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Abstract: Measuring maize grain moisture content (GMC) variability at maturity provides an essential
piece of information for the formulation of maize harvesting sequences and the applications of
precision agriculture. Canopy chlorophyll content (CCC) is an important parameter that describes
crop growth, photosynthetic rate, health, and senescence. The main goal of this study was to estimate
maize GMC at maturity through CCC retrieved from multi-spectral UAV images using a PROSAIL
model inversion and compare its performance with GMC estimation through simple vegetation
indices (VIs) approaches. This study was conducted in two separate maize fields of 50.3 and 56 ha
located in Hailun County, Heilongjiang Province, China. Each of the fields was cultivated with
two maize varieties. One field was used as reference data for constructing the model, and the
other field was applied to validate. The leaf chlorophyll content (LCC) and leaf area index (LAI)
of maize were collected at three critical stages of crop growth, and meanwhile, the GMC of maize
at maturity was also obtained. During the collection of field data, a UAV flight campaign was
performed to obtain multi-spectral images from two fields at three main crop growth stages. In
order to calibrate and evaluate the PROSAIL model for obtaining maize CCC, crop canopy spectral
reflectance was simulated using crop-specific parameters. In addition, various VIs were computed
from multi-spectral images to estimate maize GMC at maturity and compare the results with CCC
estimations. When the CCC-retrieved results were compared to measured data, the R2 value was
0.704, the RMSE was 34.58 µg/cm2, and the MAE was 26.27 µg/cm2. The estimation accuracy of the
maize GMC based on the normalized red edge index (NDRE) was demonstrated to be the greatest
among the selected VIs in both fields, with R2 values of 0.6 and 0.619, respectively. Although the VIs
of UAV inversion GMC accuracy are lower than those of CCC, their rapid acquisition, high spatial
and temporal resolution, suitability for empirical models, and capture of growth differences within
the field are still helpful techniques for field-scale crop monitoring. We found that maize varieties are
the main reason for the maturity variation of maize under the same geographical and environmental
conditions. The method described in this article enables precision agriculture based on UAV remote
sensing by giving growers a spatial reference for crop maturity at the field scale.

Keywords: precision agriculture; PROSAIL; canopy chlorophyll content; vegetation indices; grains
moisture content; crop maturity

1. Introduction

Maize is one of the most important cereal crops in the world. According to the Food
and Agriculture Organization of the United Nations (FAO), the global cultivated area of
maize is around 206.77 million hectares, with an estimated global production of around
1129 million tons in the year 2021 [1]. Maize is also a crucial cereal crop in China, which
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has become the world’s second-largest producer of maize. As a result, maize plays a vital
role in ensuring China’s food security.

However, the timing of crop maturity varies greatly across fields, even for those
located at the same latitude, due to diverse climates, terrain conditions, management
measures, etc. Clearly, harvest time exerts an important impact on maize yield and quality.
If harvested too early, the grain may be too wet to store and require additional drying
processing, which can lead to a decline in maize yield. Similarly, a late harvest can also
result in yield loss due to respiration [2–5]. Many previous studies have reported that
grain moisture content (GMC) is an effective physiological indicator for crop maturity [6,7].
Maize is typically considered mature and ready for harvest when its GMC falls below
30% [4,8,9]. Farmers are keen to know the maturity states of crops so that they can arrange
timely manual or mechanical harvesting. Crop growth models such as WOFOST, STICS,
and GROPGRO have been used to predict the optimal harvest dates of soybean, maize,
wheat, and cotton [10–12]. However, it is often difficult to obtain model parameters for
these models driven by meteorological factors. Furthermore, these site-based models are
unable to provide information at a large spatial scale. Remote sensing technology, with its
strong capability of timely monitoring and large-scale coverage, has been widely employed
to support precision agriculture, such as field management of sowing, irrigation, and
fertilization. Previous studies also demonstrated the capability of satellite remote sensing
for crop maturity monitoring [13–15]. For example, Xu et al. (2019) predicted the optimal
harvest time of maize by establishing the correlation between the canopy chlorophyll
content (CCC) and the GMC of maize [4]. Han-ya et al. (2009) improved the estimation
accuracy of wheat ear moisture content to predict maturity and determine field harvest
order by combining remote sensing data obtained from an airborne sensor with satellite
remote sensing data from SPOT5 [16]. Meng et al. (2015) estimated the optimal harvest
time of soybeans by analyzing the temporal changes in soybean chlorophyll and water
content using vegetation indices acquired from remote sensing [3]. However, satellite
remote sensing is often susceptible to weather conditions, and its spatial resolution is
generally too coarse for precise agricultural management [17–19].

Recently, flexible unmanned aerial vehicle (UAV) remote sensing has gained increasing
interest in the field of precise agriculture [20,21]. Compared with satellite remote sensing,
UAV remote sensing offers various advantages, including convenience, rapidity, high
spatial and temporal resolution, lower technical requirements, and lower cost require-
ments [22–27]. Specifically, UAVs can cover hundreds of hectares in a single flight [28],
capture ultra-high spatial resolution images with a spatial resolution up to 0.01 m (which
enables the investigation of crop-growing conditions at the field scale), and ensure that
crops are monitored with the highest time resolution during the growing season. A number
of studies have employed UAVs to retrieve physiological parameters of crops, such as
canopy chlorophyll, LAI, and canopy water content [29,30]. These studies can be broadly
divided into two groups: radiation transfer model (RTM)-based and empirical-based ap-
proaches. The RTM-based methods built on strict physical processes fully consider the
optical properties of crops and are independent of locations or dates [31–34]. However,
it is typically hard to extend RTM-based methods to large spatial areas. In contrast, VI-
based empirical methods simplify complex multi-spectral images into a feature variable to
predict and evaluate the characteristics of vegetation and monitor crop growth at a large
scale [35]. A number of vegetation indices, such as the normalized difference vegetation
index (NDVI) [36], the green normalized difference vegetation index (GNDVI) [37], and
the normalized red edge index (NDRE) [38], have been demonstrated to be sensitive to
biophysical parameters of crops (e.g., chlorophyll and LAI content) [39–41]. But the em-
pirical methods established with specific samples are always difficult to generalize to new
agricultural regions.

In summary, the RTM-based and empirical-based approaches have their own advan-
tages in crop growth monitoring, biomass estimation, and yield estimation using UAV
remote sensing. Incorporating the two types of methods for accurate crop maturity moni-
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toring has not yet been reported. Previous studies have demonstrated the close relationship
between GMC and CCC in maize [4]. The CCC of maize was retrieved using the PROSAIL
inversion model, which has been proven to be an effective way for the inversion of LAI and
chlorophyll for various crops, including maize, soybeans, wheat, rice, potatoes, grassland,
and other crops (this will be further elaborated in Section 3.1) [42–51]. In this research, we
incorporated the CCC-based model with the simple empirical VI approach to establish a
model to estimate the GMC of maize so as to assess the maturity of maize. The specific
objectives of this study are as follows:

(1) Perform PROSAIL model inversion for maize CCC retrieval at the main crop growth
stages. This not only tests the accuracy of the model inversion but also enables us to
further investigate the quantitative relations between VIs and CCC with maize GMC;

(2) Compare the relationships between selected VIs and CCC with maize GMC at ma-
turity, evaluate the optimal vegetation index, and demonstrate the validity of the
VI-based method for estimating maize GMC;

(3) Explore the differences in GMC between maize varieties at maturity under the same
geographical and environmental conditions.

2. Study Area and Data Source
2.1. Study Area

As depicted in Figure 1, this study was carried out on two black soil research experi-
mental fields located in Hailun County, Heilongjiang Province, China. The county, located
between 126◦14′ E and 127◦45′ E and 46◦58′ N and 47◦52′ N, experiences a temperate conti-
nental climate. The annual sunshine hours are 2315 h, the active accumulated temperature
is 2200–2400 ◦C, the frost-free period is 117 days, and the annual average precipitation
is 556 mm. From the northeast to the southwest, the topography transitions from low
hills to high plains, river terraces, and floodplains, with gradual decreases in elevation.
Hailun County is a key study area for black land research, with the reputation of being a
high-starch maize hometown and also an important commodity grain base in China. In the
2021 growing season, the two intercropping fields of maize and soybean were planted with
fresh-eating maize and starch maize, respectively, at the same sowing time. The first field
(the central location point is 47.413◦ N, 126.747◦ E) named WQG has a total crop planting
area of 50.3 ha, where maize accounts for about 75%. The second field (the central point is
located at 47.427◦ N, 126.779◦ E) named SLC has a total planting area of 56 ha, where the
planting area of maize accounts for 60%, greater than that of soybeans.
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2.2. Multi-Spectral UAV Flight Campaign and Image Processing

The DJI Phantom4-M (P4M) UAV (Figure 2), equipped with a multi-spectral camera
with six channels, including a visible channel and five multi-spectral sensor channels,
was employed in this study to obtain multi-spectral UAV images. The descriptions of the
multi-spectral camera bands are shown in Table 1. P4M was taken between 11 a.m. and
2 p.m. in clear and cloudless weather with a flight height setting of 190 m (the GSD, or
ground sampling distance, is H/18.9 cm/pixel) and an 80% overlap in the heading direction
and a 70% overlap in the side direction for each flight. Before the flight, the radiometric
calibration board equipped with the camera was used for radiometric calibration. After
the flight, the images were fed into the Pix4D mapper software (Version:4.4.10) for image
mosaic. We obtained the image reflectance data for each field and then resampled the
image data to a spatial resolution of 0.1 m. All of the collected UAV images were processed
and analyzed using the ArcGIS software (Version:10.5).
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Table 1. Descriptions of the DJI P4M-UAV multi-spectral camera bands.

Band Name Center Wavelength/nm Band Width/nm File Suffix Name

Blue (B) 450 32 .tif
Green (G) 560 32 .tif

Red (R) 650 32 .tif
Red Edge (RE) 730 32 .tif
Near IR (NIR) 840 52 .tif

2.3. Ground Data Collection

Maize in the two experimental fields with rich humus and nutrients was sown on 5
May 2021, with a row distance of 0.65 m and a plant distance of 0.15 m, respectively. The
two fields had the same treatments, including the irrigation amount, fertilizer amount, and
other management measures. The data of two field trials were collected at the three most
important growth stages of maize, as shown in Figure 3 [52], which were on 12 July 2021,
that is, the jointing stage of maize; 18 August 2021, that is, the milky maturity stage of maize;
and 18 September 2021, that is, the maturity of maize. In this study, each sampling point
covered a plot area of 1.3 m × 1.3 m. Twenty sampling points of maize were collected in
the WQG field, including the LCC and LAI of the three maize growth stages and the GMC
of maize at the maturity stage. We also collected 22 GMC sampling points of maize at the
maturity stage in SLC. While collecting data from the ground, multi-spectral UAV images
of each field were acquired simultaneously. The distribution of sampling points in the two
fields is shown in Figure 4. Number 1© represents fresh-eating maize planting strips, and
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number 2© indicates starch maize planting strips. The exact coordinate information of each
sample point was recorded by the Global Positioning System (GPS) with a centimeter-level
differential positioning record.
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The LAI-2200c plant canopy analyzer (LI-COR, LNK, Lincoln, NE, USA) and the
SPAD-502 chlorophyll meter (Riben, Konica Minolta, Tokyo, Japan) were used to quantify
the LCC and LAI values, respectively. It was noticed that the values collected by SPAD
are dimensionless and have a high correlation with LCC by an empirical correction func-
tion [53]. For obtaining LCC values at the same sample point, a total of 18 values of LCC
were collected from the two maize plants that were closest to a sampling point. Each plant
measured nine points distributed respectively in three leaves (each leaf having three values
obtained in the top, middle, and bottom parts). The average of those measured SPAD
values was recorded at this sampling point. For the LAI collection of each plant, a skylight
and four target values near the root were needed for measuring to avoid the effects of direct
sunlight. As a result, we also collected two LAI values from the same two maize plants,
and the average of them was calculated and recorded.

All corncobs from the two plants at each sampling point were harvested and taken
back to the lab on 18 September 2021, to measure the GMC of maize. To do this, the
corncobs were first threshed, and the wet weight of the grains at each sampling location
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was measured using a high-precision balance. Subsequently, the wet grains were loaded
in an oven set at 85◦ for a long time (over seven days) until they were fully dried (i.e.,
the weight did not change anymore). The dry weight of the grains was then measured,
and the dry weight to wet weight ratio was calculated and employed as the ground true
value of maize GMC. Figure 5 depicts the ground sampling data acquisition and the GMC
measurement site, respectively. Table 2 displays the data collection at the various growth
stages of maize in the experimental design from the study fields.
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(c,d) maize drying.

Table 2. Collection data during different growth stages of maize.

Date GS WQG (Maize) SLC (Maize)
UAV

Image
LCC

(µg/cm2)
LAI

(m2/m2) GMC UAV
Image GMC

12 July 2021 J
√

[20–75] [1–6]
√

18 August 2021 MM
√

[40–80] [1–6]
√

18 September 2021 M
√

[50–75] [1–6]
√ √ √

GS—growth stage; J—jointing; MM—milky maturity; M—maturity.



Drones 2023, 7, 586 7 of 20

3. Methodology

In this paper, the assessment of maize maturity was achieved by an empirical model
in land parcel WQG, in which the quantitative relationship between vegetation indices
(VIs) obtained through UAV multi-spectral imagery, canopy chlorophyll content (CCC),
and maize grain moisture content (GMC) at maturity was experimentally determined.
Specifically, we first used the verified PROSAIL model to invert the maize CCC in the second
land parcel (i.e., SLC). Next, we calculated various forms of VIs that are closely related
to crop CCC, and then we constructed and evaluated empirical models for estimating
maize GMC at maturity. Finally, a sensitivity analysis was conducted to examine how
modifications to the PROSAIL model parameters and the corresponding variations of
the CCC affected the reflectance of different UAV spectral bands. This was carried out
to evaluate the rationality of establishing an empirical model to determine the optimal
vegetation index.

3.1. PROSAIL Model for CCC Retrieval

Canopy chlorophyll content (CCC), defined as the product of leaf chlorophyll content
(LCC) and leaf area index (LAI) (as shown in Equation (1) below) [54], is an important
characteristic parameter for characterizing crop growth status in agricultural quantitative
remote sensing (including inversion of crop maturity). The PROSAIL model was employed
in our study to invert the maize CCC. It is an overall model derived by coupling PROPECT
(leaf radiative transfer model) with SAIL (canopy structure model) [55–58], which mainly
describes the optical characteristics of plant leaves in the spectral range of 400–2500 nm.
The PROSPECT-5 model requires a series of leaf parameters, including leaf structure (N),
chlorophyll a + b content (Cab), equivalent water thickness (Cw), dry matter content
(Cm), carotenoid concentration (Car), and brown pigment (Cbp), while the 4-SAIL model
necessitates the following parameters: leaf reflectance and transmittance (PROSPECT-5
output), leaf area index (LAI), hot spot parameter (hot), dry/wet soil factor (Psoil), soil
brightness factor (Bsoil), average leaf inclination angle (ALIA) of a spherical leaf angle
distribution function, sun zenith angle (θs), observer zenith angle (θv) and relative azimuth
angle (ϕSV).

The maize biophysical parameters employed to feed the PROSAIL model were ob-
tained from the literature except for Cab (i.e., LCC) and LAI [4,43,47,59,60]. Here, both
Cab and LAI were acquired through field observations. The settings for each parameter
range are shown in Table 3. For instance, the parameter N ranges between 1.2 and 2, Car
varies between 0 and 12, and the values of Cab and LAI vary depending on the measured
values at different growth stages of maize. The parameters Psoil (ranging between 0.05 and
0.4) and Bsoil (ranging between 0 and 1) represent soil moisture and soil brightness. The
parameters θs, θv, and ϕSV are related to the time of flight and sensor information, which,
in our case, have ranges between 0◦ and 45◦, 0◦ and 30◦ and 0◦ and 180◦, respectively.

CCC = LCC ∗ LAI (1)

The sensitivity analysis methodology proposed by [46] was performed to examine
how various input parameters affect the output reflectance of the PROSAIL model. While
the spectrum reflectance of the UAV images falls within a specific spectral range (as shown
in Table 1), the simulated spectrum reflectance of the PROSAIL model is a smooth curve
with an interval of 1 nm, indicating a significant scale influence between them. Therefore,
the continuous spectral reflectance was transformed into the UAV multi-spectral reflectance
in each band wavelength range based on the spectral response function (Equation (2)). We
referenced [47], which utilized a cost function (the least squares error, LSE (Equation (3))
and a look-up table (LUT) approach to determine the best match between the simulated
reflectance and the reflectance observed by the UAV images. Finally, the measured maize
CCC data at the sixty ground points collected at different growth stages from WQG were
used to verify the CCC inversion accuracy by the PROSAIL model.
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Table 3. Parameter values adopted in the PROSAIL model in this study.

Parameter Symbol Units Range Value Base Value

Leaf Model: PROSPECT-5

Leaf structure N Unit less 1.2–2 1.5

Chlorophyll a + b Cab µg/cm2 Measured value range The average of measured values

Carotenoid
concentration Car µg/cm2 0–12 6

Brown pigment Cbp Unit less 0–1 0.2

Dry matter content Cm g/cm2 0.001–0.3 0.01

Equivalent water
thickness Cw cm 0.001–0.3 0.01

Canopy model: 4-SAIL

Leaf area Index LAI m2/m2 Measured value range The average of measured values

Hot spot parameter Hot m/m 0.01–0.5 0.1

Dry/Wet soil factor Psoil Unit less 0.05–0.4 0.2

Soil brightness factor Bsoil Unit less 0–1 0.5

Sun zenith angle θs ◦ 0–45 30

View zenith angle θv ◦ 0–30 10

Relative azimuth angle ϕSV ◦ 0–180 90

The simulated UAV band reflectance (ρs(λ)) can be calculated as follows:

ρs(λ) =

∫ λmax
λmin

ρ(λi)ϕ(λi)dλ∫ λmax
λmin

ϕ(λi)dλ

(2)

where λmax and λmin are the maximum and minimum wavelength ranges of each band
of UAV (i.e., central wavelength adds and subtracts half of the band width for each UAV
band), respectively; ϕ(λi) denotes the spectral response function; and ρ(λi) represents the
simulated reflectance derived from the PROSAIL model.

The least squares error (LSE) can be calculated as follows:

LSE =
m

∑
i=0

(
y(i) − ŷ(i)

)2
(3)

where y(i) and ŷ(i) are, respectively, the true value and the estimate value, and m represents
the count of the sampling points.

During the sensitivity analysis process of selected VIs, we quantified the relative
changes in the VIs value depending on maize CCC variations at maturity following Sun Y
et al. (2019) [61] as follows:

∆VI =
∣∣∣∣VI(CCCmax)−VI(CCCmin)

VI(CCCmin)

∣∣∣∣ (4)

where VI(CCCmax) and VI(CCCmin) are the vegetation index values corresponding to
the maximum and minimum CCC of maize at maturity, respectively.

3.2. Calculation of VIs

In order to compare the estimation of the maize GMC at maturity by the CCC with a
simple VI-based approach, several typical and commonly used VIs were calculated from
multi-spectral UAV images, including NDVI, GNDVI, NDRE, RENDVI, and LCI (as shown
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in Table 4). These VIs have a good indication and sensitivity for assessing the growth status
of crops, identifying different concentrations of chlorophyll in crops, and evaluating the
degree of senescence. The VIs values at each ground sampling point were extracted from
UAV images for further analysis.

Table 4. Vegetation indices and their calculation equations.

Vegetation Index Equation Reference

NDVI (NIR − Red)/(NIR + Red) [35]
GNDVI (NIR − Green)/(NIR + Green) [38]
NDRE (NIR − RedEdge)/(NIR + RedEdge) [39]

RENDVI (RedEdge − Red)/(RedEdge + Red) [62]
LCI (NIR − RedEdge)/(NIR + Red) [63]

3.3. Model Construction and Performance Assessment

To build empirical models between the CCC and maize GMC, as well as between the
selected VIs and maize GMC at maturity, different regression models were tested, including
exponential, linear, logarithmic, and power [4,22,47]. We first built the models only using
the sampling points (ground-measured CCC and VIs) collected in WQG (as shown in
Figure 4). The coefficient of determination (R2) was used to assess the performance of
different models. Then, the established empirical models were cross-validated using the
sampling points of SLC (as shown in Figure 4). The higher the goodness of the model, the
closer the R2 is to 1. The calculation of R2 is shown in Equation (5), and its general range is
from 0 to 1.

R2 = 1−
∑n

j=1
(
yj −Oj

)2

∑n
j=1
(
yj − y

)2 (5)

Furthermore, root mean square error (RMSE) and mean absolute error (MAE) were
also used for assessing the statistical metrics of each cross-validation. The root mean square
error (RMSE) reflects the deviation between the predicted value and the real value and the
stability of the evaluation model. The smaller the RMSE value, the higher the accuracy of
the model. The calculation method is shown in Equation (6):

RMSE =

√√√√ 1
n

n

∑
j=1

(
yj −Oj

)2 (6)

MAE reflects the actual situation of the predicted value error. The smaller the value,
the higher the accuracy of the model. The calculation method is shown in Equation (7):

MAE =
1
n

n

∑
j=1

∣∣yj −Oj
∣∣ (7)

In Equations (5)–(7), Oj represents the predicted value, yj and y respectively denotes
the measured value and the average of the measured values; n is the total number of
sampling points; and j is the serial number of each sampling point. Herein, the Origin
software (Version: 2022.9.9.0.225) was used to perform the regression analysis, and Python
3.6 was used for graph generation.

4. Results
4.1. Results of Field Observations of LCC, LAI, and GMC

Figure 6 illustrates the ground-measured results of maize LCC and LAI at the WQG
site. As can be seen, the LCC reached its peak at the milky maturity stage, followed by
the jointing stage, and was lowest at the maturity stage. Similarly, the LAI was highest at
the milky maturity stage, followed by the jointing stage, and reached its lowest during the
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maturity stage. That is, the changing trends of ground-measured maize LAI are consistent
with those of maize LCC. The maize GMC values of the corresponding sample points at
the maturity stage were also measured over both sites and demonstrated in Figure 7. It is
clear that GMC values in both fields were relatively consistent, varying in a range between
0.37 and 0.46, with an average value of about 0.41.
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4.2. Retrieval of Maize CCC from PROSAIL Inversion Model

For each ground sample point, a total of 50,000 simulated spectral reflectance values
were generated by the PROSAIL model. The best 10% simulated solutions that best matched
(with the least square error) the corresponding ground-observed reflectance value were
selected and averaged to retrieve the LCC and LAI values. Subsequently, the canopy
chlorophyll content (CCC) for each ground sample point was calculated using Equation (1).
The 60 ground-observed sampling points across different growth stages in WQG were
used to validate the retrieved CCC results from the PROSAIL model. The validation
results (Figure 8) showed an R2 value of 0.704 with a MAE of 26.27 µg/cm2 and a RMSE of
34.58 µg/cm2. This validated PROSAIL model was then used to retrieve the maize CCC
values from another study site, SLC.



Drones 2023, 7, 586 11 of 20
Drones 2023, 7, x FOR PEER REVIEW 12 of 22 
 

 
Figure 8. Cross-validation between WQG-maize ground CCC and PROSAIL-retrieved CCC at dif-
ferent maize phenology. 

4.3. Correlation of Both CCC and VIs with GMC 
A correlation analysis of different chosen regression models was carried out to inves-

tigate the relationship between the measured CCC from the 20 ground sample points, the 
VIs calculated from UAV images, and the maize GMC at maturity in WQG. The best maize 
GMC retrieval model was further validated with the VIs and the retrieved CCC of 22 
maize sampling points at maturity in SLC. Table 5 depicts the goodness of fitting between 
CCC, Vis, and maize GMC at maturity in different models. The p-values of different re-
gression models for all parameters are <0.01, indicating that the established regression 
model has significant statistical significance. Among all the selected regression models, 
the logarithmic model achieved the optimal R2 values. Equations (8)–(13) in Table 6 show 
the optimal logarithmic regression model between maize GMC and CCC, LCI, NDRE, 
RENDVI, GNDVI, and NDVI from WQG and SLC. As shown in the table, CCC achieved 
the highest R2 values (0.79 and 0.696, respectively) in both WQG and SLC in comparison 
with all of the selected vegetation indices. Furthermore, amongst all vegetation indices, 
NDRE achieved the most accurate GMC retrieval results with R2 values greater than 0.6 
in both sites, significantly greater than the LCI (0.566 and 0.437), the GNDVI (0.520 and 
0.374), the NDVI (0.501 and 0.359), and the RENDVI (0.262 and 0.200). Figure 9 shows the 
scatterplots resulting from the cross-validation process, where maize GMC was estimated 
from the VIs and CCC logarithmic empirical models. 

  

Figure 8. Cross-validation between WQG-maize ground CCC and PROSAIL-retrieved CCC at
different maize phenology.

4.3. Correlation of Both CCC and VIs with GMC

A correlation analysis of different chosen regression models was carried out to in-
vestigate the relationship between the measured CCC from the 20 ground sample points,
the VIs calculated from UAV images, and the maize GMC at maturity in WQG. The best
maize GMC retrieval model was further validated with the VIs and the retrieved CCC of
22 maize sampling points at maturity in SLC. Table 5 depicts the goodness of fitting be-
tween CCC, Vis, and maize GMC at maturity in different models. The p-values of different
regression models for all parameters are <0.01, indicating that the established regression
model has significant statistical significance. Among all the selected regression models,
the logarithmic model achieved the optimal R2 values. Equations (8)–(13) in Table 6 show
the optimal logarithmic regression model between maize GMC and CCC, LCI, NDRE,
RENDVI, GNDVI, and NDVI from WQG and SLC. As shown in the table, CCC achieved
the highest R2 values (0.79 and 0.696, respectively) in both WQG and SLC in comparison
with all of the selected vegetation indices. Furthermore, amongst all vegetation indices,
NDRE achieved the most accurate GMC retrieval results with R2 values greater than 0.6
in both sites, significantly greater than the LCI (0.566 and 0.437), the GNDVI (0.520 and
0.374), the NDVI (0.501 and 0.359), and the RENDVI (0.262 and 0.200). Figure 9 shows the
scatterplots resulting from the cross-validation process, where maize GMC was estimated
from the VIs and CCC logarithmic empirical models.

Table 5. The regression analysis results between CCC, Vis, and maize GMC in WQG.

Category R2-WQG (Exponential:
y = aeX + b)

R2-WQG
(Linear: y = ax + b)

R2-WQG
(Logarithmic: y = lnx + b)

R2-WQG (Power:
y = bxa + c)

p-Value

CCC 0.615 0.643 0.790 0.781 <0.01
LCI 0.524 0.536 0.566 0.557 <0.01

NDRE 0.530 0.545 0.600 0.596 <0.01
RENDVI 0.255 0.254 0.262 0.260 <0.01
GNDVI 0.511 0.516 0.520 0.517 <0.01
NDVI 0.491 0.497 0.501 0.498 <0.01

The different regression models’ p-values for all parameters are <0.01.
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Table 6. The correlation equation and R2 values between CCC, Vis, and maize GMC in WQG and SLC.

Category Equation Expression R2-WQG R2-SLC No.of Equation

CCC GMC = 0.0569ln(CCC) + 0.1542 0.790 0.696 (8)
LCI GMC = 0.1133ln(LCI) + 0.5025 0.566 0.437 (9)

NDRE GMC = 0.1084ln(NDRE) + 0.5176 0.600 0.619 (10)
RENDVI GMC = 0.181ln(RENDVI) + 0.4924 0.262 0.200 (11)
GNDVI GMC = 0.3229ln(GNDVI) + 0.5031 0.520 0.374 (12)
NDVI GMC = 0.3396ln(NDVI) + 0.484 0.501 0.359 (13)
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Figure 10 shows the inversion map of maize GMC at maturity based on the optimal
vegetation index NDRE in both study sites. As we can see from the figure, the GMC
of fresh-eating maize was commonly lower than that of starch maize at both sites. The
distribution map of GMC pixel counts as shown in Figure 11 demonstrates that the maize
GMC is primarily distributed between 0.370 and 0.435, accounting for more than 90% of
the total number of maize pixels. The average values of maize GMC were 0.404 and 0.410
in WQG and SLC, respectively.
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4.4. Parameter Sensitivities of the PROSAIL Model

To assess the parameter sensitivity of the PROSAIL model, Figure 12 shows how
changes in the parameters of the PROSAIL model affect maize spectral reflectance at the
maturity stage over various wavelengths. As can be seen from the figure, the parameters
Cab and LAI exerted the greatest influence on spectral reflectance. Specifically, Cab affected
negatively the G (560 nm) and the RE (730 nm) bands, whereas LAI had a significant positive
effect on the RE and the NIR (840 nm) bands. Similar to LAI, the parameters Cbp and
Cm also had an impact on the RE and the NIR bands. The other parameters of PROSAIL,
including N, Car, Cw, Psoil, Bsoil, and hot, had little effect on maize spectral reflectance.
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In order to further investigate the impact of maize CCC on spectral reflectance, we
kept the parameters of the PROSAIL model fixed, except for Cab and LAI, and quantified
how spectral reflectance responded to changes in maize CCC over different wavelengths
(Figure 13). As shown in the figure, the RE (730 nm) band was most sensitive, followed by
the G (560 nm) and R (650 nm) bands, and the NIR (840) and B (450) bands were insensitive
to variations in maize CCC.
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Figure 13. The spectral response sensitivity analysis curve under different maize CCC values
at maturity.

The sensitivity of the selected VIs to the variations in maize CCC at maturity was
quantified (Equation (4)) and demonstrated in Figure 14. From the figure, it can be seen
that the NDRE had the largest change, with a relative change value up to 0.979, followed
by the LCI (0.873), GNDVI (0.370), NDVI (0.135), and the RENDVI, which achieved the
smallest change (0.123). The figure also shows that the change in the value of vegetation
indices (i.e., NDRE and LCI) with the RE (730 nm) band and the NIR (840 nm) band is
obviously greater than that of others.
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5. Discussion
5.1. Contributions of UAV in Maize Maturity Estimation

Due to its flexibility, convenience, and high spatial and temporal resolution, UAV
remote sensing technology is emerging as a key tool for agricultural monitoring (e.g., yield
estimation, pest monitoring, and plant identification). Previous studies demonstrated the
effectiveness of UAV remote sensing for crop monitoring at small scales, such as fields,
farms, and counties [22–24,47]. In this paper, this technology was used to observe and
record the difference in crop growth conditions at a very fine scale, i.e., within and between
fields, which was seldom involved in previous research. Maize from sowing to maturity is
an overall growth process. The main factors affecting maize growth include environmental
factors such as temperature and rainfall, terrain factors, crop varieties, planting conditions,
et al. The selection of maize varieties affects their genetic traits, variety resistance, variety
maturity, and grain quality [64,65]. Despite the identical environmental and planting
conditions and the same planting time, the two maize varieties (fresh-eating maize and
starch maize) show a relatively constant difference in maize maturity either within or
between the two experimental fields (WQG and SLC): the GMC of fresh-eating maize was
lower than that of starch maize with respect to maize maturity. Our proposed UAV remote
sensing methodology was able to effectively capture such a maize maturity difference,
demonstrating its usefulness for future precision management of maize.

5.2. The Theoretically Consistent VI-Based Estimation Model Based on CCC Validation

In our method, a theoretically consistent empirical model regarding the relationship
between VIs (calculated from UAV remote sensing data) and the GMC of maize at maturity
was built by providing enhanced CCC-based evidence. Canopy chlorophyll content (CCC),
which is a multiplication of leaf chlorophyll content (LCC) and leaf area index (LAI), is a
synthesized reflection of a crop’s green leaf status and canopy structure. Previous studies
(e.g., Xu et al., 2019) [4] demonstrated a close relationship between the remote sensing-based
CCC value and the GMC of maize at maturity. Specifically, when the CCC value decreases
to a certain level, an obvious decrease in the GMC will occur. Such recognition was
further proven by our field-based observations and related analysis. Furthermore, through
the PROSAIL model’s inversion of CCC and the analysis of the model’s sensitivity, how
changes in CCC concentration altered the reflectance of each UAV band was determined,
and it was demonstrated that NDRE was the VI that was most impacted by the change
in CCC.
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5.3. Optimal Vegetation Index for Maize GMC Estimation

Our empirical models show that NDRE is the most robust vegetation index in the
selected VIs for estimating GMC at the maturity stage of maize, although its inversion GMC
accuracy is relatively lower than that of CCC, as illustrated by our results. It should be
pointed out that the relatively higher accuracy of GMC inversion based on CCC (including
the CCC inverted by a PROSAIL model) comes at the cost of the expensive and time-
consuming acquisition of a large amount of field sampling data, thus significantly affecting
the practicality of such a method. Furthermore, some uncertainty is also noticed for the
CCC-based inversion approach due to the obvious variation of R2 values in the two plots
in comparison with our VI-based approach. In contrast, NDRE is directly calculated by the
RE band (730 nm) and NIR band (840 nm) of UAV-based remote sensing imagery, thereby
saving the cost of field observation. The RE band, which is a narrower band located between
the RED band and NIR band and has the largest change in the slope of a crop’s spectral
reflectance curve, is very sensitive to changes in the chlorophyll content of vegetation,
whereas soils and other terrestrial objects show smaller increases in reflectance [66–68].
Furthermore, the RE band and the NIR band are sensitive bands to LAI (as shown in
Figure 11). The vegetation index, NDRE, therefore better represents the combination
of chlorophyll content and canopy structure, i.e., CCC. This result is in agreement with
previous findings. For example, according to Milas A et al. (2018) and Boiarskii B et al.
(2018) [69,70], the NDRE vegetation index calculated based on multi-spectral UAV images
was sensitive to and highly correlated with maize CCC when monitoring crop chlorophyll
content; ref. [47] found that, in comparison with LAI, GNDVI, and NDVI, NDRE performed
the best for predicting crop yield and biomass using high-resolution hyperspectral data.

5.4. Limitations and Future Work

Although the NDRE-based approach shows advantages in terms of efficiencies in
the inversion of maize grain moisture content (GMC) at the mature stage, there is still
a gap compared to the CCC-based approach regarding inversion accuracy. The NDRE
and the maize GMC at maturity are moderately associated (as shown in Table 6, R2:
WQG = 0.600, SLC = 0.619), which could explain more than 60% of the maize GMC at
maturity with little variation in R2 values between the two fields, suggesting that the
VI approach is not significantly influenced by the external environment. CCC explains
70–80% of maize GMC (as shown in Table 6, R2: WQG = 0.79, SLC = 0.696), showing a
discrepancy of 10–20% between the VI-based inversion of maize GMC at maturity and the
GMC retrieval using the CCC—a critical physiological parameter in the growing process of
crops. Furthermore, the multi-spectral UAV images used in our research can be regarded as
hyperspectral data after screening and extracting characteristic bands, which theoretically
have the quantitative inversion capability equivalent to hyperspectral images [25]. Yet
there is still a gap compared to hyperspectral images with a higher level of spectral details
and spectral information for crop growth monitoring. Specifically, the spectral range of the
UAV sensor channel used in our work is only 435–866 nm, making it incapable of covering
band ranges longer than 866 nm, which might be useful for crop monitoring. For example,
the short-wave infrared band (SWIR, 1100 nm–2500 nm) has an important indicator effect
on the inversion of crop canopy water content. In the face of these challenges, our future
studies will focus on more comprehensive crop spectral indicators and vegetation indices
to establish a more reliable remote sensing inversion method for crop dynamic growth
monitoring and maturity analysis.

6. Conclusions

Timely, efficient, and accurate monitoring of crop maturity is vital for crop harvest
management. Based on in situ sampling data, the potential of incorporating VI-based
model inversion with a CCC-based model for estimating maize GMC at maturity was
investigated. We found that the GMC at maturity was closely related to the variety of
maize, and the PROSAIL inversion model was able to retrieve maize CCC with a reasonable



Drones 2023, 7, 586 18 of 20

R2 value, thus providing strong support for maize maturity analysis. Furthermore, the
NDRE performed better (more accurate and stable) in comparison with other selected
vegetation indices for maize GMC estimation at maturity. Nevertheless, we demonstrated
that the UAV VI-based method has the capability of monitoring maize GMC accurately
and flexibly over large areas. Future studies can explore the possibility of generalizing our
established method to other regions and for other crops.
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