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Abstract: This paper introduces a location–allocation model to support environmental emergency
response strategic planning using a drone-based network. Drones are used to verify potential
emergencies, gathering additional information to support emergency response missions when time
and resources are limited. The resulting discrete facility location–allocation model with mobile
servers assumes a centralized network operated out of sight by first responders and government
agents. The optimization problem seeks to find the minimal cost configuration that meets operational
constraints and performance objectives. To test the practical applicability of the proposed model,
a real-life case study was implemented for the municipality of Ji-Paraná, in the Brazilian Amazon,
using demand data from a mobile whistle-blower application and from satellite imagery projects that
monitor deforestation and fire incidents in the region. Experiments are performed to understand the
model’s sensitivity to various demand scenarios and capacity restrictions.

Keywords: facility location–allocation problem; drones; wildfires; deforestation; environmental
emergency response; Amazon rainforest

1. Introduction

The Amazon is the largest rainforest in the world and plays an important role in
managing the Earth’s natural systems. However, climate change is altering the region’s
rainfall patterns and decreasing its resilience to threats, such as fires and biodiversity
loss [1]. The rainforest is also under great deforestation threats and recent years have seen
record-high rates of forest loss [2]. The main causes of deforestation in the Amazon are
agricultural expansion, mining, and logging, all of which are mostly illegal [3–5].

The Amazon covers nine countries, and most of its area is within Brazil’s jurisdiction [3].
Brazil is responsible for over 80% of the deforestation in the region, even though protected
areas account for 54% of the Brazilian Amazon [6,7]. In the Paris Agreement, Brazil stated
several ambitious goals, such as zeroing illegal deforestation by 2030, dramatically reducing
greenhouse gas emissions (GHGE), and restoring and reforesting native vegetation [8,9].
However, in 2020, deforestation rates reached new heights and the country is not on track to
fulfill its commitments [2]. Currently, the country leads the global list of tropical rainforest
tree cover loss and saw the greatest deforestation of the decade in 2020 [2,10].

Addressing Amazon Rainforest deforestation threats is an issue of global and regional
concern due to the region’s high biodiversity and the potential feedback to the Earth’s
natural cycles [11,12]. Due to the negative synergies between deforestation, climate change,
and widespread anthropogenic fire, it is estimated that the removal of 30 to 40% of the
Amazon Rainforest could transform it into a permanently drier climate, hindering efforts
to achieve the goals outlined in the Paris Agreement [13–16].

Deforestation and wildfires are costly and deadly, presenting not only a risk to wildlife
but also to human health [17,18]. Living near Amazon fire outbreaks was shown to increase
the probability of hospitalizations due to medical emergencies [19]. In the 2019 fire season,
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it is estimated that Brazil had nearly 5000 additional deaths due to fine particulate matter
emitted by wildfires in the Amazon region [20]. Additionally, the pollutants emitted can
travel long distances and affect areas far away from where the fire initially took place [21].
Effective management of wildfires requires early detection and rapid extinguishment, to
minimize potential damages to wildlife and human health [17,22].

Managing wildfires and combating increased clearing in the Amazon region requires
improving and enforcing environmental policies and using state-of-the-art technologies
to help enforce existing regulations and prevent new deforestation [2,23,24]. Increased
monitoring and law enforcement can help prevent deforestation and protect native forest,
because weak oversight is related to higher rates of deforestation [25,26]. The lack of an
appropriate response to environmental crimes and illegal occupation can have devastating
effects, as there are clear links between impunity, land speculation, and forest degradation
in the Amazon [27].

In recent years, communities in the Amazon region and public security agents have
started to use drones to improve their surveillance capabilities and document illegal forest
degradation in the area [28]. The Madre de Dios region, in the southern part of the Peru-
vian Amazon, is a region threatened by illegal mining, logging, and illegal deforestation.
Community leaders developed a comprehensive monitoring system that included satel-
lite monitoring, drone patrols, and legal action in case of irregularities [28–30]. In Brazil,
members of the Uru-Eu-Wau-Wau indigenous territory are also using drones to help track
illegal deforestation in their land [31]. Also in Brazil, firefighters and the armed forces are
using drones to support emergency response operations [32,33].

The use of drones in the Amazon forest has many advantages. First, drones are
small and flexible and can be placed in a variety of locations without requiring major
infrastructure investments. Secondly, illegal deforestation is often caused by outsiders
who wish to exploit the rainforest, and encounters between government agents and illegal
actors are often not peaceful [4,34]. The use of drones would allow first responders and
park rangers to gather information more safely, because drones can fly to dangerous
environments that would otherwise be inaccessible to humans or difficult to reach by road.

In this context, this paper introduces a drone-based network design model to support
the environmental emergency response in the Brazilian Amazon. The proposed model is
strategic in nature and seeks to determine a minimal-cost network configuration that meets
operational constraints and performance targets. Drones are used to verify complaints and
to gather information to support the emergency response planning process. The drones are
operated out of sight through a centralized network operated by government agents and
first responders. The resulting optimization problem is a discrete facility location–allocation
model with mobile servers.

The contribution of this paper is threefold. First, it introduces a novel method to
design a drone network that extends the literature on drone-based models by consider-
ing different types of emergencies and drones and by explicitly modeling the impact of
additional batteries, unlike previous approaches that assume a single type of service and
do not consider the effect of additional batteries on the total available endurance and
network cost [35–37]. Additionally, although drones are already being used in the Amazon
Rainforest for small-scale missions, to the best of the authors’ knowledge, this is the first
study to provide a formalized analytical method to support the strategic decision planning
involved in designing a drone-based network to support the environmental emergency
response in the region. Lastly, this paper demonstrates the applicability of the proposed
approach by solving a realistic case study based on the municipality of Ji-Paraná, located in
the Brazilian Amazon, using real emergency data from well-known sources of Amazon
Rainforest deforestation and fire incidents. The results show that drones have the potential
to considerably reduce the response time in both rural and urban areas, thus highlighting
the benefits obtained when drones are considered in the emergency response mission.

The rest of this paper is organized as follows. Section 2 discusses the related research.
The proposed optimization model is described in Section 3. The case study is discussed at
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length in Section 4. The results are discussed in Section 5. Finally, the concluding remarks
and future research directions are discussed in Section 6.

2. Related Work

This section presents a discussion of the current research related to drone-based environ-
mental emergency response and drone-based strategic discrete location–allocation models.

In emergency response planning, the time span between the request for service and
the arrival of first responders at the incident location must be reduced as much as possible
to gather more precise information about the event and to prevent it from spiraling out
of control. For example, forest fires are unpredictable and can expand rapidly and cause
severe damage [38,39]. Arriving early to the scene also allows first responders to gather
information about suspicious activities related to deforestation and forest degradation,
because many environmental emergencies are anthropogenic [5,40].

Traditionally, planning for an environmental emergency response is based on visual
observations and subjective estimation by experts or bystanders [17]. However, these
observations can be ambiguous, imprecise, and incomplete, which can jeopardize the
operation, because decision-makers can operate under a lot of pressure and are time-
constrained.

Drones have emerged as an appropriate technology to perform data collection tasks
in hard-to-reach regions or where the task is unsafe or impossible for humans. The aerial
view that drones provide can help in forest monitoring as well as a fast response in large-
scale areas [41]. Wireless sensor networks (WSN) for forest monitoring are an alternative
to drone technology. However, sensors can be too sensitive when used outdoors, are
difficult to maintain, and are not scalable due to their static nature [42]. Satellites are also
popular forest monitoring tools, but they have limited ground coverage, a long time lag to
deliver the information, and low resolution, making it hard to detect small areas of forest
clearing [43,44].

Drones are useful in an environmental emergency response due to their maneu-
verability, wide range of sensors, remote control, automation, and better large-distance
surveillance and monitoring. They provide a cost-efficient alternative for preventing and
detecting and the real-time support of environmental emergencies [42] while not causing
too much disturbance for the region’s wildlife [45,46]. Drones have been proposed for
many different forestry and environmental emergency response applications, such as for
gathering live information about wildfires to support firefighters on duty and to conduct
wildlife inventory management in the Peruvian Amazon [47,48].

Designing a network of drones to support an environmental emergency response
requires determining the number of drones, the locations where launch stations should be
established, and the allocation of drones to incidents. Another important consideration
when designing emergency response systems is the type of emergency to consider, because
each one must be served by different types of drones. Drones can be chosen based on vari-
ous specifications, such as endurance, maximum range of operation, speed, and acquisition
cost. Such a model belongs to the class of capacitated multi-facility location–allocation
problems, where the incident locations are customers and the drone bases are mobile
servers and there is a limit to the demand each drone can serve.

Traditionally, facility location–allocation models deal with the problem of opening
new base stations, with mobile or static servers, to respond to a set of client demands and
allocating each customer to a specific base [49]. Facility location problems can be discrete
or continuous. In the former, the location of candidate base stations is known a priori,
while in the latter, the locations of candidate stations are decision variables in the model. A
review of the main discrete facility location problems can be found in [50]. These problems
arise in many practical applications, such as the location of fire brigades, hospitals, and
distribution centers. More recently, facility location–allocation problems have been applied
in the context of designing drone-based networks in a variety of contexts.
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Although drones are being used to support environmental emergency response and
conservation [38,39,42,44–46,51,52], the majority of the works are empirical studies [41,53,54]
or operational models for continuous monitoring of wildland, mission planning, and
coordinated task allocation [17,55,56].

A monitoring system for tactical forest firefighting is introduced in [17]. The authors
propose an unmanned aerial vehicle (UAV) system with remote sensors and discuss the
architecture of a system in which drones need to respond to three types of missions:
patrol, confirmation, and monitoring. Although the model presents a detailed analysis
of a firefighting system architecture and discusses remote sensing and image processing
techniques relevant for such systems, it does not consider strategic aspects of the network
design, such as the location of bases or cost considerations. In [56], a UAV system consisting
of several drones and a central station for fire monitoring is introduced. The system seeks to
compute in real time the evolution of the fire front shape and potentially other parameters
related to fire propagation. Given that the missions discussed in the paper consist of
multiple drones, the authors discuss in detail the decision-support algorithms used for the
coordination and control of the fleet of vehicles. However, the study does not consider how
the central station should be distributed or other strategic decisions related to the design of
the drone network.

Another relevant related area of research is UAV task allocation models, particularly
swarm methods [57–61]. In these problems, drones operate as a fleet or swarm in coor-
dinated missions. In such scenarios, a safe operation requires implementing a motion
path planning and navigation system for multiple drones with support for collision pre-
diction and avoidance, given that the drones must operate in a coordinated manner with
incomplete and uncertain information and cope with dynamic environments. Although
swarm approaches are useful techniques to deal with the problem of missions that require
fleets of drones operating in a coordinated manner, the problem in the scope of the present
paper requires different modeling approaches. This is mainly because, here, the focus is the
strategic decisions that stakeholders must make when designing a drone-based network to
support an environmental emergency response. In the present paper, the decision-maker
must make several strategic decisions prior to addressing tactical aspects of the implication.

In summary, this project differs from swarm-based task allocation models in three
main ways. First, in the present model, each drone is assigned a single mission and makes
one-to-one trips from the base station to the location of the incident, unlike in models
where a group of drones must visit several locations prior to returning. Thus, routing
considerations are not in the scope of the proposed research. Secondly, the central planner
controls the allocation of tasks, not the agents. Lastly, the numbers of drones and base
stations are not known a priori and are also decision variables in the model.

To the best of the authors’ knowledge, there are no other works addressing the strategic
drone network design for the environmental response planning problem described in this
paper. However, there are examples in the healthcare, tourism, and transportation literature
that use discrete facility location models to design drone networks, which are of interest
for the present research. One recent application of drones is to provide support to out-
of-hospital cardiac arrests (OHCA) by delivering automated external defibrillators to the
location of the emergency. In [62], a queuing-based location–allocation model is introduced
to respond to OHCA events in Toronto. A discrete facility location–allocation model is used
to determine where to open facilities and the assignments of patients to facilities while a
queuing model was used to determine the number of drones to place at each base station,
considering the effect of congestion. In [35], a maximum coverage location problem is
used to determine the placement of drones such that all OHCAs in Salt Lake City could be
reachable in under one minute. The work is expanded in [36], which formulated a backup
coverage location–allocation problem to design a network of drone-based defibrillator
delivery to OHCAs in Salt Lake City.

Emergency medical services differ from environmental emergencies in two ways.
First, an environmental emergency response network is unlikely to be congested, whereas
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medical emergencies can happen enough times in a day to merit an explicit consideration
of congestion, such as in [62], or backup coverage, such as in [35,36]. Secondly, in the
case of medical emergencies, the response time is the most relevant metric, because not
arriving within a certain time interval may be the difference between life and death. For
environmental emergencies, on the other hand, this is not necessarily the case. Arriving as
quickly as possible at incident locations is still relevant, but cost considerations must also
be taken into account more explicitly.

Another implementation of a drone facility location can be found in the tourism
management literature. In [37], an unmanned aerial vehicle (UAV) network is proposed to
provide online virtual tours in open-air tourist attractions using a discrete facility location–
allocation model. The model considers that each location can be partially covered by
different launch stations and seeks to determine the number of drone launching stations
to open, the location of each base, and the number of drones assigned to each center. The
objective function minimizes the total cost of the system as a function of the number of
drones and the cost of opening facilities. The model assumes that drones are always fully
operational and that extra batteries are stored at each launching station, but the number
and cost of additional batteries are not explicitly considered in the model. Additionally,
the model only considers one type of customer and a single type of drone is considered in
the model.

The problem of locating a pre-specified number of capacitated facilities and assigning
drones to serve customer demands is discussed in [63]. Each facility serves as a drone
launching site for distributing the resources in a transportation network. Drones make
several one-to-one trips from the facility location to the demand points and back until
the battery range is met. The recharging of drone batteries is not considered due to the
short-term nature of the planning period considered. The paper presents an integer linear
programming formulation that seeks to maximize coverage while explicitly incorporating
the drone energy consumption and range constraints, the maximum coverage facility
location problem with drones. Given the complexity of the proposed problem and high
solution times with state-of-the-art mixed integer programming (MIP) solvers, the authors
propose Greedy and decomposition heuristics to improve the solution times, something
that is crucial for the short-term planning period considered in their work.

Contributions

Technological advancements in environmental emergency response planning are
increasingly important given the synergies between climate change and environmental
disasters, such as wildfires, as well as deforestation and forest degradation. A better
environmental emergency response can also help law enforcement gather information
about illegal deforestation and act quickly under time pressure. Drones have recently
arisen as useful tools to help gather information to support the environmental emergency
response in the Amazon region. However, there are still few strategic network design
models that address the issues faced in the region, although similar models have been
implemented for other cases, such as OHCA responses, tourism management, and drone
delivery models [35–37,62]. This paper introduces a novel drone-based location–allocation
model that seeks to find the location of bases, the number of drones of each type for each
base, and the allocation of bases and drones to environmental emergencies.

In the model proposed in this paper, which belongs to the capacitated discrete multi-
facility location–allocation family of problems, a centralized decision-maker seeks to de-
termine the number and locations of launch stations to be established, the types of drones
to be placed in each location, and the assignment of launch stations to incidents such that
the total cost of the network is minimized and performance targets are reached. A case
study is performed for the city of Ji-Paraná, a municipality in the Brazilian Amazon. The
demand data are modeled from satellite imagery and whistle-blower data, both of which
are reliable sources of historical demand data that are used by first responders in the region.
Drones are already being used by communities in the Amazon region to provide additional
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monitoring capability to respond to environmental threats. To the authors’ best knowledge,
the present study is the first of its kind to formalize an optimization problem to aid strategic
decision making regarding drone-based environmental emergency response networks.

This paper contributes to the existing body of literature in three ways. First, from an
environmental response perspective, this case study presents an original project that can aid
communities and first responders as they plan to enhance their actions to curb deforestation
in the Brazilian Amazon. Given the magnitude of fires in the region, environmental
emergency missions will likely still need to consider other vehicles such as manned aircrafts
and ground trucks for an effective fire response. However, the use of drones in confirmation
missions, to gather additional information regarding environmental emergencies, can help
ensure that adequate resources are mobilized, particularly during the fire season. Secondly,
from a modeling perspective, the proposed research innovates by expanding the literature
on the location–allocation model to include an application for the environmental emergency
response planning decisions faced by decision-makers in the field. Lastly, by performing
a sensitivity analysis using real data from past fire seasons, this work demonstrates the
applicability of the proposed model.

3. Proposed Model

Consider a strategic decision-maker that must make operational decisions regarding
a drone-based network to support an environmental emergency response when there
are multiple types of emergencies, each one requiring drones equipped with different
types of sensors. Here, drones are used in confirmation missions, to verify environmental
emergency incidents and gather additional information that can help first responders
better plan their missions. Each drone makes one-to-one trips between base stations and
incident locations. The context of the proposed optimization model is a decision-maker
who needs to design a network of drones to prepare for a season of increased environmental
emergencies, using the best available information to model the demand and considering
operational constraints and performance targets. The objective of the model is to find a
minimal cost configuration that would allow reaching a target coverage ratio. The decisions
to be made are the following:

1. Where to open drone facilities given a set of potential locations?
2. How many operators are needed in each location?
3. How many drones of each type are needed in each location?
4. Which drones should be assigned to each location–emergency type pair?
5. What type of facility to open in each location?
6. How many backup batteries are needed in each facility for each drone type?
7. What portion of the demand for a given emergency will be covered by each drone?

This is a problem currently faced by first responders and communities in the Ama-
zon region and that can arise during annual strategic planning sessions or when non-
governmental organizations seek funding from international agencies [28].

The resulting optimization problem belongs to the class of capacitated implicit cover-
age discrete multi-facility location–allocation problems [64–67] because multiple facilities
must be located from a predefined set of candidate locations, drones must be allocated
to each emergency, multiple facilities can be opened, there are capacity constraints due
to battery and range limits, and each drone can cover a fraction of the demand in each
emergency location.

The remainder of this section will introduce the resulting drone-based location–
allocation problem. In the resulting formulation, different types of emergencies are consid-
ered, each one requiring drones with specific attributes. The objective function minimizes
the total cost of the network, which includes fixed facility costs, operational costs, and
investment costs. The central planner seeks to determine which bases to open and the
allocation of drones to bases and emergencies while meeting operational requirements
and performance targets, making this a strategic decision problem. The context of the
problem is a network of drones used for environmental emergency verification, to help first
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responders plan for the emergency response operations. Each incident must be covered
by at least one drone, and the central planner seeks to determine which bases to open,
the allocation of drones to bases and emergencies, and the ratio of the demand for each
incident location that is covered by the different drone–base combinations. The drones are
mobile servers, and the emergencies are assumed to be static clients.

3.1. Notation
3.1.1. Sets

I Set of locations of environmental emergencies.
J Set of candidate drone bases.
K Set of drone types.
E Set of type of environmental emergencies.
W Set of types of facilities.
L Set of links (i, j, k, e) defining the catchment regions, type of incident per location, and

drone requirements, where L = {i ∈ I, j ∈ J, k ∈ K, e ∈ E | dij < rk}.

3.1.2. Parameters

dij Distance between drone base j ∈ J and incident i ∈ I, determined using Haversine
distances.

λie Demand for emergency e ∈ E in site i ∈ I.
ck Annualized acquisition cost of drone k ∈ K (USD/year).
vk Flight speed of drone k ∈ K (m/s).
ωk Effective flying time for drone k ∈ K (s).
rk Coverage radius of drone k ∈ K (m).
τe On-scene/mission time for emergency e ∈ E (s).
f w
j Annual cost of opening a drone base w in location j (USD/year).

φk Maximum number of batteries allowed for drone type k (USD/year).
cb

k Annualized cost of battery for drone type k (USD/year).
Nw Maximum number of drones per facility type w.
M Maximum number of drones per operator.
s Annual salary for drone operators (first responders) (USD/year).

3.1.3. Decision Variables

njk Integer variable representing the number of drones of type k allocated to facility j ∈ J.
bjk Integer variable representing the number of batteries for drone type k allocated to

facility j ∈ J.
oj Integer variable representing the number of operators needed in facility j, assuming

that each one can operate M drones at a time.
zw

j Binary variable that takes value 1 if facility type w is opened on location j.
yj Binary variable that takes value 1 if facility j ∈ J is opened, and 0 otherwise.
xijke Binary variable that takes value 1 if emergency e ∈ E in site i ∈ I is covered by base

j ∈ J and drone k ∈ K, and 0 otherwise.
αijke Continuous variable representing the portion of the demand for emergency e ∈ E in

site i ∈ I is covered by base j ∈ J and drone k ∈ K.

3.2. Drone-Based Facility Location–Allocation Model

The resulting problem is a discrete facility location–allocation model that seeks to
minimize the total annual cost of the network.

min ∑
(k,j)

cknjk + ∑
(k,j)

cb
kbjk + ∑

j∈J
∑

w∈W
( f w

j zw
j ) + s ∑

j
oj (1)

s.t. ∑
j∈J,k∈K

xijke ≥ 1 ∀i ∈ I, e ∈ E (2)
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∑
j∈J,k∈K

αijke = 1 ∀i ∈ I, e ∈ E (3)

∑
k

njk ≤ Nyj ∀j ∈ J (4)

∑
k

njk ≤ Moj ∀j ∈ J (5)

∑
w

zw
j ≤ 1 ∀j ∈ J (6)

∑
k

njk ≤∑
w

Nwzw
j ∀j ∈ J (7)

xijke ≤ yj ∀(i, j, k, e) ∈ L (8)

bjk ≤ φknjk ∀j ∈ J, k ∈ K (9)

αijke ≤ xijke ∀(i, j, k, e) ∈ L (10)

dij

vk
xijke ≤ rk ∀(i, j, k, e) ∈ L (11)(

τk +
2dij

vk

)
xijke ≤ Ek ∀(i, j, k, e) ∈ L (12)

∑
i

(
τk +

2dij

vk

)
αijkeλie ≤ ωkEk(njk + bjk)

∀j ∈ J, k ∈ K, e ∈ E

(13)

xijke, yj ∈ {0, 1} ∀(i, j, k, e) ∈ L (14)

bjk, njk, oj ∈ Z ∀j ∈ J, k ∈ K (15)

αijke ∈ [0, 1] ∀(i, j, k, e) ∈ L (16)

The objective function (1) minimizes the total cost of operating the drone network.
The first term in the objective function represents the total acquisition cost of drones, the
second term represents the total cost of additional batteries, the third term represents
the total cost of opening drone facilities, and the last term represents the cost of drone
operators. Constraints (6) and (7) ensure that each location j must have at most one type
of facility w and that the facility will be large enough to accommodate the number of
drones assigned to a given location. Constraint (2) ensures that each emergency is covered
by at least one drone. Constraint (3) requires that the sum of the portion of the demand
covered for each emergency location equals one. Constraint (4) ensures that the total
number of drones allocated to each base station does not exceed the maximum allowed
per base station. Constraint (5) assigns one operator for each M drone allocated in the
system. Constraint (8) guarantees that an unopened base cannot be assigned to cover any
emergency. Constraint (9) limits the number of additional batteries allowed for each base
and drone type. Constraint (10) guarantees that if a fraction of the demand is covered by a
base and drone, the integer variable representing that link takes value one. Constraint (11)
requires that a drone can only be assigned to serve locations that fall within its catchment
radius. Constraint (12) ensures that a drone can only be assigned to a facility if the total
service time plus the total travel time is less than its endurance. Constraint (13) ensures
that the total response time of all assignments to a drone and base cannot exceed the total
available endurance. Constraints (14)–(16) define the integer and continuous variables.

4. Case Study
4.1. Study Settings

The city of Ji-Paraná, the second most-populous municipality in the Brazilian state
of Rondônia, is the focus of the case study discussed in this section. The city overlaps
with the Jaru Biological Reserve and with the Indigenous Territory Igarapé Lourdes. A
map of the municipality is depicted in Figure 1. The reserve and the territory are under
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deforestation threats due to agricultural expansion, logging, mining, and land-grabbers, be-
cause agriculture and cattle raising are the municipality’s main economic activities [68–71].
The deforestation in the region affects the municipality’s rainfall and its microclimate [72].
During the dry season, which usually reaches its peak in the months of August to October,
the municipality has an increasing number of fire outbreaks in both urban and rural re-
gions [68,73]. The high number of fires also impacts the municipality’s health system, as the
number of patients with respiratory issues increases significantly [74–76]. Thus, Ji-Paraná is
an ideal location to implement a case study of the model, given how much it could benefit
from additional support in managing environmental emergencies.

Figure 1. Map of Ji-Paraná (source: Google Maps).

4.2. Demand Data

Given that forest fragmentation due to environmental degradation can make areas
more prone to further land-use changes, such as fires [77], the locations to be covered by
the drone network are determined using historical data on forest fires, forest degradation,
and logging. Not only did these areas have environmental emergencies in the past, but they
are also more vulnerable to environmental emergencies in the future, as observed in recent
fire seasons [26]. The demand data cover urban and rural environmental emergencies in
the municipality of Ji-Paraná and include data from satellite imagery and from an app that
collected user reports on harmful offenses in the region. Two main types of environmental
emergencies are considered: deforestation and fires, both of which are related to the main
causes of forest loss in the region [3]. Two years’ worth of data are considered and the daily
average number of occurrences per census block group during the dry season is calculated
to find an upper limit to the demand. The following sections describe each data source
in more detail. Figure 2 depicts the original demand distribution and the aggregation per
census block group, which will be used in the optimization model.
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Figure 2. Fire and Deforestation Occurrences in 2020–2021 per Census Block Group.

4.2.1. Satellite Imagery

Satellite data for forest fires and deforestation are obtained from Brazil’s National
Institute for Space Research (INPE). For deforestation and forest degradation incidents, data
from the INPE’s DETER project are considered, which uses a satellite-based system for near
real-time (NRT) detection of the removal of native forest, degradation, and logging [78]. It
uses MODIS 250 m imagery with an almost daily revisit time and can detect forest clearings
of at least 3 ha. DETER also sends daily alerts to environmental protection agencies, serving
as an early warning system that can support surveillance and control of deforestation.
Deforestation warning data from the DETER system, as well as the geospatial information
for the region, were downloaded from INPE’s Terrabrasilis project [79]. This is one of the
most reliable data sources for forest degradation in the Brazilian Amazon, particularly
given that the DETER system was developed to support monitoring and control of forest
deforestation and degradation [80].

For active fire and burned areas, data from INPE’s “Programa Queimadas” (Fire
Program) are used, which provide temporal and geospatial daily information for fire
occurrences worldwide [81]. The satellites can detect fires with 30 m of extension and 1m of
width, although the actual area burned or the kind of vegetation affected cannot be detected.
The data allow finding fire outbreaks, but because it uses multiple satellites, it is possible
that the same fire may be detected by different systems and appear as different incidents.
Still, the number of fire outbreaks is still a good estimate of the demand for fire emergencies
in the region. The temporal and spatial data for Ji-Paraná’s fire outbreaks for 2020–2021
were downloaded from the BDQueimadas webtool [82]. This is also a reliable data source,
used by first responders in the region to support mission and strategic planning.

4.2.2. Whistle-Blower Data

Although the satellite imagery provides good information for the areas detected in the
past, some fire and deforestation incidents are undetected. Fire fronts of less than 30 m, fires
that occur close to the soil and do not affect the tree canopy, low visibility due to clouds,
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imprecise fire focus, or short-term fires that missed the capture interval are all examples of
instances that the existing satellites would miss [81]. For example, during the dry season,
the city of Ji-Paraná, a small urban conglomerate in the southwest area of the municipality
has a higher number of fire incidents which are not detected by satellite imagery. To address
this issue, this research considers data from the Guardiões da Amazônia Project by the
Brazilian Army.

One of the duties of the Brazilian Army is to protect the Brazilian Amazon from
national and international threats. In 2020, after unprecedented levels of deforestation in
the Brazilian Amazon, the Army was deployed to enforce law and order in the Brazilian
Legal Amazon and fight fire outbreaks and illegal deforestation in the region. [83,84]. As
part of the operation, the 17th Jungle Infantry Brigade developed the platform “Guardiões
da Amazônia”, which allowed users to report illegal forest degradation due to deforestation,
logging, or mining [85]. Users could submit images, notes about the incident, and the
location where it took place. The information was then used by control and inspection
agencies to help identify the actors responsible for the activities. The application had
two modules. One is a mobile application that allows civilians to submit complaints
anonymously and securely. The second was a web application restricted to environmental
monitoring agencies, which could plan their response based on the information received
from the application. These data were used in conjunction with satellite imagery to ensure
that the proposed model covers as many demand points as possible, which is relevant due
to the strategic nature of the problem presented.

4.2.3. Environmental Emergencies Incidence Rate

The incidence rates are calculated considering fire and deforestation incidents that
happened in 2020 and 2021. Given that fires and areas with recent deforestation make the
forest more vulnerable [26,77], these are locations that should be covered. For modeling
purposes, the census block groups of Ji-Paraná are the locations to be covered, and the
centroids of each census block group are the locations of the emergencies, an approach
that is commonly used when dealing with strategic decision problems [35,36]. The average
daily demand is calculated per census block group for each environmental emergency. The
fire data from the Guardiões app are double counted to account for the missing 2021 data.
About 90% of the emergencies recorded in Ji-Paraná over 2020–2021 occurred during the
peak of the dry season, in the months of August, September, and October. Thus, the daily
average demand is calculated by dividing all the occurrences in the year by three months.
This would over-count the demand, because it would consider incidents that happened
outside of the planning period. However, because these are areas with fragmentation due
to the fires and recent deforestation, they are more likely to have an emergency in the future,
so it is not unreasonable to include them in the demand set. All geospatial operations
to find the incidence rate are performed using QGIS Desktop 3.22.0 using the “Centroid,
Points in Polygon Analysis” and “Intersection” features, similar to the method described
in [86].

The alerts for emergencies in each census block group are assumed to follow a Poisson
arrival process with the rate equal to the average daily number of occurrences per census
block group. This is a common assumption when studying fire distributions [87,88] that is
here extended to deforestation for simplicity. All census block groups in the rural area that
had an emergency in the past year are also required to be covered for at least one incident
per day, even if the resulting demand distribution for the given target coverage is zero.
This is performed to ensure that regions in remote areas, which may only recently have
started to deal with deforestation, are still covered in a worst-case scenario.

4.3. Candidate Base Stations

In Ji-Paraná, most of the existing emergency response stations are based in the south-
western portion of the municipality, known as the city of Ji-Paraná. However, even though
the rural region of the municipality has many environmental emergencies near indigenous
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territories and permanent protection areas, in discussion with first responders, they men-
tioned that it is not unusual for the response times in those areas to be as much as 3 h,
while in the city, the target response time is 30 min. To address the high response times
for incidents in rural regions, the Ji-Paraná Fire Brigade often hires temporary workers
to be located in regions outside of the city center, to respond to emergencies during the
dry season.

Given that there is flexibility in the set of candidate locations, a modified version
of the finite dominating set methodology (FDS) is used to determine candidate mobile
base stations. The finite dominating set is an approach to reduce an infinite number of
potential launch sites to a finite discrete set to improve the computational tractability
of the model [35,36]. In the traditional implementation of the FDS method, locations
are determined by finding the intersection points of all demand-covering circles, which
contain all potential sites that can completely cover the demand [64]. This paper considers
all intersections between the demand-covering circles for each original location of the
emergencies and the municipality transportation network. The coverage radius will depend
on the type of drone being used, because each drone has a different communication radius.
The modified FDS is implemented in QGIS 3.22.0 using the Buffer and the Line Intersection
features, resulting in 90,270 unique candidate base stations. For computational tractability,
474 locations are randomly selected, which is equivalent to three times the number of
census block groups.

4.4. Drone Specifications

Brazil’s Civil Aviation National Agency (ANAC) regulates the use of drones in civilian
applications [89]. Autonomous UAVs are prohibited in Brazil for civilian use, but the military
drone missions for civilian applications are not subject to the same restrictions. Remotely
piloted drones flying beyond the visual line of sight (BVLOS) are allowed with special
authorization from ANAC and so are flights with a maximum flying radius of 30 km [90].

The present model assumes that drones will live-stream images from the incident
location to a base station, so that first responders can gather the information necessary to
support the decision-making process. Drones will also be equipped with sensors, cameras,
and on-board microprocessors that can help it fly to its destination without needing an
operator and gather information about the environmental emergencies [52]. The set of
possible drones include three that can be used for fires and deforestation missions and three
that can be used solely for deforestation missions. Each drone has different specifications
and the trade-offs between each one are considered in the optimization model. All drones
are capable of flying above 20 meters, which is the average canopy height in Western
Amazon [91]. The acquisition costs, as of January 2022, and specifications of the drones
considered in this research were obtained by searching popular UAV online stores [92–94].
and Table 1 contains the specifications of the drones considered in the case study.

Table 1. Drones considered in the case study and their specifications.

Drone Model Speed (m/s) Max Range (m) Endurance (s) Battery Cost
(USD) Cost (USD) Application

(0) Skywalker
Ready To Fly v2.2 25 20,000 3600 400 3400 Surveillance

(1) Talon GT 28 15,000 2700 300 2000 Surveillance

(2) Believer 20 20,000 7200 400 4600 Surveillance

(3) Autel Evo II
Dual 640 15 8800 2280 219 10,500 Fire and

Surveillance

(4) DJI Matrice
300 RTK 23 15,000 3300 700 25,500 Fire/Surveillance

(5) DJI Mavic 2
Enterprise
Advanced

20 10,000 1860 184 6500 Fire/Surveillance
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Each drone is assumed to have a predetermined number of spare batteries, which
are also decision variables in the model. The batteries are assumed to be fully recharged
at the beginning of each 24 h shift. Assuming that drones have an average lifetime of
n = 3 years [37], and considering Brazil’s interest rate of r = 9.25% in January 2022,
the annualized values of the drone and battery costs are calculated using the following
correction factor:

(A/P, r%, n) =
er − 1

1− e−rn (17)

Drone Deployment

A drone must fly to the location of an environmental emergency, which is determined
based on alerts from a satellite monitoring system or whistle-blowers. Each environmental
emergency location serves as a customer, while drones act as mobile servers. Drones fly to
an incident location, gather the information, and then return to a base station. Drones have
a limited service range due to endurance and transmission limitations, so it is required
that a drone can only service locations that are within a certain distance from where it is
placed. Assumptions include uniform drone speed, steady wind conditions, and weather
that allows for drone flights.

The timeline of the drone deployment is as follows:

1. An environmental emergency takes place.
2. Environmental protection agents receive an alert of an environmental emergency from

real-time monitoring systems, whistle-blowers, or bystanders.
3. The drone is prepared for the flight. The period between the call arrival and the

dispatch of the drone is the dispatch time.
4. Drones are deployed from the launch station to the scene of the incident. The period

between the dispatch until arrival at the scene is the flight time.
5. The drone remains on scene to gather information about the incident (on-scene time).
6. The drone flies back to the base station.
7. Upon arrival, the drone must be reset and prepared for a new flight. The time to

prepare the drone for a new flight after it returns from a mission is the reset time.

The model in this paper explicitly considers steps 4 to 6, which correspond to the
on-scene time and the total equipment flying time.

4.5. Facility and Operator Cost

The drones are considered to be part of a temporary emergency response network,
implemented to provide additional support during the dry season. In Ji-Paraná, it is already
the case that first responders plan for additional capacity during the peak of the dry season,
when most environmental emergencies take place. Given that drones are flexible, the bases
would not require major infrastructure investments and a commercial warehouse would
suffice. However, because the drone bases are assumed to be opened in locations where
there may not be any available infrastructure, the facility costs will differ depending on the
location of the base. For bases located in the city of Ji-Paraná, the cost will be estimated as
the cost of renting a commercial warehouse for three months. For bases located in the rural
region, the cost will be the construction cost of a commercial warehouse.

The facility costs are calculated using a piecewise function, considering centers of size
50 (type A) and 100 (type B) squared meters, which can allocate 5 and 10 drones, respectively.
It is assumed that an operator can control at most five drones simultaneously. These
numbers are lower than the ones used in a recent application of drones for tourism [37]. The
reduced values are used because, even though the flights are expected to be autonomous,
these are still emergency response missions that may require some oversight, to ensure
smooth data collection. To estimate operator salaries, data from a recent selection process
for the fire department of Ji-Paraná for temporary engineers are used; it offered a monthly
salary of USD 981.33 (BRL 5531.38) [95].
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The rent per square meter of a commercial facility in Ji-Paraná was BRL 15.46 in
2014 [96]. Adjusting that value for inflation and converting to American dollars results
in a rent per square meter price of USD 5.61 in January 2022. Assuming three months of
rent for the duration of the dry season, this results in a yearly facility cost of USD 5049.
The construction cost per square meter for a base located in the rural area was USD 167.52
(BRL 944.22) in November of 2021 [97]. All values were annualized using Equation (17),
considering an interest rate of 9.25%.

5. Results

The model is implemented using Gurobi on Python, a state-of-the-art MIP solver used
in many works in the related literature regarding drone network strategical
planning [35–37,62]. The MIP gap is set to 0.01%, and the maximal run time is set to
3600 s. Default parameters are assumed for the Gurobi Solver otherwise.

The following are redundant valid constraints and one auxiliary variable that are
added to speed up the optimization process.

Xjk ≤ yj j ∈ J, k ∈ K (18)

Xjk ≤ njk j ∈ J, k ∈ K (19)

xijke ≤ Xjk (i, j, k, e) ∈ L (20)

yj ≤ ∑
k∈K

njk j ∈ J (21)

oj ≤∑
k

njk j ∈ J (22)

Xjk ∈ {0, 1} j ∈ J, k ∈ K ∈ L (23)

For all instances, it is assumed that τe = 10 min for all environmental emergencies, and
the effective flying time for each drone is set at ωk = 90%. A maximum of N = 5 or N = 10
drones can be placed in facility types A and B, respectively, and there are no limits on the
number of batteries that can be stored in each facility. Additionally, the number of missions
that an operator can oversee in a given day is restricted to 15, and the maximum number of
drones that an operator can manage simultaneously is set at M = 5. The coverage levels
are used to generate the demand per day for each scenario, by finding the quantile for
the Poisson distribution with the corresponding incidence rate. The results consider an
operation that runs 24 h and 7 days per week during the dry season and the number of
operators is estimated per 12 h shift. All scenarios assume that the operating conditions are
favorable for drone flights.

5.1. Scenarios

The sensitivity analysis is performed based on the target coverage, the demand sce-
nario, and the maximal number of batteries per drone. The scenarios considered are
illustrated in Figure 3.

Drone-Based Emergency Response Network Cost Minimization

Target Coverage

90% 95% 99%

Demand

λ 3λ 5λ

Batteries per drone

φ = 1 φ = 3 φ = 5

Figure 3. Scenarios Considered in the Case Study.

The following instances are considered:
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1. Assuming that the number of incidents in each census block group follows a Poisson
distribution with rate λ, the impact of varying the incidence rate is studied. In the base
case (demand scenario 1), it is assumed that for each census block group the average
incidence rate is equal to the observed values for the 2020 and 2021 dry seasons.
Additional incidence rates of 3 λ (demand scenario 3) and 5λ (demand scenario 5) are
considered for each census block group. The network configuration is then estimated
when φ = 3 under the three target coverage objectives.

2. To understand the impact of the battery capacity per drone, it is assumed that the
demand is equal to the average observed (λ) and three target coverage objectives
are considered, with different limits on the number of batteries allowed per drone.
Considering the additional batteries explicitly is important because drones can take
about 60–90 min to recharge, so simply assuming that a drone is ready to fly when
called is not sufficient, given the downtime associated with recharging the batteries.

5.1.1. Impact of Varying the Maximum Backup Battery

To study the impact of varying the maximum number of available batteries and the
impact on the total network cost, the model is solved for instances that consider a different
maximal number of additional batteries, for an incidence rate of λ per each census block
group, and considering three different target coverage levels. The summarized results are
displayed in Tables 2 and 3.

Table 2. Summary of Results when Varying Battery Capacity.

Coverage Φ Batteries Drones Operators Cost
(USD)

Total
Demand Base A Base B Max RT

(s)
Min RT

(s)
MIP
Gap

0.9 1 29 36 15 198,867 15 15 - 617 50 4%

3 42 18 12 158,557 12 12 - 641 57 7%

5 50 13 11 137,272 11 11 - 641 50 3%

0.95 1 40 44 16 226,112 16 16 - 617 42 3%

3 59 24 14 176,499 13 13 - 638 54 6%

5 67 16 12 151,179 11 11 - 641 42 2%

0.99 1 73 76 21 341,858 18 15 3 617 13 3%

3 107 38 19 240,816 15 23 2 641 14 4%

5 118 28 19 211,962 14 14 - 641 13 5%

Table 3. Total Number of Drones and Batteries per Drone Type when Varying Number of Backup Batteries.

Batteries Drone Types

Coverage Φ 3 4 5 3 4 5

0.9 1 28 0 1 34 0 2
3 30 0 12 13 0 5
5 37 0 13 9 0 4

0.95 1 38 1 1 41 1 2
3 52 0 7 20 0 4
5 49 5 13 11 1 4

0.99 1 71 1 1 73 1 2
3 103 6 14 43 2 6
5 104 0 14 24 0 4

Overall, increasing the number of available backup batteries tends to result in a
network with a lower cost without significantly affecting the range of response times (RT).
The cost is reduced, primarily, because, when backup batteries are allowed, the number
of drones needed is significantly reduced, and the additional batteries needed are overall
cheaper. This result indicates that considering additional batteries explicitly can allow
finding drone networks that are much cheaper than when additional batteries are not
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allowed. Even when the number of backup batteries is five, that would still mean that a
drone could have its flying capacity increased fivefold for each working day. For the most
part, most base stations have five drones or less, but bases with more than five drones are
required in some instances when the target coverage is 99%.

Table 3 shows that only the drones with firefighting and surveillance capability are
selected, with drone type 3 being preferred, followed by drone types 5 and 4.

Figures 4–6 illustrate the actual response time of the network for each scenario con-
sidered. The dots represent the original location of the emergencies, and the triangles
represent the base stations that were opened in this scenario. The colored bar represents
the response time to the emergency in the optimal solution, in minutes.

Figure 4. Network configuration when varying maximal battery capacity, 90% coverage.

Figure 5. Network configuration when varying maximal battery capacity, 95% coverage.
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Figure 6. Network configuration when varying maximal battery capacity, 99% coverage.

Although the range of response times is similar across different scenarios, the response
times increase on average as the number of backup batteries increases. This happens
because when more backup batteries are allowed, fewer base stations are selected. Ad-
ditionally, when considering the centroids as demand points as in the optimization, the
maximum response time is under 11 min. However, the actual response times of the
emergencies, based on the bases assigned to cover a given census block group in the op-
timal solution, can be as high as 20 min. Although a response time of 20 min is still an
improvement to the current levels in the region, it is also twice what had been observed in
the optimization model, which can be problematic in congested networks.

5.1.2. Impact of Varying the Incidence Rate

To understand how the network configuration is affected by different demand sce-
narios, the model is solved assuming varying target coverage levels and keeping the
maximal number of batteries fixed at φ = 3. Tables 4 and 5 summarize the results for the
instances considered.

Table 4. Summary of Results when Varying Incidence Rate.

Coverage Demand
Scenario Batteries Drones Operators Cost

(USD)
Total

Demand Base A Base B Max RT
(s)

Min RT
(s)

MIP
Gap

0.9 1 42 18 12 158,557 12 12 - 641 57 7%

0.9 3 84 33 15 203,794 13 13 - 704 43 4%

0.9 5 121 46 21 260,032 16 15 1 629 15 5%

0.95 1 59 24 14 176,499 13 13 - 638 54 6%

0.95 3 105 41 18 238,624 15 15 - 768 15 4%

0.95 5 148 56 24 300,631 17 16 1 751 15 3%

0.99 1 107 38 19 240,816 15 23 2 641 14 4%

0.99 3 158 58 26 314,231 17 15 2 647 15 3%

0.99 5 204 74 33 380,361 19 16 3 617 15 3%

As expected, the cost of the network increases as the incident rate increases, and it
also increases as the target coverage increases. In fact, the total number of batteries, drones,
operators, and facilities all increase monotonically as the demand and target coverage
increases. Base type A dominates the solution, but some bases of type B are opened in more
congested scenarios. The maximum response times are comparable across all scenarios,
with a maximum overall time of 12.8 min.
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Table 5. Total number of drones and batteries per drone type when varying incidence rate.

Batteries Drone Types

Coverage Demand
Scenario 0 1 3 4 5 0 1 3 4 5

0.9 1 0 0 30 0 12 0 0 13 0 5
3 1 0 76 0 7 1 0 28 0 4
5 0 0 113 3 5 0 0 42 1 3

0.95 1 0 0 52 0 7 0 0 20 0 4
3 1 0 97 0 7 2 0 35 0 3
5 1 0 142 0 5 1 0 52 0 3

0.99 1 0 0 123 6 14 0 0 43 2 6
3 0 0 148 6 4 1 0 52 2 3
5 0 2 199 0 3 0 1 71 0 2

Table 5 summarizes the distribution of drones in the network for the different demand
scenarios and target coverage levels. Although here drones of type 3 and 5 still dominate,
followed by drone type 4, in certain instances it is optimal to use drones of type 0 and
1. Still, overall, for the drone types considered, it appears that drones that can be used
for different types of missions are preferable to using drones that can only be used for a
single mission.

Figures 7–9 illustrate the actual response time of the network for each scenario consid-
ered. In general, as the demand increases, more bases are opened, so the actual response
times are reduced as the incident rate increases. However, as observed in Section 5.1.1, the
actual response times considering the location of the emergencies is at times over twice
what was estimated in the optimal solution using the center of the census block groups.

Figure 7. Network configuration when varying incidence rate, 90% coverage.

5.2. Key Findings and Implications for Practical Implementation

The sections above described the results of the optimization model and relevant
practical implications, which are summarized in this section. First, this paper sought
to propose a strategic drone-based facility location–allocation problem to be used by
practitioners and first responders in the Amazon Rainforest region. This problem stems
from a practical need, given that drones are already used in the region to support the
environmental emergency response, and this paper is the first to propose a mathematical
formulation for the decision problem faced by central planners.
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Figure 8. Network configuration when varying incidence rate, 95% coverage.

Figure 9. Network configuration when varying incidence rate, 99% coverage.

The sensitivity analysis results indicate that considering additional batteries could
significantly reduce the cost of the network. That is because stocking up on batteries allows
for a reduction in the total number of drones needed for the network to operate. This
was not explicitly modeled in the related works [37,63,98], but the proposed formulation
introduces a way to take batteries into consideration in the model, which is particularly
relevant in strategic planning contexts when planners would need to know in advance the
number of batteries required to proceed with the acquisition of the necessary equipment.

However, when more batteries are allowed in the system, fewer bases are opened
and the response times increase. Still, the response times observed in all the scenarios are
still considerably smaller than the ones observed in the region for similar emergencies.
In Ji-Paraná, the response time in a rural area is around 3 h, whereas in urban areas that
number is around 30 min. In our proposed design, no location is more than 20 min away
from its assigned base station, highlighting the potential for drones to help improve the
response to environmental emergencies in the region.

The model introduced in this paper also considers multiple types of drones to respond
to different types of emergencies. Generally, drones that can be used for multiple types of
emergencies are preferred to those that can only be used for a single type of emergency.
Intuitively, this makes sense as it means that the optimal solution favors drones that are
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not as likely to be idle given that they can be assigned to cover all types of emergencies
considered. As the network becomes more congested, single-emergency drones start to be
considered in the optimal solution given that, in such instances, the amount of emergencies
of a specific type justified acquiring such equipment.

Additionally, by considering the trade-offs of different types of drones in the model,
particularly when it relates to cost and performance, the proposed model allows for select-
ing the most cost-effective drones, even if at a first glance it is not clear that choosing a
certain kind of drone would be the most economical alternative.

Given the strategic nature of the decision problem considered in this paper, algorithmic
methods to improve the solution time are out of the scope of this research. However, the
average MIP gap after one hour is around 4% across the scenarios considered, which is
comparable to values found in the related experiments [63] and still allows to find solutions
that considerably improve the response time of the network.

Lastly, the sensitivity analysis also supports the validity of the proposed approach.
That is, higher demand corresponds to larger networks, higher coverage implies increased
total costs, and more batteries imply a reduced total cost at the expense of higher response
times. This shows that the proposed model behaves as expected and provides further
support to its practical relevance.

6. Conclusions

Deforestation in the Brazilian Amazon is reaching a tipping point, beyond which
the rainforest may change permanently, making it difficult to reach the goals outlined in
the Paris agreement. This is happening due to the simultaneous threats of deforestation
and forest degradation by illegal actors. New technologies such as drones can help law
enforcement and first responders plan better environmental emergency response missions
by collecting relevant information in a timely manner. In this context, this paper introduces
a drone-based mobile facility location–allocation problem to find a minimal cost network
of drones to support the environmental emergency response in the Brazilian Amazon
during the dry season. The model takes into consideration multiple kinds of drones and
explicitly considers the number of additional batteries. A case study is implemented for
the municipality of Ji-Paraná, located in the western Amazonian state of Rondônia.

Allowing additional batteries significantly reduces the network cost, but the average
response times may increase if the resulting solutions have fewer facilities. For the scenarios
considered, smaller facilities are preferable to larger facilities, which are only opened when
the congestion increases. The model also provides evidence that considering multiple
drone types may allow finding networks with lower costs when the demand to be covered
is high. However, for the drone types considered in our example, drones that could be used
in different kinds of missions are preferable to drones that could only be used for a single
mission. Lastly, the results indicate that although using the census block groups as proxies
for the demand can help with model tractability, the estimated response times are much
smaller than the actual response times observed when considering the real location of the
emergencies.

This work is not without limitations. First, we use census block groups as proxies for
the demand which can help with computational tractability [35,36] but may underestimate
the actual response time of the network. This research addresses this issue by considering
the actual response times when analyzing the optimal solution, which in the case study
proposed was still providing a considerable improvement from the current response times
in the region. However, future research could explore other clustering methods, given that
the census block groups as defined by the government are highly heterogeneous.

Secondly, the proposed research only considers the deployment portion of the drone
operation, but there are other aspects associated with the drone flight that could affect the
optimal network configuration. For example, the proposed model assumes that the network
operates without maintenance issues and does not consider battery performance reduction
that could be an issue after multiple flights. Additionally, although the simplifications
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we implemented are commonly used in the drone deployment literature [35–37], other
aerodynamic aspects of the drone flights could impact the implementation in real life.
Approaches such as the robust optimization model described in [99] could enhance the
proposed model by incorporating uncertainty about unknown random variables that can
affect the performance of the drone flight. Queuing-based approaches such as the one
described in [62,100] could also enhance the model by addressing the decision-dependent
uncertainty that arises in location–allocation models, given that the location of the drone
bases and allocations affect the mean service time.

Given the strategic, long-term nature of the proposed model, enhanced algorithmic
solutions are out of the scope of this project and the proposed model was solved using state-
of-the-art optimization software. However, heuristic solutions such as the ones described
in [63,100,101] could be explored to improve the solution time.

Even in the face of its limitation, the strategic drone-based environmental emer-
gency network model proposed in this paper provides a foundation from which future
research may be conducted. Given that Brazil has a track record of reverting deforesta-
tion trends [102], this work provides decision-makers with tools that can help enforce
and support policies to put the country on a positive path to reduce forest loss in the
Brazilian Amazon.
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