land
vertically [6]. Drones are further classified into several subtypes depending on the number
of rotors [7]. Another type of drone is the fixed-wing drone, which often resembles conven-
tional airplanes. These UAVs are generally larger than multirotors and are often used for
surveillance and reconnaissance tasks across large areas [8].

1.2.2. 3D Representations

Three-dimensional representations are geometric models that describe the shape and
structure of an object or scene in three-dimensional space. This type of representation has
experienced significant growth in recent decades due to technological advancements in
the field of computer vision. Figure 2 shows different types of representation used in the
industry.
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(a) Point cloud representation. (b) Volumetric representation. (c) Polygonal mesh representation and
(d) Depth map representation. Image by Elena Camuffo et. al., 2022 [9].

Three-dimensional representations allow objects or environments from the real world
to be visualized and modeled in a three-dimensional virtual space, leading to a wide range
of applications in various fields. The following are brief descriptions of the most common
3D representations [10]:
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• Point clouds: Sets of points in 3D space that represent the surface of a scene. Each
point may have additional attributes such as color (Figure 2a [9]).

• Volumetric representations: They use a three-dimensional data structure, such as a set
of voxels (3D pixels), to represent the volume and shape of a scene. This representation
is particularly useful in medical and scientific applications. See Figure 2b [9].

• Polygonal meshes: Set of vertices, edges, and faces that define the geometry of a
3D object. Polygonal meshes are typically composed of triangles or quadrilaterals
connected to form the object’s surface. See Figure 2c [9].

• Depth maps: Two-dimensional representations of the distance or depth of objects
in a 3D scene with respect to a specific viewpoint. In a depth map, each pixel has a
value indicating the distance between the viewpoint and the corresponding object
in the scene. These depth values can be measured in distance units, such as meters,
or in relative units, representing the disparity between two stereoscopic views. See
Figure 2d [9].

1.2.3. Photogrammetry and 3D Reconstruction

Photogrammetry is a technique that allows the metric and geometric information of
objects and scenes to be obtained from photographs or digital images. This information
is used to generate maps, digital terrain models, three-dimensional models of objects and
buildings, among others. Photogrammetry is based on triangulation and the measure-
ment of angles and distances in images to determine the spatial coordinates of the points
of interest [11,12]. On the other hand, 3D reconstruction is the process of generating a
three-dimensional representation of a scene or object from a series of 2D images taken from
different angles and positions. This process involves identifying common features in the
images, estimating the position and orientation of the cameras, and constructing a 3D geom-
etry of the scene [13]. In this field, several commercial tools have been developed that use
computer vision algorithms to transform images into maps and three-dimensional models.
Some of these tools include Pix4D, Agisoft Metashape, ReCap Pro, ArcGIS Drone2Map,
ContextCapture, DroneDeploy, and 3DF Zephir, which have become references in the
industry due to their high integration with drones and wide range of features [14,15]. It
is important to note that these programs have similar characteristics and functionalities
but may also have some differences in terms of ease of use, accuracy of results, and licens-
ing cost. On the other hand, open-source software tools are also becoming increasingly
relevant in the context of photogrammetry and 3D reconstruction. Some notable tools are
Meshroom and COLMAP, free open-source tools for creating and manipulating 3D models
from images.

The combination of photogrammetry and 3D reconstruction with drone technology
has allowed data to be captured in hard-to-reach areas for the generation of high-precision,
three-dimensional models, revolutionizing the way that projects are carried out in various
fields, such as archaeology [16], natural resource management [17], and urban planning [18].

1.2.4. Multi-View Stereo (MVS)

Multi-view stereo (MVS) is an advanced computer vision technique that enables the
three-dimensional reconstruction of a scene or object from multiple images taken from
different viewpoints. Inspired by stereo vision, MVS extends this approach by utilizing
several images captured from different angles and positions, resulting in a more precise
and detailed 3D representation (see Figure 3 [19]). MVS algorithms employ correspondence
and optimization techniques to identify and relate feature points in the images and estimate
their three-dimensional position in space [19].
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Key features of MVS include depth estimation, feature correspondence, optimization,
and 3D modeling. These capabilities allow MVS to generate highly accurate and detailed 3D
models, while being more robust against occlusions, lighting changes, and correspondence
errors [20]. However, this technique presents challenges such as computational complexity
and the need for proper camera calibration and orientation. MVS is currently applied in a
wide range of fields and industries, including cartography and topography, archaeology
and cultural heritage, robotics and autonomous vehicles, virtual and augmented reality,
and inspection and quality control.

1.2.5. Simultaneous Localization and Mapping (SLAM)

Simultaneous Localization and Mapping (SLAM) is an advanced technique in robotics
and computer vision that enables a robot or autonomous vehicle to build a map of its
unknown environment while estimating its position and orientation in real time [21].
SLAM addresses two fundamental problems in robotics and navigation: mapping the
environment and localizing the robot or vehicle within that map. This technique combines
data from various sensors such as cameras, LiDAR, and inertial sensors to provide accurate
and robust estimates of the robot’s position and orientation, as well as map updates as new
areas are explored [22,23].

Figure 4a [24] shows the mapping of a room with the camera’s estimated position
along its trajectory. Figure 4b [24] illustrates the mapping along a hallway. Key features of
SLAM include localization, mapping, sensor fusion, filtering, and optimization. Regarding
filtering and optimization, SLAM employs techniques such as an Extended Kalman Filter
(EKF) and graph optimization. An EKF is a state estimation technique that enables the
robot’s position and orientation to be updated in real time, while graph optimization is an
approach that improves the consistency and accuracy of the map and position estimates
over time [25]. These capabilities enable SLAM to facilitate autonomous navigation in
unknown environments, providing robustness against uncertainties, sensor data errors,
and motion models. However, this technique presents challenges in terms of computational
complexity, convergence, and the consistency of filtering and optimization algorithms.

SLAM has applications in a wide range of fields and industries, including mobile
robotics, unmanned aerial vehicles (UAVs), autonomous vehicles, augmented and virtual
reality, and underwater exploration and mapping. In these contexts, SLAM significantly
contributes to the advancement of research and development in the field of robotics and
autonomous navigation, enabling robots and vehicles to move and make decisions inde-
pendently in unknown and dynamic environments. The implementation of filtering and
optimization techniques, such as an EKF and graph optimization, is crucial for improving
the accuracy and consistency of position estimates and the map in SLAM applications.
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1.2.6. Camera Calibration

Camera calibration is an essential process in computer vision and robotics applications
that utilizes images to estimate the three-dimensional geometry of a scene or object. This
procedure allows the internal and external parameters of a camera to be determined,
including the camera matrix, distortion coefficients, as well as the position and orientation
of the camera in space [26,27]. Cameras commonly introduce significant distortions in the
generated images. The two main types of distortion are radial distortion and tangential
distortion. Radial distortion causes straight lines to appear curved and is greater the farther
the pixels are from the image center. Similarly, tangential distortion occurs because the
lens capturing the image is not perfectly aligned parallel to the image plane. As a result,
some areas of the image may appear closer than expected [28]. These distortions can be
represented by the following equations:

Radial distortion:

xdistorted = x
(

1 + k1r2 + k2r4 + k3r6
)

ydistorted = y
(

1 + k1r2 + k2r4 + k3r6
)

(1)

Tangential distortion:

xdistorted = x +
[
2p1xy + p2

(
r2 + 2x2

)]
ydistorted = y +

[
p1

(
r2 + 2y2

)
+ 2p2xy

]
(2)

The internal parameters (or intrinsic parameters) describe the optical and geometric
properties of the camera, such as the focal length (f ), principal point (u0, v0), and the
(skew) coefficient (s), which will always be zero if the image axes are perpendicular. These
parameters form the camera calibration matrix K, which is represented as follows:

K =

 fx s u0
0 fy v0
0 0 0

 (3)

Here, fx and fy are the focal lengths in the x and y axes, respectively. The matrix K is
used to relate coordinates in the three-dimensional space to pixel coordinates in the captured
images [26]. The external parameters (or extrinsic parameters) describe the position and
orientation of the camera in the three-dimensional space relative to a coordinate system of
the environment. These parameters are represented by a rotation matrix R and a translation
vector t. The combination of R and t forms the extrinsic transformation matrix [R|t], which
is used to convert world coordinates into camera coordinates.
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In Figure 5 [29], the pinhole camera model (also known as the pinhole camera) is
shown. It is a simplified model that illustrates how a camera captures images of the real
world by projecting points from a three-dimensional space onto a two-dimensional plane
(the image plane).
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There are several camera calibration methods, which can be classified into two main
categories: pattern-based calibration and non-pattern-based calibration. Pattern-based
calibration uses a known calibration object, such as a chessboard or a pattern of circles. The
positions of the corners or centers of the circles in the image are used to calculate the matrix
K and the radial and tangential distortion coefficients (k1, k2, p1, p2, k3) using optimization
algorithms such as the nonlinear least squares algorithm [28].

1.3. Meshroom 3D Reconstruction Software

Meshroom is based on the AliceVision project, a collaboration between several in-
stitutions and research companies in the field of computer vision [29,30]. The program
employs a node-based workflow approach, allowing users to easily customize and adjust
the processing stages [31] with parallel processing, and supports GPU enabling faster
performance on compatible hardware [32]. The Meshroom software has applications in
various industries, such as archaeology and cultural heritage, documenting and preserv-
ing historical sites and artifacts [33], surveying and mapping, design and architecture,
and entertainment and media. It enables the visualization of architectural and design
projects in a three-dimensional environment and the creation of realistic 3D models for
films, animations, and video games.

It also has some drawbacks. On the one hand, it can be resource-intensive, especially
when processing large datasets, which could result in longer processing times for users
with less powerful hardware. On the other hand, some users may find that the software has
a moderate learning curve due to its node-based approach and the variety of customization
options available [34].

1.4. Computer Vision and 3D Reconstruction Libraries

Computer vision and 3D reconstruction libraries are essential in the development
of applications and research projects in these areas. These libraries provide algorithms,
functions, and utilities that facilitate the implementation of image processing, analysis, and
3D modeling solutions. In this section, two key libraries used in this research are presented:
OpenCV and Open3D. Both libraries were selected for their versatility, performance, and
wide adoption in the research and developer community.
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1.4.1. OpenCV

OpenCV (Open-Source Computer Vision) [35] is an open-source library initially devel-
oped by Intel in 1999 and subsequently maintained by an active community of developers.
Written primarily in C++ with interfaces available in Python, Java, and other languages,
OpenCV provides a wide range of efficient tools and algorithms for image and video analy-
sis and processing in various fields and industries [36]. The key features of OpenCV include
image processing and analysis, video processing, the integration of machine learning algo-
rithms and neural networks for object classification and recognition, and calibration and 3D
reconstruction [37]. These capabilities mean that OpenCV has applications in areas such as
surveillance and security, robotics and autonomous vehicles, medicine and biology, indus-
try, manufacturing, entertainment, and augmented reality [38,39]. OpenCV has numerous
advantages: a high performance compared to other popular image manipulation libraries,
open-source, free to use, a wide range of functions, compatibility with multiple platforms
and programming languages, and the support of an active community of developers and
users [35]. However, it also presents challenges such as a steep learning curve for beginners
and potential performance issues when working with high-resolution or real-time images
and videos [40–42].

1.4.2. Open3D

Open3D is an open-source library developed by Qianyi Zhou and Jaesik Park in 2018,
designed to provide a unified platform for the processing, analysis, and visualization of
3D data [43,44]. Written in C++ with interfaces in Python and C++, Open3D includes a
wide range of algorithms and tools for handling point clouds, polygonal meshes, and other
3D data in various fields and industries [45]. The key features of Open3D include point
cloud and polygonal mesh processing and analysis, interactive 3D visualization, integration
of images and depth, and incorporation of machine learning algorithms and computer
vision for classification and segmentation of 3D data [43]. These capabilities mean that
Open3D has applications in areas such as robotics and autonomous vehicles, medicine
and biology, archaeology and cultural heritage, topography, cartography, and design and
manufacturing [46–49]. The main advantages of using Open3D are its ease of use due
to the Python and C++ interfaces, being open-source, and the wide range of functions it
offers for handling 3D data [43]. However, it also presents challenges, such as a moderate
learning curve for users inexperienced in 3D data processing and analysis and potential
compatibility issues when working with specific hardware or software [50,51].

1.5. AI-Based Models for 3D Reconstruction

The field of artificial intelligence has experienced rapid advancements in recent years,
leading to a series of innovative models and techniques that have shown great potential to
improve efficiency and accuracy in photogrammetry and 3D reconstruction. This section
presents two AI-based models used in this research: CDS-MVSNet and DROID-SLAM.
These models were selected due to their ability to address specific problems in the study
domain and their compatibility with the computer vision libraries, OpenCV and Open3D,
mentioned earlier.

1.5.1. CDS-MVSNet

CDS-MVSNet, presented at ICLR 2022, is a novel multi-view stereo (MVS) framework
that is used to estimate dense correspondences in high-resolution images with reduced
computation and memory consumption [52]. It consists of a scale-aware feature extrac-
tion network with multiple convolutional layers called Curvature-guided Dynamic Scale
Convolution (CDSConv; shown in Figure 6 [52]), and an MVS depth estimation pipeline.
The cascaded approach reduces computational complexity by estimating depths through
multiple stages and formulating 3D cost volumes with an appropriate scale for each pixel.
Visibility-based cost aggregation enhances stereo-matching performance, utilizing pixel-
level visibility information estimated from the curvature. For each stage, this approach
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formulates a 3D cost volume based on output features, which reduces correspondence
ambiguity by utilizing the appropriate scale for each pixel. Additionally, a visibility-based
cost aggregation is applied to enhance stereo matching performance. Pixel-level visibility
information is estimated from the curvature, implicitly encoding the matching capability of
the extracted features. CDS-MVSNet demonstrates a superior performance compared to
state-of-the-art methods in various multi-view stereo datasets.
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CDS-MVSNet can produce accurate depth maps with high resolution and low noise,
handle a wide range of input images (with different resolutions, lighting conditions, and
object sizes) and operate in real time on a standard computer. However, it requires a large
dataset of multi-view images for training and is sensitive to occlusions. It should be noted
that this requires a SLAM system for the localization and mapping phase. The researchers
who developed this framework used DROID-SLAM in their proof of concept, but this can
be easily configured for the use of other SLAM systems.

1.5.2. DROID-SLAM

DROID-SLAM, proposed in 2021 by Zachary Teed and Jia Deng, researchers from
Princeton University [53,54], is a deep-learning-based Simultaneous Localization and
Mapping (SLAM) system. Its objective is to build an accurate map of the environment
and localize the camera’s position in that environment using monocular, stereo, or RGB-D
camera images. This approach was first presented at the NeurIPS 2021 conference [55] and
demonstrates superior performance compared to existing SLAM systems, both classical
and machine-learning-based.

The architecture called “Differentiable Recurrent Optimization-Inspired Design”
(DROID), combines the strengths of classical approaches and deep recurrent networks.
This architecture is end-to-end differentiable, allowing the entire system to be learned
from input images. It uses recurrent iterative updates based on RAFT (Recurrent All-Pairs
Field Transforms) for optical flow. Unlike RAFT, which iteratively updates optical flow,
DROID-SLAM iteratively updates camera poses and pixel-wise depth. This update is per-
formed using a Dense Bundle Adjustment (DBA) layer, which computes a Gauss–Newton
update for camera poses and pixel-wise depth, thereby improving performance in optical
flow estimation.

The DBA layer leverages geometric constraints to enhance the system’s accuracy and
robustness, enabling the system to handle stereo or RGB-D inputs without the need for



Drones 2023, 7, 516 10 of 24

retraining. DROID-SLAM was trained on the TartanAir dataset and demonstrated state-of-
the-art performance at various benchmarks. Despite its advantages, such as the ability to
handle a wide range of input conditions and computational efficiency, DROID-SLAM has
the disadvantage of being sensitive to occlusions.

2. Related Research

Three recent research studies that address 3D reconstruction using drones from dif-
ferent perspectives were analyzed. The first research study utilized LiDAR sensors in
combination with drones, the second explored virtual reality techniques applied to the
process, and the third focused on using a simulator to carry out the reconstruction.

2.1. Near-Real-Time 3D Reconstruction Using Drones and LiDAR Sensors

In the context of 3D reconstruction, LiDAR sensors have emerged as a valuable
tool for assisting drones during image acquisition and metric measurements. However,
significant challenges still exist in terms of the accuracy, autonomy, and processing speed
of the information captured by drones. In response to these challenges, F. Ahmad et al.
developed ARES [55], a system for near-real-time 3D reconstruction using drones equipped
with LiDAR sensors. ARES is a system that addresses the challenges associated with 3D
reconstruction, such as optimizing the drone’s battery usage, minimizing positioning errors,
and the efficient transmission and processing of the captured data. The system consists
of various algorithms and novel techniques that enable the accurate and near-real-time
reconstruction of buildings and structures, even after compressing LiDAR sensor data
to fit radio-frequency transmission speeds. ARES represents a significant advancement
in the field of 3D reconstruction using drones. By addressing bandwidth limitations,
SLAM positioning errors, and computational constraints on the drone, ARES provides an
innovative approach to acquiring and processing 3D data in various applications. However,
it should be noted that this system requires the incorporation of LiDAR sensors on the
drones, which incurs a considerable cost.

2.2. Assisted by Virtual Reality

The article “Virtual Reality Aided High-Quality 3D Reconstruction by Remote
Drones” [56,57] addresses a novel approach to 3D reconstruction using drones. The tradi-
tional method involves image collection and subsequent processing, but this new approach
employs a telepresence drone system with an onboard processing module and wireless
data transmission. The system draws inspiration from deep learning methods and utilizes
virtual reality techniques to assist in 3D reconstruction. The system is designed to perform
the real-time dense reconstruction of cities. It tackles two problems: the uncertainty of
whether all parts of the object have been covered and the lengthy post-processing time.
Two technical contributions are proposed to address these problems. The first is a control
mechanism based on an inertial visual odometry estimator that provides an immersive
viewing experience to the user. The second contribution is an adaptive origin update
mechanism that adjusts the drone’s coordinate system origin to its current position as it
moves. These two contributions help improve the quality of the 3D model and system
performance. Experiments in the simulation system and the real prototype demonstrate
the effectiveness of these contributions.

2.3. Monocular Reconstruction Using Drones

In the article, “Monocular 3D Reconstruction of Objects with Camera Mounted on
a Drone” [58], an approach for obtaining point clouds using ORBSLAM2 and the ROS
(Robot Operating System) is presented. The article also discusses the processing and
3D reconstruction of captured objects. A ROS node was developed to publish real-time
images from a phone camera using the Real-Time Streaming Protocol (RTSP) over the
local network. The source code of ORBSLAM2 was slightly modified to adapt it to the
researchers’ operating system and to add functionalities such as changing the presentation
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colors and saving point clouds at the end of execution. The results show point clouds close
to the real object description, although many points were found to be outliers, which caused
deformations in the 3D reconstructions. To address this issue, the Open3D library was used
to remove spurious points using the “remove statistical outlier” method, which employs
statistical techniques. After applying the point cloud filter, cleaner point clouds were
obtained, and 3D reconstructions were performed using two different methods (Powercrust
and Screened Poisson). The reconstructions were more uniform and closer to the original
objects.

3. Materials and Methods
3.1. Drone and Workstation

The drone used to perform the experiments is a Tello Romaster TT, a small quadcopter
drone developed by DJI for educational purposes (see Figure 7). It is open-source and offers
software scalability through its software development kit and hardware scalability through
its sensor adapter with I2C, SPI, UART, and GPIO interfaces. The main components of
the drone are a 5 MP HD camera that allows it to capture still images and videos, some
different sensors, such as time of flight, a barometer, and an inertial measurement unit or
IMU. It also has brushless motors, and a lithium-ion battery allowing it to fly for up to
10 min on a single charge.
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The specifications of the computer equipment used to carry out the development of
the proof of concept are shown in Table 1.

Table 1. Specifications of the computer used in the prototype.

Component Details

OS Pop! OS 22.04 LTS x86_64
Kernel 6.0.12
Shell bash 5.1.16
CPU Intel i7-6950X (20) @ 4.100GHZ
GPU NVIDIA GeForce GTX 1080 8 GB
RAM 16 GB

Network card TP-LINK TL-WN722N
Compilers gcc-9 y nvcc (CUDA Toolkit 11.3)
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3.2. Methodology and Hypotheses

The methodology of the research consisted of conducting a comprehensive review of
the specialized literature to identify the parameters and characteristics necessary to obtain a
high-quality point cloud and 3D mesh. Additionally, the necessary technical specifications
for the design of the vision and navigation subsystems were established, and the most
relevant alternatives in terms of computer vision algorithms embedded in drones were
identified. Three subsystems (navigation, vision, and 3D mesh reconstruction and export)
were developed, which together constituted a prototype for the proof of concept of this
research.

Furthermore, the chosen project management methodology for carrying out this work
was an incremental methodology, which proved suitable as the developed system consisted
of several dependent subsystems that needed to be integrated coherently to achieve the
final objective. The incremental methodology is a software development strategy based on
constructing a product in small functional parts, called increments, which are progressively
integrated to complete the final product. Each increment is a subset of the complete
system that can be tested and validated independently, allowing for the identification
and correction of errors in an early stage of the development process. This methodology
facilitated the establishment of checkpoints and reviews for each subsystem, which aided
in the early detection and resolution of inconsistencies.

Moreover, the incremental methodology allows for working iteratively and evolution-
arily, meaning that continuous improvements can be made to the different subsystems as
they are integrated into the complete system. This is particularly important in research
projects, where objectives and requirements can change as more knowledge is acquired.

Therefore, the use of this methodology is justified as it is suitable for the development
of complex and dependent systems, such as the one proposed in this research. It enables the
early validation of each subsystem, identification and correction of errors, and continuous
improvements as research progress is made.

3.3. Rationale

The theoretical basis of this work is grounded in the research and application of
SLAM (Simultaneous Localization and Mapping) algorithms and 3D reconstruction that
generate accurate and detailed three-dimensional models of objects or environments from
images captured by a drone. These algorithms allow for the real-time estimation of the
camera’s position and orientation, while obtaining a three-dimensional representation of the
environment. The main methods and concepts on which the work is based include remote
drone control, drone camera calibration (described in Section 1.2.6), the application of
SLAM (described in Section 1.2.5) to estimate the drone’s trajectory, and 3D reconstruction
using MVS (described in Section 1.2.4).

3.4. Tools and Algorithms

For the implementation of the proof of concept, the following tools and algorithms,
which are described in Section 1, were used: OpenCV, CDSFNet, DROID-SLAM, Meshroom,
and Open3D. In addition, the Poisson Surface Reconstruction (PSR) algorithm was used for
the export of 3D meshes, the Flask framework for creating a web interface to control the
drone, and FFmpeg [59,60] for decoding the video signal emitted by the drone.

3.5. Design and Development of the Proof of Concept

The proof of concept was designed to evaluate the feasibility and effectiveness of a
real-time 3D model generation system using a drone. To achieve this, the vision, navigation,
and 3D mesh export subsystems were developed and integrated. Each of these components
and their respective implementations are detailed below.
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3.5.1. Vision Subsystem

The vision subsystem, implemented in Python, is responsible for receiving and pro-
cessing the video stream transmitted by the drone. A UDP connection is established with
the drone, and the received images are decoded using the FFmpeg library for subsequent
processing with the OpenCV library. Initially, the challenge of decoding the video stream
transmitted over the UDP protocol was addressed. However, the decoding process proved
to be inefficient and slow, resulting in difficulties in real-time content visualization. To
address this problem, an asynchronous approach was implemented, and adjustments were
made to the FFmpeg parameters to optimize and accelerate the hardware decoding of the
video. By properly configuring these options, a significant improvement in decoding speed
was achieved, enabling smooth and real-time video playback.

3.5.2. Navigation Subsystem

The navigation subsystem was also developed in Python to establish bidirectional
communication with the drone and is based on the Tello SDK. Communication is carried
out using the UDP protocol, allowing commands to be sent to the drone (takeoff, land,
move in different directions, rotate, etc.) and confirmations to be received from the drone.
An event handler was implemented to handle the drone’s responses and ensure proper
synchronization between the commands sent and the actions performed.

3.5.3. 3D Mesh Reconstruction and Export Subsystem

This subsystem incorporates the DROID-SLAM algorithm to estimate the drone’s
position and orientation in space over time. As the drone moves, a real-time map of the
environment is generated, which serves as input to the CDS-MVSNet framework. To enable
real-time 3D reconstruction, a buffer was implemented to store the captured images and
supply them to the algorithm as needed.

An essential aspect of accurately performing 3D mesh reconstruction and export is
to properly calibrate the drone’s camera to obtain intrinsic parameters. This calibration
process was carried out using the Meshroom software and a chessboard pattern with
dimensions of 5 × 7. Camera calibration was crucial to obtain precise information regarding
position, orientation, and lens distortion, which are essential to ensuring the accuracy of
3D reconstruction.

The term “real-time” refers to the processing and reconstruction of the video input
simultaneously with data capture, allowing for the almost instant visualization of the 3D
reconstruction. However, it is important to note that, with the graphics card used in this
study, there is minimal delay during the reconstruction process. However, this delay can
be eliminated by using more advanced and suitable hardware.

Once the 3D reconstruction was complete, a point cloud was obtained, which can be
exported by pressing the “X” key. It can also be converted into a three-dimensional mesh
using the Poisson Surface Reconstruction algorithm by pressing the “M” key. The choice
of this algorithm is based on its ability to generate high-quality meshes in a short period
of time from sparse and noisy point clouds, provided that its parameters are properly
adjusted.

Figure 8 shows a screenshot of the 3D reconstruction subsystem during the recon-
struction process, illustrating three windows reflecting different aspects of the real-time
process. The window on the right displays the frame corresponding to the video stream
being processed at that moment, providing a view of the images captured by the drone.
The second window presents the 3D viewer of Open3D, in which the real-time 3D recon-
struction and estimation of the drone’s camera trajectory can be observed. This viewer
offers the ability to interact with the 3D object, allowing manipulation through actions
such as rotation and scaling while reconstruction is ongoing. The third window displays a
terminal running the nvtop program, which monitors the GPU’s status. In the screenshot,
the GPU is operating at nearly its maximum capacity, demonstrating the high resource
demand required to perform real-time 3D reconstruction.
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Figure 9 presents a flowchart illustrating the process of capturing and processing im-
ages obtained by a drone equipped with a calibrated camera. These images are temporarily
stored in a buffer and subsequently processed using the DROID-SLAM model. Through
this model, a trajectory map is generated, which serves as an input to the CDS-MVSNet
module. This module provides the input information to the 3D viewer implemented with
the Open3D library, allowing for the visualization of the real-time 3D reconstruction. Addi-
tionally, the system offers the option to export the dense point cloud as a PLY format object
or generate and export a 3D mesh using the Poisson Surface Reconstruction algorithm.
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3.5.4. Web Application and Complete System

To facilitate interaction between the user and the system, a web application was
implemented using the Flask framework. This application allows the user to control the
drone, view its video stream, and visualize the real-time reconstruction. The interface was
developed with reference to the course “Drone Programming with Python-Face Recognition
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& Tracking” [61] by Jun Sakai. It also includes an integrated 3D viewer, using Open3D to
display the reconstruction results and enable manipulation of the generated model.

Figure 10 represents the system design in a block diagram consisting of four main
blocks. In the center is the “Web Application” block, which acts as the central core and
communication point between the other subsystems. Surrounding this central block are
the “Reconstruction Subsystem”, “Navigation Subsystem”, and “Vision Subsystem” blocks.
Each of these blocks bidirectionally communicates exclusively with the “Web Application”
block, establishing a relationship of interdependence among them.
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The block diagram illustrates the modular structure of the system, emphasizing the
importance of the web application as a coordination and control element. It also shows
how the subsystems work together to perform the functions of vision, navigation, and
reconstruction, while the web application facilitates user interaction and result visualiza-
tion. Figure 11a shows a screenshot of the web application interface as viewed from a
smartphone.

As seen in Figure 11a, the interface allows us to control the drone and view its video
stream. Additionally, it enables the initiation of the 3D reconstruction. Figure 12b illustrates
the general interaction scheme with the system, showing the interaction between the user,
the server, and the drone. The user utilizes a smartphone to control the drone and manage
the 3D reconstruction through a web interface provided by the server. The smartphone
connects to the router, which, in turn, communicates with the server hosting the 3D
processing and reconstruction system. This server establishes a connection with the drone
through the Wi-Fi access point generated by the drone itself. The drone sends the real-time
video stream to the server, where the processing and 3D reconstruction take place. In this
way, the user can control the drone, initiate, or stop the 3D reconstruction, and view the
video stream emitted by the drone.
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To facilitate the compilation, installation, and configuration of the prototype presented
in this study, a Docker image, containing the complete system and ready to use, is generated,
allowing other researchers to more easily replicate the obtained results. The reference to
this image is available in the official repository of the system’s source code. It is important
to note that, to replicate the results, interested researchers must use a drone compatible
with the TELLO SDK 2.0. Additionally, the proper calibration of the drone’s camera before
proceeding with the generation of a 3D reconstruction is essential to ensure acceptable
results.

It should be mentioned that Docker containers are primarily designed to run command-
line-based applications and background services. Therefore, to visualize the 3D reconstruc-
tion, it was necessary to install and configure an X server within the container, which allows
the application inside the container to display its graphical interface without depending on
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the host system’s X server. The image is also configured to access and control the system
via VNC (port 5900) or noVNC (port 6080). Additionally, the web interface is accessible
through port 5001.

4. Results

It is necessary to evaluate whether the specific set objectives have been satisfactorily
achieved, so that the general objective of the work is validated (see Section 1. Introduction).
In this way, if the specific objectives of the work have been successfully achieved, it can be
stated that the general objective has been fulfilled. The validation methods used for the
evaluation of the specific objectives are listed below:

• Validation of specific objective 1: Determine the requirements for the automatic re-
construction of 3D point clouds and meshes using images. To validate this objective,
a comparison will be made between the identified technical specifications and the
existing solutions and approaches in the field of 3D reconstruction using images. The
characteristics of a high-quality point cloud and 3D mesh will be identified, and proof-
of-concept tests will be conducted to determine the feasibility and effectiveness of
the selected techniques and algorithms. The results of these tests will be evaluated
using the corresponding metrics for the identified characteristics: accuracy, density,
completeness, and texture.

• Validation of specific objective 2: Design and develop the vision subsystem. To validate
the design and development of the vision subsystem, field and laboratory tests will be
conducted, including image capture and processing under different environmental
and lighting conditions. Additionally, the quality of the obtained images will be
evaluated by comparing them with reference images and measuring metrics such as
sharpness, contrast, and distortion.

• Validation of specific objective 3: Design and develop the navigation subsystem.
The validation of the navigation subsystem will be carried out through flight tests in
different environments and conditions. The latency, stability, and responsiveness of the
navigation system will be evaluated, as well as its ability to maintain a predetermined
trajectory and adapt to changes in the environment.

• Validation of specific objective 4: Design and develop the subsystem for exporting
3D meshes based on the captured images obtained by the navigation system and
powered by the vision system. The validation of the 3D reconstruction and mesh
export subsystem will be carried out by comparing the generated 3D models with the
reference models obtained using conventional techniques. Additionally, the efficiency
of the export process will be evaluated in terms of processing time and the required
computational resources.

4.1. Density, Accuracy, Completeness and Texture

To determine the requirements for the automatic reconstruction of 3D point clouds
and meshes using images, we started by identifying the characteristics that are typical of a
dense point cloud and a high-quality 3D mesh. These characteristics are:

• Density: Refers to the number of points per unit area. A higher density implies higher
resolution and detail of the represented surface. Density depends on the distance and
angle of image capture, as well as the software and parameters used to generate the
point cloud [62].

• Accuracy: Refers to the degree of correspondence between the points and the real
surface. A higher accuracy implies less distortion or error in the representation.
Accuracy depends on the quality and calibration of the camera or sensor, as well as
the software and algorithms used to align and process the images [63].

• Completeness: Refers to the degree of coverage of the represented surface. Higher
completeness implies less presence of gaps or areas without information. Complete-
ness depends on the number and distribution of captured images, as well as the
software and methods used to fill or interpolate the gaps [64,65].
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• Texture: Refers to the visual appearance of the represented surface. A higher texture
implies greater fidelity in the color and brightness of the surface. Texture depends
on the lighting and environmental conditions during image capture, as well as the
software and processes used to generate and apply the texture to the 3D mesh [63].

After conducting an exhaustive analysis of numerous algorithms, models, and ap-
proaches available in state-of-the-art methods regarding 3D reconstruction, the DROID-
SLAM (see Section 1.5.2) and CDS-MVSNet (see Section 1.5.1) models were identified as
preexisting solutions that, when combined, and by leveraging their synergies, can offer
high levels of density, accuracy, completeness, and texture.

To evaluate the effectiveness of integrating these systems based on the mentioned
metrics, a comparison was conducted between the results obtained using the proposed
system and a reference textured mesh generated using Meshroom software (see Section 1.3).

Figure 12a shows the object used for this test. It is a small replica of the Eiffel Tower
measuring 16 cm × 16 cm × 40 cm. This Eiffel Tower scale model was used for testing due to
the limitations of the aircraft used in the project. The DJI Tello Robomaster TT is for indoor
use and very vulnerable to wind; therefore, it has very little capacity for outdoor flight.
Figure 12b illustrates the results obtained through the proposed system, while Figure 13a
shows the results obtained using Meshroom software. As can be seen, the accuracy of
both reconstructions is of a high quality. However, the reconstruction performed using
Meshroom more closely resembles reality, indicating a higher accuracy. Regarding the
density of the models, 1,626,207 points were recorded in the point cloud generated by
the proposed system, and 2,125,395 points were recorded in the point cloud generated by
Meshroom, demonstrating that the density obtained using Meshroom is higher. In terms
of completeness, both models exhibit similar characteristics as both cases fully close the
surface of the represented object. However, it is important to note that it was necessary
to repeat the experiment multiple times with new shots, changing the configuration and
applying masks to highlight the object because the resulting representation with Meshroom
did not correctly reconstruct the top part of the tower (see Figure 13b). This demonstrates
that conventional algorithms (computationally expensive) can sometimes be less effective.
Finally, the texture of both models is true to reality, preserving the color and brightness
of the objects, although it can be observed that the texture of the representation obtained
using conventional methods is more detailed. On the other hand, it is observed that the
representations obtained using the proposed system lose texture in their transition from a
dense point cloud to polygonal mesh.
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Table 2 shows the comparison of these results. It can be concluded that, although
the combination of DROID-SLAM and CDS-MVSNet offers promising results in terms
of density, accuracy, completeness, and texture, the comparative analysis reveals that
Meshroom software exhibits higher accuracy and density in 3D reconstruction. However,
it should be noted that the completeness and texture of both models are similar and
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correspond to reality. These results suggest that, although the proposed integration of
DROID-SLAM and CDS-MVSNet is valid and effective, there is still room for improvement
to achieve optimal levels of accuracy and density compared to solutions that employ
conventional algorithms.

Table 2. Comparison of 3D reconstructions between the system and Meshroom.

Metric Proposed System Meshroom

Accuracy High Very High
Density 1,626,207 points 2,125,395 points

Completeness Complete Complete
Texture True to reality True to reality

4.2. 3D Mesh Exportation

Next, we present the results corresponding to the fourth specific objective of the
research. This study aims to compare the complete process of generating and exporting a
3D mesh using the 3D reconstruction and mesh export subsystem (see Figure 14a). The 3D
mesh was obtained via the reference software, Meshroom (see Figure 14b).
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obtained through the proposed system. (b) Results obtained through Meshroom software.

In this comparison, the variables to be measured were the processing time required
for the 3D reconstruction and mesh export and the minimum hardware resources needed
to carry out the experiment. For this, a circular flight of one minute and three seconds was
executed at a speed of 30 frames per second (FPS) using a RoboMaster TT drone around
a small figure of the Virgin of Medjugorje with dimensions of 35 cm × 20 cm × 68 cm,
while real-time reconstruction was performed using the proposed system. Subsequently,
a 3D reconstruction was performed using the frames extracted from the video using the
equipment described in Table 1 of Section 3.1.

Table 3 shows a comparison between the processing method using Meshroom and the
proposed system in terms of processing time and hardware resources required. In terms
of processing time, Meshroom took 136 min and 12 s to complete the 3D reconstruction,
while the proposed system finished the process in just 1 min and 13 s. It is important to
mention that the proposed system requires a few additional seconds for preheating and
buffer filling before starting the reconstruction process. Despite this, the processing time of
the proposed system is significantly shorter compared to that of the Meshroom software,
which represents an improvement in terms of efficiency.
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Table 3. Comparison between 3D reconstruction subsystem and Meshroom.

Processing Method Processing Time Requirements

Meshroom 136 min, 12 s 8 GB de RAM, GPU NVIDIA CUDA-enabled
GPU >= 2.0 with 8 GB de RAM

Proposed System 1 min, 13 s 8 GB de RAM, GPU NVIDIA CUDA-enabled
GPU >= 3.0 with 16 GB de RAM

Regarding hardware resources, both methods require 8 GB of RAM. However, Mesh-
room requires an NVIDIA CUDA-enabled GPU with a capacity greater than or equal to 2.0
and 8 GB of RAM [66], while the proposed system demands an NVIDIA CUDA-enabled
GPU with a capacity greater than or equal to 3.0 and 16 GB of RAM. Although the proposed
system requires higher hardware resources, these are compensated for by the notable
reduction in processing time compared to Meshroom.

5. Conclusions

A navigation and 3D reconstruction system based on advanced computer vision
algorithms and a drone equipped with a monocular camera was proposed and developed.
The main objective of this work was to create a system capable of capturing and processing
visual information of objects and environments, generating accurate and efficient 3D models
in terms of processing time (in real-time).

Some examples of 3D captures taken outdoors are shown in Figures A1–A4 in
Appendix A. The results seem to be quite conditioned to the (very low) resolution and
the capabilities of the DJI Tello Robomaster TT camera, as can be seen in the frames in
Figures A1a, A2a and A3a. Moreover, they improve in good lighting conditions, as in the
case of Figure A2. On the other hand, they become worse in windy conditions, as can be
seen in Figure A3. In Figure A4, a depiction of a motorcycle is presented. Furthermore,
the illustration portrays the pilot of the aircraft executing an enveloping flight maneuver
around the motorcycle.

The 3D reconstruction and mesh export subsystems were compared with existing
reference applications and software in the market (Meshroom software). It has been
verified that the proposed system offers a significant improvement in terms of efficiency by
reducing the processing time compared to the Meshroom software. Despite requiring more
hardware resources and obtaining slightly less dense and precise models, the proposed
system compensates for these differences with a significant reduction in the time required
to generate the 3D reconstruction, along with a higher likelihood of achieving completeness
on the first attempt.

Based on the obtained results, it can be affirmed that the research hypothesis is valid,
and the proposed system is demonstrated to be a viable and efficient solution compared
to the reference alternatives. The effectiveness of the system supports its applicability
in real-world scenarios (such as infrastructure inspection and maintenance, archaeology,
cartography, and 3D modeling of indoor and outdoor spaces), thereby considering its
implementation in future research and developments in the field of robotics and computer
vision.
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and S.B.R.; resources, J.S.-S. and S.B.R.; data curation, J.C.B.; writing—original draft preparation, J.C.B.,
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J.S.-S.; project administration, J.S.-S.; funding acquisition, J.S.-S. All authors have read and agreed to
the published version of the manuscript.
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Appendix A

This appendix contains four examples of outdoor reconstruction, three different build-
ing sizes and lighting and wind conditions, and the reconstruction of a motorbike.
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Figure A3. Three-dimensional mesh reconstruction shed, water tank, and watering trough for
livestock captured under very bad (wind) flight conditions. It can be observed that the supporting
structure of the water tank is not accurately reconstructed. (a) Frame from the video captured by the
drone. (b) Three-dimensional model with texture. (c) Three-dimensional mesh with triangles.
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