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Abstract: This study investigates the application of unoccupied aerial vehicles (UAVs) equipped with
a Micasense RedEdge-MX multispectral camera for the estimation of Secchi depth (SD) in inland
water bodies. The research analyzed and compared five sun-glint correction methodologies—Hedley,
Goodman, Lyzenga, Joyce, and threshold-removed glint—to model the SD values derived from
UAV multispectral imagery, highlighting the role of reflectance accuracy and algorithmic precision
in SD modeling. While Goodman’s method showed a higher correlation (0.92) with in situ SD
measurements, Hedley’s method exhibited the smallest average deviation (0.65 m), suggesting its
potential in water resource management, environmental monitoring, and ecological modeling. The
study also underscored the quasi-analytical algorithm (QAA) potential in estimating SD due to its
flexibility to process data from various sensors without requiring in situ measurements, offering
scalability for large-scale water quality surveys. The accuracy of SD measures calculated using QAA
was related to variability in water constituents of colored dissolved organic matter and the solar
zenith angle. A practical workflow for SD acquisition using UAVs and multispectral data is proposed
for monitoring inland water bodies.

Keywords: UAVs; Secchi depth; multispectral imagery; sun glint; quasi-analytical algorithm;
remote sensing

1. Introduction

Secchi depth (SD), an essential measure of water transparency in aquatic ecosystems,
provides a critical indication of water quality and ecological health [1–3]. In Europe, SD
is important for following the water quality rules set by the European Water Framework
Directive (WFD), which mandates member states to uphold ecological standards [4]. SD
thus helps identify impairments affecting water quality and aids in devising and executing
management plans to protect water bodies [5].

The Secchi disk is the main tool used for obtaining SD measurements, particularly in
vast and complex aquatic ecosystems [6–8]. However, traditional methods—visual obser-
vations using a white Secchi disk—can be labor-intensive, time-consuming, and potentially
influenced by observer bias [9,10]. They also typically offer point-level measurements,
which may not reflect water transparency over larger areas [11,12].

The limitations of traditional methods have spurred interest in remote sensing tech-
niques for estimating SD in complex aquatic ecosystems. Techniques ranging from satellite
data to unoccupied aerial vehicles (UAVs) equipped with light detection and ranging
(LiDAR) systems and hyperspectral imagery have been explored for accuracy [13]. These
techniques promise cost-effective and efficient high-resolution spatial data on water trans-
parency over large areas, with multispectral imagery from UAVs emerging as a promising
alternative [14].

UAVs can provide higher-resolution images than satellites, allowing for more precise
measurements of water bodies, including small and shallow ponds [15,16], which are
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often not well captured by satellite imagery [16,17]. Furthermore, UAVs can be flown
at a specific time and location, which is particularly important for SD measurements,
as the measurement of water transparency can be influenced by various environmental
factors, such as partial cloud cover, water turbidity, and the angle of the sun [18,19].
Although weather conditions influence the ability of UAV flight (with Inspire 2 UAV if
winds exceed around 10 m/s), UAVs can collect data during fully cloudy conditions, where
optical satellite data are heavily affected by clouds. Additionally, they can be equipped
with diverse sensors for capturing multispectral or hyperspectral images, thus providing
valuable data on water quality and ecology [14,20]. Furthermore, UAVs can serve as ground
truth to validate satellite data [21,22], thereby enhancing accuracy for the monitored area,
e.g., one tile coverage of Sentinel-2 can reach from 100,000 ha, while UAVs cannot cover
relatively large areas. Moreover, UAV technology presents a strategic advantage in regions
where conventional methodologies struggle due to logistical complications.

SD is primarily influenced by three optical components: Chl-a, colored dissolved
organic matter (CDOM), and total suspended matter (TSM) [23,24]. Different wavelengths
of light penetrate water bodies to different extents. For instance, blue light can penetrate
deeper into clear waters than green or red light. Conversely, in more turbid waters, red
and near-infrared (NIR) light is absorbed more rapidly and scatters quickly, leading to a
diminished signal at the surface. Hence, the spectral signatures captured by remote sensors
are significantly influenced by the composition and clarity of the water body.

Various algorithms exist to calculate water parameters from multispectral data, includ-
ing mechanistic models [25], artificial neural networks [26], and regression algorithms [27].
Each offers unique advantages and applicability, depending on the specific characteristics
of the data and the aquatic ecosystem under study. For instance, a study by Chusnah and
Chu [28] demonstrated the application of machine learning in estimating Chl-a concen-
trations, which are commonly used as indicators for assessing the trophic level of lakes
and the state of water quality. The study utilized machine learning to implement a band
ratio algorithm and generate Chl-a maps from Sentinel-2 and Sentinel-3 satellite images.
However, mechanistic models, relying on physical laws and principles to simulate light
attenuation and scattering processes in water, often provide the most reliable and accurate
predictions, particularly when dealing with smaller datasets, which would not be sufficient
for machine learning models [29].

Lee et al. [30] provided a foundational understanding of the optical properties influenc-
ing SD, which significantly contributed to the development of the quasi-analytical algorithm
(QAA) for more accurate and reliable water clarity estimations. The QAA, a commonly
used mechanistic model for SD, has been utilized in various water bodies [29,31,32]. It has
been applied to MODIS and MERIS satellite data, where it reduced the root-mean-square
error (RMSE) of SD estimation from 1.5 m to 1.0 m. Furthermore, the QAA has been used to
account for the residual error in reflectance data from MODIS satellite data, demonstrating
its potential for remote sensing in monitoring and managing water resources [33]. The algo-
rithm showed excellent results (R2 = 0.96, MAPD = 0.18) when validated with independent
measurements covering oceanic, coastal, and lake waters [34]. However, previous studies
have not delved into the potential benefits of utilizing multispectral cameras onboard UAVs
in combination with the QAA algorithm. The integration of these cameras with UAVs
offers potential improvements in spatial resolution and data availability, bridging the gap
between in situ and satellite remote sensing measurements [18].

It is important to accurately account for reflected light from the water surface—more
specifically, the sun-glint effect—as it can lead to inaccuracies in further processing of water
quality algorithms [18,35,36]. The simplest way of avoiding sun glint is careful UAV flight
time and direction planning; however, since the water surface is often uneven, it is hard to
reduce sun glint completely [37]. There are several methods of reducing the sun-glint effect
in multispectral UAV images during postprocessing, for example, M Muslim et al. [36]
tested four methods proposed by Lyzenga et al. [38], Joyce [39], Hedley et al. [40], and
Goodman et al. [41] and applied them to either the whole image or just the glinted area.
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Other studies used the methods of Hochberg et al. [42], removing glinted pixels as NIR
threshold or using HydroLight simulations [18]. The application of these methods should
align with the specific requirements of the study. For instance, if the primary objective
entails bottom mapping, the method proposed by Lyzenga offers superior results, as
demonstrated in M Muslim’s et al. [36] study. On the other hand, if the analysis is focused
on assessing surface water quality parameters, the Hedley method emerged as the preferred
choice by Windle and Silsbe [18]. Thus, the selection of sun-glint correction techniques
requires careful consideration of the objectives, ensuring the most effective and accurate
outcomes in different scenarios.

By yielding accurate, timely, and spatially inclusive data on water transparency, UAVs
equip decision-makers with invaluable resources, necessitating immediate intervention or
remediation measures. This is particularly evident when we consider the capabilities of
UAVs for mapping vast areas. A single UAV flight, which takes approximately 25 min, can
effectively map an area as large as 25 ha.

This research aimed to evaluate the effectiveness of QAA for the determination of SD
using multispectral cameras onboard UAVs. It was performed by testing QAA on image
datasets preprocessed using five different methods of sun-glint correction. Additionally,
the study examined how water constituents and solar zenith angle affected the discrepancy
between actual and modeled SD values. We hypothesize that the radiometric accuracy of a
calibrated UAS sensor should meet the required accuracy of 5%, expected with ocean color
remote sensing, when compared to in situ measures of Hooker et al. [43] and application of
sun-glint correction methods will improve usability in SD modeling, by deviation of RMSD
of the same 5% from in situ measures, which would still provide practical results for water
quality assessment.

2. Materials and Methods

The study was performed in 43 water bodies in Lithuania (Figure 1), represented by
high variability and proportion of optically active in-water components—turbidity, Chl-a
and CDOM (Supplementary Table S1)—thus bolstering the robustness and generalizability
of the findings. The research was conducted from May 2021 to May 2023.
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Figure 1. (a) Study area with indicated study sites. (b) Pair plot between in situ parameters, measured
in the areas of interest. The diagonal plots show kernel density estimations for each parameter,
offering a smoothed representation of the distribution of data values. ID numbers in pair plots
represent the lake number after the name in the map with n = 43.

2.1. UAV Data Collection and Calibration

An Inspire 2 UAV equipped with a RedEdge-MX camera was used to facilitate
the acquisition of data [44]. The camera features five bands: blue (475 nm ± 16 nm),
green (560 nm ± 13 nm), red (668 nm ± 8 nm), red edge (717 nm ± 6 nm), and NIR
(842 nm ± 28 nm). To ensure optimal image capture, the UAV was flown at a height of
60 m to optimize the balance between spatial resolution and the area covered in each
image, allowing for both relatively high-resolution imagery (from 3 to 4 cm/pixel) and a
reasonable area coverage per flight (around 40–50 m2), with the camera programmed to
capture images every three seconds. This frequency was necessitated by the inability to
view the live feed and capture images in desired areas from the Micasense RedEdge-MX
camera at a distance. The maximum distance between the SD measurement site, where
GPS coordinates were recorded, and the image GPS coordinates were approximately 40 m,
while the minimum distance was 0 when the measurement was above the boat. For the
majority of water bodies, a single measurement site was selected in alignment with the
methods of the Environmental Protection Agency of Lithuania. However, for a few larger
water bodies, two sampling points were obtained for a more comprehensive understanding.
The operation of the UAV was coordinated by two individuals: one controlling the UAV
from the shore and the other onboard a boat, both communicating via phone during the
Secchi disk measurements. The onboard operator also concurrently measured other water
quality parameters outlined in Section 2.2.

For image calibration, the original Micasense RedEdge calibration panel was used.
In accordance with Micasense’s guidelines, a calibration panel image was captured at
the shore before and after each flight, ensuring no shadows were cast on the reference
panel or drone [44]. Three images were taken each time for assurance. Furthermore, the
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Downwelling Light Sensor (DLS2) provides real-time, continuous measurements of the
ambient light conditions during the flight, ensuring that the images captured are properly
calibrated regardless of changes in the lighting environment.

2.2. In Situ Data

Concurrently with the UAV image capturing, in situ SD measurements were performed
using a 30 cm white Secchi disk, a widely accepted method for assessing water transparency
in lakes, rivers, and oceans [45].

The parameters of CDOM—the light-absorbing component of dissolved organic matter,
Chl-a (an indicator of phytoplankton biomass), and turbidity (a measure of the cloudiness
or haziness of water)—were measured alongside SD to assess their potential influence on
water transparency. Parameters were only measured in areas where SD was lower than the
depth of the specific point being assessed.

Water samples for Chl-a measurements were filtered through glass fiber GF/F filters
with a nominal pore size of 0.7 µm and extracted into 90% acetone. Photosynthetic pig-
ments were measured spectrophotometrically and estimated according to the trichromatic
method [46,47]. CDOM was measured spectrophotometrically after filtration through
0.22 µm membrane filters. The CDOM absorption coefficient at 440 nm was derived ac-
cording to Kirk [48]. A Shimadzu UV-2600 spectrophotometer was used for the analysis
of Chl-a and CDOM. Turbidity was measured with a portable turbidity meter (Eutech
InstrumentsTN-100, Landsmeer, The Netherlands) in the Nephelometric Turbidity Unit
(NTU). The instrument has a light-emitting diode in the near-infrared range (Hach Lange
at 860 nm and Eutech Instruments at 850 nm), and the detector measures the scatter at a
90◦ angle. This method is based on International Organization for Standardization (ISO) 7027.

In situ remote sensing reflectance Rrs was acquired to validate wavelengths from
UAV observations of water surface reflectance. Rrs was measured in the spectral range
of 400–800 nm by simultaneous measurements of downwelling irradiance, upwelling
radiance, and downwelling radiance, performed with a WISP-3 spectroradiometer [49]. Rrs
was calculated according to Equation (1):

Rrs =
Lu–ρLd

Ed
. (1)

where Lu is the upwelling radiance, Ld the downwelling radiance, Ed the downwelling
irradiance, and ρ a water surface reflectance factor equal to 0.028.

Central wavelengths of the Rededge MX camera were used (475 nm, 560 nm, 668 nm,
717 nm, 842 nm). NIR data were excluded from comparison with in situ reflectance, which
was not measured at 842 nm; however, NIR was still used for the sun-glint correction step
Section 2.4.

2.3. Preprocessing the UAV Data

The collected UAV images underwent preprocessing of correcting atmospheric effects
and standardizing the format suitable for analysis (Figure 2). The conversion of raw images
to radiance involves several corrective steps to eliminate biases and errors, accounting
for dark-pixel offset, vignette effect, as well as aligning images due to distances between
sensors, which could potentially affect the accuracy and reliability of the data. These steps
were achieved using the Micasense Python (version 3.7, Python Software Foundation, 2018)
workflow, mainly the function raw_image_to_radiance, as described in the Micasense
Github repository for users [44].
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Since reflectance is relatively independent of illumination conditions [11,50], it is
preferred for calculating SD using remote sensing images. The conversion of radiance to
reflectance was performed using a reference panel of known reflectance to determine a
scale factor between radiance and reflectance. This scale factor was applied to the entire
image to obtain a reflectance image. The accuracy of the reflectance image was verified by
extracting and checking the same reflectance panel region used to calculate the scale factor
for any trends or inconsistencies [44].

Reflectance was further normalized by dividing it by π, assuming water as a Lamber-
tian body, following the mathematical model (2).

Reflected radiance = ρ × (cos θ_i)/π (2)

Here, cos θ_i represents the cosine of the angle between the incident light and the
surface normal and ρ–a surface reflectance factor [50]. This normalization ensures that
the reflectance values fall within a standardized range (0 to 1), facilitating consistent com-
parisons and calculations across different surfaces, lighting conditions, and measurement
devices [51,52].

2.4. Image Masking and Sun-Glint Correction

From the initial set of water bodies, four were eliminated (Tūbausių Reservoir, Grabu-
ostas Lake, Ilgis Lake, and Mušėjus Lake) from further analysis. One was excluded due to
excessive cloud glint, while the other three measurements were performed too close to the
shore or contained emerged macrophytes, leaving no sufficient area where the reflectance
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would not be affected (Figure 3a). One water body (Kruminių Reservoir) was surveyed at
late in the day, when the zenith angle was approximately 80 degrees, resulting in shadows
covering half the area; however, the unshaded area was able to be used for the analyses
(Figure 3b), removing the shadowed area using binary thresholding. In total, 39 water
bodies were left for statistical analysis after discarding unsuitable ones.
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Figure 3. (a) RGB of an image affected by shadows, bottom reflectance and floating macrophytes
after thresholding (Grabuostas Lake), (b) RGB of contaminated image (Kruminių Reservoir) with
shadow and shore, but where values can still be used by selecting an area (red square) that was good,
(c) RGB example of a relatively good image (Musia Lake) before removing sun glint and boat.

To ensure accurate SD measurements, objects (boats, coast, macrophytes) and shadows
potentially affecting the measurements’ accuracy were removed. Firstly, the normalized
difference water index (NDWI) was calculated to distinguish between water and non-water
pixels (3). This index was then classified into binary parts using Yen thresholding [53,54],
where non-water pixels were masked as NaN values. Yen method was used also on just
the NIR band to classify areas where pixels were affected by sun glint and masked as NaN
in one of the sun-glint removal tests. This sun-glint removal method was later called the
threshold-removed glint method.

NDWI =
RrsGreen – RrsNir
RrsGreen + RrsNir

(3)

In 11 images, water waves caused a substantial amount of sun glint (Figure 4a), despite
images being captured early in the morning around 10 a.m. GMT+3, when the sun reflection
from calm water should not have reached the lens. Therefore, the sun-glint correction
was performed using the algorithms developed by Hedley et al. [40], Goodman et al. [41],
Lyzenga et al. [38], and Joyce [39], which assume that the water surface reflectance is a
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linear combination of water reflectance and sun-glint reflectance. The models were fitted
using a set of training data consisting of image pixels where sun glint was absent, calculated
from an area with 10% lowest value NIR pixels [18]. The model was then used to predict
water reflectance for sun-glint-affected pixels, reducing reflectance values according to
Equations (4)–(7).
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method. (c) Threshold-removed sun-glint area from NDWI image, recalculated to SD; black areas
represent removed values. (d) The boat removed from NDWI using Yen’s threshold and recalculated
to SD; black areas represent removed values.

The Hedley method (4) calculates the remote sensing reflectance (Rrs) for each pixel in
each band. The method first finds the minimum NIR value and then calculates the slope
for each band using linear regression. The Lyzenga and Joyce methods ((5) and (6)) are
similar to the Hedley method, but use the mean and mode, respectively, of the lowest 10%
of NIR values instead of the minimum NIR value. The Goodman method (7) calculates the
Rrs for each pixel in each band using a constant A (0.000019) and a factor B (0.1) that is
multiplied by the difference between the red and NIR bands:

Hedley Rrsλ = λ + biλ × (NIR − NIRmin) (4)

Lyzenga Rrsλ = λ + bijλ × (NIR − NIRmean) (5)

Joyce Rrsλ = λ + biλ × (NIR − NIRmode) (6)

Goodman Rrsλ = λ − NIR + δ, where δ = A + B × (Redλ − NIRλ) (7)



Drones 2023, 7, 546 9 of 22

where λ is the band of interest (blue, green, red, red edge, NIR), biλ is the slope of the band,
bijλ is equal to covariance between λ and NIR divided by variance in NIR, and NIRmin,
NIRmode, and NIRmean are the minimum, mode, and mean NIR values, respectively. For
Goodman’s method, δ is a constant offset across all wavelengths where A and B are
constants (A = 0.000019 and B = 0.1). Additionally, removing only sun-glint-affected areas
(determined by the binary thresholding Yen algorithm) was compared as an alternative
approach to sun-glint correction methods (Figure 4c).

The images of four water bodies (Vembutų, Stebuliškių, Pakapės, and Krūminių
reservoirs) were also affected by either shore or cloud-glint artefacts. However, most of
these artefacts were successfully removed using binary thresholding, except for one image
(Figure 3b) where the area had to be manually chosen because the thresholding method
was unable to accurately separate the unwanted areas.

2.5. Secchi Depth Model

The quasi-analytical algorithm (QAA) proposed by Lee et al. [30] provides a robust
framework for monitoring SD (8), particularly in scenarios where in situ measurements
may be unavailable. Compared to the empirical approach, this semianalytical method
offers a significant advantage: it does not necessitate the recalibration of the retrieval
algorithm with in situ data [31]. This enhances its utility in diverse settings. As such, it was
considered more suitable for monitoring SD in various water bodies.

Lee et al. [30] introduced a mechanistic model that accounts for the effects of light
attenuation, scattering, and reflection in the water column, as well as the properties of
the Secchi disk itself, in determining the SD. The parameters that determine SD in this
algorithm are the total absorption coefficient ‘a and the total backscattering coefficient ‘bb.
From these parameters, the diffuse attenuation coefficient Kd was calculated, which is the
main variable in the SD formula, besides the Rrs band:

KT_Kd =
1.04 ∗ (1 + 5.4u)0.5

1/
(

1 − sin(θ)2

RI2

)0.5 . (8)

SD =
1

kt_kd ∗ minKd
ln
(

0.14 − minRrs
0.013

)
(9)

where minKd is the minimum value of Kd chosen from Kd calculated with blue, green and
red bands and minRrs is the above-surface remote sensing reflectance of the band that had
the lowest Kd value. Kt_Kd is the upwelling radiance diffuse attenuation coefficient and
was used instead of a constant value of 1.5 as suggested by Jiang et al. [31], where θ is the
solar zenith angle, RI is the refractive index value of water equal to 1.33 and u denotes the
ratio of backscattering coefficient to the sum of absorption and backscattering coefficient.

The sun zenith angle was computed from in situ measurements using the time and
location of the observation. This information was then used to calculate the solar position
using the Python library pytz [55]. This approach provided a reliable means of determining
the solar zenith angle, which is an important parameter in applications related to SD
acquisition from Rrs.

Selecting the appropriate reference wavelength is of major importance for the final SD
value [34]. The green band (560 nm) was used as a reference if the red band Rrs (668 nm)
was <0.0015 sr−1. Otherwise, the red band (668 nm) was used, with accordingly modified
calculations of other parameters, as suggested by Lee et al [30].

SD was calculated using the QAA method for images of 6 types: corrected after Hedley,
Lyzenga, Joyce and Goodman sun-glint algorithms, threshold-removed images and images
with no correction.
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2.6. Validation and Interpretation of Results

All of the final modeled SD values and reflectance images were averaged to ensure that
images could be compared with in situ data. Pearson correlation coefficients were calculated
to assess multicollinearity between the reflectance values of different wavelengths. The
final reflectances obtained after applying various correction methods and no correction
(Sections 2.3 and 2.4) were validated with in situ reflectances (WISP-3). The accuracy of
these methods was evaluated by bias (9), while the root-mean-square deviation (RMSD)
was used as an indicator of the QAA model’s precision (10), and the Pearson’s correlation
coefficient (r) described the relationship strength between the model’s output and the real
data values.

Bias =
1
N ∑N

i=1(Xestimated,i − Xmeasured,i) (10)

RMSD =

√
∑N

i=1(Xestimated,i − Xmeasured,i)
2

N
(11)

The same accuracy and precision measures were applied to modeled SD values.
Generalized additive models (GAMs) were employed [56] to investigate the relationships
between the difference in modeled and in situ SD (the response variable) and a set of
independent variables: CDOM, Chl-a, turbidity, and solar zenith. The GAMs were chosen
due to their flexibility in modeling nonlinear relationships and their ability to handle
interactions between predictors. The GAMs were utilized using R programing language
with the mgcv [57] library for statistical parameters and ggplot2 [58] library for visualization.
Before analysis, the cross-correlation (based on the Pearson correlation coefficient) between
the independent variables was determined. The correlation was relatively high (r = 0.76)
between Chl-a and turbidity; therefore, turbidity was not included in the GAMs. Before the
interpretation of the GAM results, the residuals were visually inspected with diagnostic
plots for normality and equal variance against the fitted values. F and p values were
obtained to assess the relative importance and significance of the independent variables
(p < 0.05 was considered a statistically significant relationship). The fit of the model was
evaluated using the explained deviance. A response plot was graphically represented to
visualize the relationship between an explanatory variable and the response. As there
were multiple predictors, each one was plotted separately with a smooth curve and the
confidence interval of the effect.

To visualize the SD results, a subset of images with calculated SD values were exported
as TIFF and mosaiced according to image metadata GPS coordinates in QGIS version
3.16 [59]. The result was then visualized on top of the RGB mosaic that was mosaiced using
OpenDroneMap [60] photogrammetry software.

3. Results
3.1. Band Validation after Sun-Glint Correction

Across all correction methods and the in situ data, the green band (560 nm) consistently
showed the peak mean value, while the blue band (475 nm) indicated the valley or lowest
mean value. The general shape of the data appears to peak at the green band, with
decreasing values on either side at the blue and red bands (668 nm), and a slight increase at
the red edge band (717 nm). This pattern was consistent across all the correction methods
and the in situ data, indicating the robustness of this spectral feature in the multispectral
UAV image data. In terms of multicollinearity, the green and red exhibited the strongest
correlation of 0.97, closely followed by correlations between the green and red edge at 0.96
and the red and red edge at 0.95. The blue band also exhibited strong multicollinearity
with the other bands: 0.97 with green, 0.94 with red and 0.91 with red edge.

The highest mean values across all bands were observed with the Lyzenga correction
method, while the lowest was observed with the Goodman correction method (Figure 5).
The in situ values were generally lower than the corrected values, except for the Goodman
correction method.
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Figure 5. Spectral scatterplots demonstrating the agreement between in situ measured and sun-glint-
corrected (or not corrected) reflectances in the UAV images. Statistics (r, RMSD, bias) and points are
color-coded accordingly, except for the red edge, which is gray. A diagonal black line marks perfect
agreement (1:1).

Removing the two outlier points, one from green and one from the red edge band,
decreases r values and the r mean becomes similar to the red bands. However, it also
decreases RMSD and bias for these bands, thus not decreasing the accuracy of the data.

The validation results provided robust evidence regarding the performance of the
correction methods and the reliability of the final reflectance values. The correlation for
all methods (Figure 6) had the same trend, where it was the lowest for the blue band
(r = 0.38 ± 0.12) as well as for the red band (r = 0.56 ± 0.14), but higher for the green band
(r = 0.75 ± 0.11) and red edge band (r = 0.80 ± 0.10). However, RMSD was relatively low
for the blue band (RMSD = 0.0043 ± 0.0016) and red (RMSD = 0.0048 ± 0.0018) bands and
slightly higher for the green (RMSD = 0.0060 ± 0.0013) and red edge (RMSD = 0.0053 ± 0.0014)
bands. Bias for most methods followed a similar trend of larger underestimation for the blue
band and green bands, then slight overestimation for the red band with Goodman, Hedley
and threshold-removed glint methods, but still undervaluation for other methods, and
slightly lower undervaluation for the red edge band. Goodman’s method was exceptional
to these trends, as green, red and red edge bands were overestimated.



Drones 2023, 7, 546 12 of 22Drones 2023, 7, x FOR PEER REVIEW 12 of 22 
 

 
Figure 6. Mean r, RMSD and bias between corrected reflectances with each method and in situ meas-
ured reflectances across all available wavelengths. RMSD and bias are presented in reflectance val-
ues. 

Overall, Goodman’s algorithm showed the highest correlation for the green and red 
edge bands, with r values of 0.90 and 0.92, respectively. However, it had low r values for 
the blue and red bands, with 0.32 and 0.71, respectively. The RMSD values for Goodman 
were relatively low across all bands, ranging from 0.002 to 0.005. Similarly, the Hedley 
algorithm consistently performed well across all bands, with r values ranging from 0.58 
to 0.88. The RMSD values were similar to those of Goodman, ranging from 0.003 to 0.005. 

The Joyce and Lyzenga algorithms showed matching performances, with lower r val-
ues and higher RMSD and bias values compared to Goodman and Hedley. The r values 
ranged from 0.27 to 0.69 for Joyce and from 0.26 to 0.67 for Lyzenga. The RMSD values 
ranged from 0.006 to 0.007 for both algorithms. 

The control group with no correction applied showed moderate r values, ranging 
from 0.41 to 0.81. The RMSD values were similar to those of Goodman and Hedley, rang-
ing from 0.005 to 0.006. 

3.2. Validation of QAA SD Model 
The performance of the QAA model’s (Figure 7) ability to predict SD when compared 

with in situ measurements showed a relatively high correlation across all methods, with 
r ranging from 0.74 (threshold-removed glint) to 0.92 (Hedley glint correction). RMSD 
(from 0.65 to 1.05 m) and bias (from −0.78 to 0.58 m) showed acceptable results for all 
methods as well. 

  
(a) (b) 
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Overall, Goodman’s algorithm showed the highest correlation for the green and red
edge bands, with r values of 0.90 and 0.92, respectively. However, it had low r values for
the blue and red bands, with 0.32 and 0.71, respectively. The RMSD values for Goodman
were relatively low across all bands, ranging from 0.002 to 0.005. Similarly, the Hedley
algorithm consistently performed well across all bands, with r values ranging from 0.58 to
0.88. The RMSD values were similar to those of Goodman, ranging from 0.003 to 0.005.

The Joyce and Lyzenga algorithms showed matching performances, with lower
r values and higher RMSD and bias values compared to Goodman and Hedley. The
r values ranged from 0.27 to 0.69 for Joyce and from 0.26 to 0.67 for Lyzenga. The RMSD
values ranged from 0.006 to 0.007 for both algorithms.

The control group with no correction applied showed moderate r values, ranging from
0.41 to 0.81. The RMSD values were similar to those of Goodman and Hedley, ranging from
0.005 to 0.006.

3.2. Validation of QAA SD Model

The performance of the QAA model’s (Figure 7) ability to predict SD when compared
with in situ measurements showed a relatively high correlation across all methods, with
r ranging from 0.74 (threshold-removed glint) to 0.92 (Hedley glint correction). RMSD
(from 0.65 to 1.05 m) and bias (from −0.78 to 0.58 m) showed acceptable results for all
methods as well.

Comparing methods between themselves, the accuracy of all parameters had similar
trends as accuracy for band comparison with in situ measurements (Section 2.1), where the
SD values were overestimated for the smaller SD values and underestimated for the larger
ones, except for Goodman’s method, where most of the SD values were overestimated.

Hedley’s sun-glint-corrected images achieved the best results according to the RMSD
measures (0.65 m), while r was just slightly smaller (0.91) than with Goodman’s method
(0.92), which achieved the best results based on the r value of 0.92. However, the RMSD
value for Goodman’s method was relatively high (1.00 m) compared to the values of other
methods. This method overestimated most of the values for both small and large SD values.

The Joyce and Lyzenga methods showed similar results between themselves with r
values of 0.87 and 0.85, respectively. The RMSD values for Joyce and Lyzenga were 0.79
and 0.86 m, respectively, and biases showed underestimation.

The worst-performing method was when only sun-glint-affected pixels were removed
and all other pixels were left unchanged (r = 0.75, RMDS = 1.05 m, bias = 0.13 m). The
control group with no correction showed slightly better results: r value of 0.89, RMSD
value of 0.74 m and underestimation according to bias.
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Figure 7. Scatterplots with linear regression line and 95% degrees of freedom (green) of modeled and
in situ SD. Best-fit line (1:1) (black) for each image dataset, using different preprocessing methods:
(a) no correction, (b) threshold-removed glint, (c) Goodman, (d) Hedley, (e) Joyce, (f) Lyzenga (n = 39).
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3.3. Relation with Water Constituents

The average in situ SD of the lakes was 1.91 ± 1.53 m (±standard deviation), ranging
from a minimum of 0.25 to a maximum of 7.2 m. The mean CDOM was 2.95 ± 3.2 m−1

(min–max: 0.37–20.01 m−1), the mean Chl-a concentration 26.59 ± 26.48 (1.13–113.23) and
the mean turbidity 6.76 ± 11.8 NTU (0.00–70.62 NTU).

The environmental factors in GAMs significantly explained (38.3%) the variance in the
difference in SD measurements. The interaction term of the sun zenith angle and CDOM
was significant (F = 6.808, p-value < 0.05), suggesting that these factors together affect the
accuracy of SD retrieval (Figure 8). The most important and statistically significant factor
was CDOM (F = 10.47, p < 0.05), followed by the solar zenith (F = 4.84, p = 0.02). Chl-a
values did not have a significant effect on the GAM model (F = 0.295, p = 0.59).
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any significant outliers that could unduly influence our model’s predictions. 

Figure 8. GAMs fitted smooth lines (blue lines) between the difference in SD (modeled vs. in situ)
and graphs for each independent environmental factor: (a) solar zenith (b) CDOM (c) Chl-a and
(d) interaction plot of solar zenith angle. CDOM and predicted difference plane between in situ and
modeled SD (m). The red dashed lines show a 95% confidence interval for fitted lines.

In the residual plots of the model a random scatter of points was observed (Figure 9),
with no discernible pattern or trend. This scatter indicates that the residuals have a constant
variance, which suggests homoscedasticity. The absence of any systematic structure or
pattern in the residuals reinforces the notion that nonlinear relationships assumed by our
model are an adequate representation of this dataset. Additionally, we did not identify any
significant outliers that could unduly influence our model’s predictions.

The modeled SD values were overestimated (to over 1.3 m) when CDOM values were
<7.5 m−1, while underestimated (over 1 m) when CDOM was >7.5 (although underestima-
tion did not significantly change when CDOM > 12). For the solar zenith, the SD values
were overestimated (over 0.7 m) at the lower solar zenith angles (<45 degrees), and then
a relatively low effect (within ±0.5 m) was between 45 and 75 degrees of the solar zenith
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angle and the underestimation sharply increased to over 1.5 m when the solar zenith angle
was >75 degrees.
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4. Discussion
4.1. Advancements in SD Measurements

This research focused on evaluating the effectiveness of the QAA for determining SD
using a multispectral camera onboard UAVs. This novel approach expands the current
understanding of measuring SD by introducing the potential use of UAVs, balancing the
broad coverage provided by remote sensing methods with the high accuracy character-
istic of in situ measurements, thereby serving as a more comprehensive alternative to
traditional methods.

The experimental results did not uniformly support our hypothesis that the application
of sun-glint correction methods would enhance the utility of multispectral images in SD
modeling by reducing the RMSD by about 5% and reducing the bias by a similar amount.
The precision observed across all bands appears to correspond with the spectral band
reflectance intensity, where bands demonstrating relatively lower reflectance intensity
(e.g., blue band) typically displayed a lower compliance between the reflectance measured
from the UAV and the in situ reflectance measurements and the reverse held true for bands
with relatively higher reflectance intensity. Environmental factors such as weak water
surface signal and roughness of the water surface can introduce systematic and random
errors, respectively, into water surface detection [13]. The correlation with the blue was
identified as the least robust (Figure 7), which can be ascribed to increased vulnerability to
scattering, a trait inherent to these bands in the water environment [61].

Among the tested glint correction methods, the Hedley and Goodman methods
emerged as the most effective across all bands, with Hedley demonstrating the lowest
RMSD across all bands. For instance, a study conducted by M Muslim et al. [36] employed
a similar methodology to our study, testing multiple sun-glint correction methods. Their
findings indicated that the Lyzenga method yielded the most accurate results. However, it
is important to note that the primary objective of their research was to map coral reefs, and
in most of the study area, the bottom was visible, which may have influenced their results.
In contrast, Windle and Silsbe [18] found that the Hedley method provided the highest
correlation coefficient (r) and the lowest RMSD, corresponding closely with the results of
our study.

The key distinction between the three glint correction methods (excluding the Good-
man method) lies in the slope or covariance index of NIR band values. In the case of the Hed-
ley method, the slope was the largest, as it takes the minimum value of the band as the start-
ing point, as opposed to the mode (Joyce method) or the mean (Lyzenga method) [38–40].
This suggests that the images used in our study required a larger numeric correction due to
the lowest initial reflectance values.
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The results showed that the Goodman’s method reflectance intensity values tend to
be significantly different from other methods for the blue, red and red edge bands. This
method, which was ranked as the second-best-performing in our study, adopted a different
approach, using constant values to correct for the sun-glint effect [41]. This approach led to
overall better r values between in situ and the green, red, and red edge bands onboard the
UAV. However, the performance of the blue band was significantly lower than when using
the Hedley method. Despite this, the Goodman method demonstrated the lowest RMSD
values and small overestimation bias, underscoring its effectiveness in applications where
low reflectance intensity deviation from in situ radiometer is required.

The results also indicated that applying glint correction to the entire image rather than
just the binary thresholded area can yield better results in terms of the overall accuracy
of the reflectance values. This observation implies that the method of applying glint
correction solely to the binary thresholded area might not be the most effective strategy,
as it may overlook potential glint effects present beyond this area. Additional sun-glint
correction research should be considered in the future for better generalization of reflectance
correction [62].

The overall agreement between the in situ SD measurements and the modeled SD
values might be connected to their handling of in-water constituents such as colored
dissolved organic matter (CDOM) and solar zenith angles, which significantly influenced
the accuracy of the models. CDOM was found to predominantly influence the discrepancies
between in situ measurements and modeled SD. Given that CDOM primarily absorbs
light in the ultraviolet (UV) and blue regions of the spectrum, resulting in a relatively
low acquired signal by sensor [63], this agrees with our observation that the blue band
demonstrated one of the weakest correlations between in situ and UAV-derived reflectance
measurements [64]. It is plausible that Goodman’s and Hedley’s methods more effectively
managed this factor, where Hedley’s had the highest r and Goodman’s had the lowest
RMSD for blue band reflectance, resulting in a closer match with in situ values. Another
potential interference is bottom reflection, particularly in clear waters, where the difference
between the SD and the actual water depth is minimal. While the SD was consistently less
than the water body depth in our study, situations where this difference is minimal could
lead to bottom influences on the measurements.

Similarly, high solar zenith angles above 70◦ impacted the accuracy of modeled SD,
leading to underestimations by up to 1.5 m. This is likely due to increased scattering
and absorption of light at higher zenith angles, resulting in less light reaching the water’s
surface and thus larger differences between modeled and in situ SD values [65]. This
reinforces the need for sophisticated algorithms that can accurately model these complex
environmental factors in SD predictions.

4.2. Practical Applications

Accurate SD determination in large areas is particularly important given the increasing
demand for high-resolution data on water transparency for applications including water
resource management, environmental monitoring, and ecological modeling [66]. Measures
of SD can reduce the need for boat measurements in lakes, also allowing for data collection
at a higher frequency, surpassing traditional monthly monitoring intervals that may be
inadequate for dynamic water bodies with recurring algal blooms, which in some cases can
be inaccessible due to terrain or vegetation around the lake [67]. UAVs could also be used
in shallow coastal waters (<1.5 m), where a research vessel usually cannot access them,
e.g., in the Curonian Lagoon [68].

The optimal fit model using Hedley sun-glint correction on the whole image was
used to construct a mosaic from 45 individual images (Figure 10) of Kašučių Lake on
20 September 2021. All of the pixels were left unmasked to show how shadows affect the
final results, and therefore this aspect should be taken into consideration while planning
the acquisitions.
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color represents in situ SD of 4.3 m.

This example shows the efficacy of the QAA best-fit model in transforming discrete
data into a coherent, large-scale representation of SD. The SD varied from 4 to 6 m, where
the highest values were determined in the areas covered by tree shadows. Elsewhere, SD
values were more homogeneous (4.0 to 4.8 m), but some noise was still apparent in the
orthomosaic (snow-like effect), as SD values are calculated for each pixel. For this reason,
the mean value of the whole image was compared to in situ measurements in the area,
instead of selecting a small square or point in the images, which would have resulted in
lower accuracies.

This method has potential applications in shaping policies and regulations related to
water bodies. With the methods provided in this paper, processing workflow for one 5 ha
lake should not take longer than 20 min. Moreover, this process can be fully automated,
requiring only the supervision of the final results. To put this into context, Lithuania has
around 6000 lakes, and about 340 of them are larger than 5 ha [69], which would be suitable
for monitoring using a Sentinel-2 satellite, assuming that the shape is not elongated. The
rest of the smaller lakes could be monitored by applying methodology from this study
and potentially could improve the accuracy and coverage of current national monitoring
conducted by the Environmental Protection Agency, which currently covers around 80 lakes
every 6 years in Lithuania.

4.3. Future Research and Potential Limitations

The QAA model possesses the flexibility to process remote sensing data sourced
from an array of sensors, including but not limited to MODIS, MERIS, OLCI, MSI and
GOCI. By integrating a more diverse set of global in situ measurements corresponding to
various water types, it is conceivable to further refine the precision and effectiveness of the
QAA model.

While the research results demonstrate potential, it is essential to emphasize that the
investigation was conducted across a broad range of unique aquatic environments and
included measurements captured under variable sun zenith angles. Consequently, for
future work, there is potential to modify the existing QAA used for SD estimations to
better account for CDOM and sun zenith angle, which in this study have been shown to be
critical parameters. This modification could improve our understanding and predictions in
the context of diverse and changeable aquatic conditions. Several limitations need to be
addressed in future research. One of the main limitations is the assumption of linearity in
the Hedley method. This method requires at least one dark pixel unaffected by glint [40] to
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be visible in the image, and if the whole image is affected by glint, this deglinting method
will provide incorrect data. Understanding these limitations aids in contextualizing the
results and fosters the development of more refined glint correction methodologies in the
future. This is also relevant for a partial cloud glint when clouds are reflected from the
water surface in some, but not all areas of the image, for the analysis of multispectral
drone imagery [40,70]. Most methodological studies on water surface mapping using UAVs
suggest careful planning of flight time, preferably during conditions of clear skies and
low sun glint [37]; however, this restricts one of the main advantages of UAVs—obtaining
data on demand—especially if there is a need to visit several inland water bodies on the
same day.

Many studies underscore the importance of choosing the appropriate quasi-analytical
algorithm (QAA) for different optical water types [13,29,34]. The optical properties of
coastal and inland waters, which are primarily influenced by the concentrations of sus-
pended particulate matter, phytoplankton, and dissolved organic material, exhibit spa-
tial and temporal variability, leading to diverse optical water types [71,72]. Applying a
universal algorithm in these optically complex waters often results in significant uncer-
tainties [71,72]. This insight highlights the importance of optical water classification to
enhance retrieval accuracy, as indicated by numerous studies that developed class-specific
algorithms for bio-optical parameters and achieved improvements by applying optical
classification in the retrieval of these parameters [72–75]. In our study, relatively high
concentrations of CDOM significantly affected the optical properties of the water, thereby
introducing uncertainties in the results. One possible approach to improve the accuracy of
the QAA is to calibrate the algorithm for the CDOM-dominated water bodies.

In addition to the aforementioned limitations, another significant challenge to con-
sider is the interference of high-vegetation pixels in the analysis of multispectral drone
imagery [76]. Vegetation and their shadows, especially when in close proximity to water
bodies, can skew the reflectance measurements and thus influence the accuracy of Secchi
depth estimates. Consequently, implementing strategies to exclude these pixels during
image analysis can enhance the reliability of the measurements.

The applicability of water parameters extends beyond SD, allowing for the calcula-
tion of additional parameters. Prior research has demonstrated the feasibility of employ-
ing multispectral UAVs for turbidity [77–79], Chl-a [77,79–81], CDOM [79], TSS [80,82],
cyanobacteria [80] and macrophytes [16,53,83]. Given the inherent scalability of the UAV-
based methodology, it stands as a promising tool for extensive SD assessments and water
quality surveys, thereby facilitating large-scale studies focused on water transparency. This
advancement brings us a step closer to exploiting the full potential of UAV-based remote
sensing for assessing and monitoring aquatic environments.

5. Conclusions

This study revealed that the accuracy of SD measurements is profoundly influenced
by sun-glint correction methods employed in UAV flights. There was a consistent agree-
ment across all methods and the in situ radiometric data, particularly for the green band,
emphasizing the robustness of multispectral UAV image data. Among the tested methods,
Hedley’s method demonstrated superior accuracy (RMSD = 0.65 m) and precision, thereby
significantly contributing to the accuracy of the UAV-derived SD data.

Moreover, findings underscored the significant role of environmental factors, particu-
larly the CDOM and solar zenith angle, causing inaccuracies in SD measurements: a solar
zenith angle > 70◦ resulted in an underestimation of up to 1.5 m in modeled SD, while
CDOM > 12 m−1 caused similar underestimations. Our research, therefore, supports the
use of UAVs equipped with multispectral cameras as a viable method for SD determination
in inland water bodies with SD of up to 7 m and lower than 12 m−1 CDOM. The results
point towards an approach capable of reaching a correlation as high as 0.91 and reduc-
ing the RMSD by up to 12.85% (Hedley’s method), thereby enhancing the versatility and
reliability of SD measurements.
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and turbidity.
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