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Abstract: Autonomous navigation of drones using computer vision has achieved promising perfor-
mance. Nano-sized drones based on edge computing platforms are lightweight, flexible, and cheap;
thus, they are suitable for exploring narrow spaces. However, due to their extremely limited comput-
ing power and storage, vision algorithms designed for high-performance GPU platforms cannot be
used for nano-drones. To address this issue, this paper presents a lightweight CNN depth estimation
network deployed on nano-drones for obstacle avoidance. Inspired by knowledge distillation (KD),
a Channel-Aware Distillation Transformer (CADiT) is proposed to facilitate the small network to
learn knowledge from a larger network. The proposed method is validated on the KITTI dataset and
tested on a Crazyflie nano-drone with an ultra-low power microprocessor GAP8. This paper also
implements a communication pipe so that the collected images can be streamed to a laptop through
the on-board Wi-Fi module in real-time, enabling an offline reconstruction of the environment.

Keywords: drone; obstacle avoidance; computer vision; depth estimation; transformer; knowledge
distillation; edge computing; Crazyflie

1. Introduction

Drones play an important role in exploration tasks. In particular, nano-sized drones
are suitable for exploring narrow and cluttered environments after disasters because of
their small size and relative affordability [1]. Flying autonomous drones in scenarios
where GNSS is not available is a challenging research topic. Some research integrates
multiple sensors, such as high-quality stereo cameras [2,3] and LiDAR [4–7] for drone
navigation. These methods integrate with on-board SLAM algorithms and a map of the
environment can be constructed [8,9], which is useful for planning the rescue mission
after a disaster. However, this type of method requires drones with large payloads [10]
and running on-board SLAM algorithms is not possible due to their weak processors.
As computer vision technology evolves, learning-based methods using monocular vision
emerge. Given an input image a convolutional neural network (CNN) can be trained to
directly output control commands [11–13]. Since this type of method cannot control the
drone’s next waypoints and relies on black-box decision-making, it is more reasonable to
navigate and avoid obstacles based on intermediate depth maps predicted by CNNs [14–16].
The advantages of using depth maps for drone navigation are two-fold: (i) A depth map
intuitively represents the distance from each object to the viewpoint in the scene and is
ideal for navigating a drone and selecting the next waypoint if needed. (ii) Some recent
CNN-based depth estimation methods leverage the self-supervised training strategy and
do not require labeled data for training. In view of these advantages, the focus of this
paper is also on the use of the depth map estimated by a CNN for the obstacle avoidance of
nano-drones.
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The target platforms of the aforementioned methods were not nano-drones, and they
used high-performance graphics processing units (GPUs), which are not available in nano-
drones. The nano-drone platform used in this paper is Bitcraze’s Crazyflie, which uses
GAP8 as its processor and has only 22.65 GOPS of processing power and 512 KB of RAM.
There is not enough memory to store two 324 × 324 RGB images and other files such as
model weights. To our knowledge, this paper is the first to implement CNN-based depth
estimation networks on such a nano-drone with extremely limited computational capacity.
The contribution of this paper can be summarized as follows.

• In order to reduce drone memory usage, this paper explores running depth estimation
networks on single-channel grayscale images. The experimental results on the KITTI
dataset show that self-supervised depth estimation using grayscale images is feasible.
A single grayscale image saves two-thirds of the storage space compared to using a
single RGB image.

• The remaining space is still insufficient for the storage and inference of small models
such as Lite-Mono [17]. Therefore, a lightweight depth estimation framework DDND
is proposed that has few parameters (310 K). To compensate for the limited learning
capacity of the small network, knowledge distillation is introduced and a Channel-
Aware Distillation Transformer (CADiT) is proposed to make the student model
explore important information in different feature channels from the teacher, thus
enhancing the knowledge distillation. The effectiveness of the method is validated on
the KITTI dataset.

• The proposed model is deployed on the nano-drone platform Crazyflie, and it runs at
1.24 FPS on a GAP8 processor to avoid obstacles in real environments. The code will
be released on the project website https://github.com/noahzn/DDND (accessed on
17 January 2024).

• Since a map of the environment is useful for rescue missions and considering that
it is not possible to run reconstruction algorithms onboard nano-drones, this paper
implements data communication from the drone to a laptop and presents a pipeline
for offline reconstruction of the environment.

The rest of the paper is organized as follows. Section 2 reviews some related research
work. Section 3 describes the proposed method in detail. Section 4 elaborates on the
experiments and discussions. Section 5 introduces the proposed pipeline for reconstructing
the environment offline on a laptop. Section 6 concludes the paper.

2. Related Work
2.1. Obstacle Avoidance of Nano-Drones

Nano-drones can be equipped with small laser rangers [1,18–20] or sonars [21] to
avoid obstacles at short distances. Some research focused on optical flow estimation using
a dedicated optical flow sensor [22] or cameras [23,24]. With the development of edge
computing devices, obstacle avoidance using CNN-based methods is beginning to make
its mark on edge computing platforms like PULP [25] and Crazyflie. Image-based methods
can provide rich cues of a scene, but some methods directly regressed control commands
from a single image, and they did not utilize the geometric information of scenes. For
example, Kouris et al. proposed a regression network to output steering angles to control
the drone [11]. Similarly, DroNet used a CNN to output both the steering angle and the
probability of collision to control the forward velocity. It was trained using car driving
images and all the images were annotated as “collision” or “no collision” [12]. Gandhi
et al. created a UAV crash dataset and taught their drone to “go left”, “go straight”,
or “go right” using a shallow network [26]. Zhilenkov et al. deployed a similar system
for autonomous drone navigation in forests [13]. In comparison, methods using depth
maps are favorable [16] because controlling commands or path planning can be built
upon this intermediate step and the depth maps can be used for other tasks such as scene
reconstruction and exploration. Yang et al. proposed a probabilistic CNN to predict
monocular depth and guide the drone to avoid obstacles [14]. Chakravarty et al. trained
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a supervised depth estimation network and controlled the drone based on the behavior
arbitration algorithm [15]. However, reliable depth estimation is computationally expensive,
and the mentioned methods ran on larger platforms or off board. It is not feasible to directly
deploy such models on nano-drone platforms. Additionally, the available memory is also a
problem. For example, the drone platform used in this work has 512 K L2 (second-level
RAM) memory, and this is where the chip executes code and stores captured images. The
above methods all processed three-channel RGB images, and it will take more than half the
memory (324 × 324 × 3 = 315 kB) just to store an RGB image, let alone store other code
and model files. Instead, using a single-channel grayscale image can save two-thirds of
the memory used by an RGB image. This allows us to use a larger CNN model for better
performance.

2.2. Efficient Monocular Self-Supervised Depth Estimation

In recent years, single-image depth estimation (SIDE) has attracted considerable at-
tention from researchers with the development of deep learning. SIDE models using
supervised training regress pixel-wise depth values from labeled data. As it requires ad-
ditional effort to annotate the data, self-supervised depth estimation (SSDE) stands out
and predicts depth from label-free monocular videos [27]. Subsequent work improved
prediction accuracy by introducing multi-task learning [28,29], adding uncertainty con-
straints [30,31], or using more powerful deep learning architectures [32–34]. Some recent
methods have pursued a balance of model accuracy, speed, and size, which is also the
focus of this paper. Fastdepth [35] adopted MobileNet [36] as the encoder and achieved fast
inference speed on embedded systems. However, this model was designed for supervised
training. R-MSFM [37] designed a feature modulation module to learn multi-scale depth
features and reduced model size by controlling the encoder’s layers. Lite-Mono [17] is a
hybrid CNN and Transformer architecture, which is capable of extracting both enhanced
local features and global contexts and achieving a state-of-the-art performance. It has a
good trade-off between accuracy and model size (3.1 M parameters). Nonetheless, such
a small model still exceeds the storage space of the GAP8 processor. To obtain a much
smaller model, the Lite-Mono network is streamlined and a model with 310 K parameters
is obtained in this paper. This results in the problem that the learning ability of this small
model would be limited. For the purpose of improving the learning ability of the model,
this paper introduces knowledge distillation.

2.3. Knowledge Distillation for Depth Estimation

In a typical knowledge distillation (KD) framework, a larger teacher model transfers
its knowledge to a smaller student model. The common ways to perform KD are through
soft labels [38,39] or intermediate feature matching [40–43]. KD has been applied to depth
estimation tasks to boost lightweight models. Wang et al. [44] used ResNet-101 [45] as
the teacher and MobileNet as the student and set up distillation between decoders of the
two networks. Hu et al. [46] improved knowledge distillation with auxiliary data. Pilzer
et al. [47] also explored KD for depth estimation, but their method required stereo image
pairs for training. However, the student models used in the above-mentioned research were
still too heavy to be deployed on a GAP8. Some recent papers have pointed out that KD
may have difficulty optimizing the student model and may achieve unsatisfactory results
if there is a large learning capacity gap between teacher and student [48,49]. Inspired by
some KD methods for classification and semantic segmentation tasks [42,43,50], this paper
proposes the CADiT module to encourage the student to pay attention to geometric cues
from the teacher’s feature channels, thus improving the KD process.

3. Method

The proposed distilled depth for nano-drones (DDND) is shown in Figure 1 and
explained in detail in this section. First, the architecture of the network and the depth
estimation training scheme are presented. Then, the KD scheme including the proposed
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CADiT is demonstrated. The last subsection introduces the control method using the
generated depth map.

CADiT

L2 Loss

Depth Map Depth Map

L1 Loss

Depth Map Depth Map Depth Map

Depth Map

SS Loss

Teacher: 
Lite-Mono

Student:
DDND

Knowledge
Distillation

Figure 1. Overview of the proposed DDND. In addition to the self-supervised (SS) loss used in
the SSDE training scheme, L2 loss and L1 loss are used to distill the teacher’s knowledge into the
student’s encoder and decoder, respectively. The proposed CADiT is introduced in Section 3.3.

3.1. Network Structures

To make the model deployable on the GAP8 chip, the encoder of Lite-Mono [17] is
streamlined to reduce the number of trainable parameters. As shown in the upper part of
Figure 2, the student model (DepthNet) is an encoder–decoder network, with four stages
in the encoder to extract features. Its decoder concatenates features from the encoder
and outputs inverse depth maps at three scales. The channel numbers of the encoder in
Lite-Mono are [48, 48, 80, 128], while the student model used in this paper has channel
numbers [C1, C2, C3, C4] = [32, 32, 64, 80]. The network takes one-channel gray images
as input. The same dilation rates of Lite-Mono are used in the DDND network, and the
total parameters are reduced from 3.1 M to 310 K. The PoseNet is the same pre-trained
ResNet-18 used in [27], and it is not needed after training.
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Figure 2. The training scheme of self-supervised depth estimation and the architectures of DepthNet
and PoseNet.

3.2. SSDE Training Scheme

Figure 2 also shows the self-supervised depth estimation (SSDE) training scheme,
which aims at minimizing the photometric loss Lp between a target image It and the
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reconstructed one Ît. The DepthNet takes a grayscale target image It and predicts a depth
map Dt. The PoseNet estimates the relative pose P between the target image and an
adjacent image It+s, s ∈ [−1, 1].

3.2.1. Photometric Loss

With the adjacent image It+s, the estimated relative pose P, the predicted depth map
Dt, and the camera’s intrinsics K known, the target image can be reconstructed as a function
F (It+s, P, Dt, K), and the photometric loss between the target image and the reconstructed
image Ît can be defined as:

Lp( Ît, It) = Lp(F (It+s, P, Dt, K), It), (1)

which can be calculated as a sum of the SSIM (structural similarity index) [51] and the L1
loss between two images:

Lp( Ît, It) = α
1 − SSIM( Ît, It)

2
+ (1 − α)∥ Ît − It∥, (2)

with α being an empirical value of 0.85 [27]. The minimum photometric loss and the
auto-masking techniques [27] are used to overcome the occlusion problem and to filter out
objects that move at the same speed as the camera. The final photometric loss is defined as:

Lp( Ît, It) =

〈
min

s∈[−1,1]
Lp(It+s, It) > min

s∈[−1,1]
Lp( Ît, It)

〉
· min

s∈[−1,1]
Lp( Ît, It), (3)

where the ⟨·⟩ operation outputs a binary mask.

3.2.2. Smoothness Loss

The edge-aware smoothness loss [27] is also used to improve the smoothness of the
edges of the generated depth map:

Lsmooth = |∂xd∗
t |e−|∂x It | + |∂xd∗

t |e−|∂y It|, (4)

where d∗t = dt/d̂t is the mean-normalized inverse depth. Therefore, the combined loss
function for the self-supervised training is:

Lss =
1
3 ∑

j∈{1, 1
2 , 1

4 }
(Lp + λLsmooth), (5)

where j can be three resolutions of the inverse depth. λ is set to 10−3 as in [27].

3.3. Knowledge Distillation Scheme
3.3.1. Matching Intermediate Features using the Channel Aware Distillation
Transformer (CADiT)

Assume that the teacher network T and the student network S have intermediate
feature maps denoted by FT ∈ FH×W×C and FS ∈ FH×W×C

′
, respectively. The feature

map has a height of H, a width of W, and channel numbers of C. As shown in Figure 3a,
the student’s feature channels are increased using 1 × 1 convolutions to have the same
channel numbers as the teacher. Then, they can be reshaped as FT ∈ FN×C and FS ∈ FN×C,
respectively, where N = H × W. The L2 loss can be used to minimize the discrepancy
between the teacher’s and student’s intermediate features (LIF) [40]:

LIF = ||FS − FT ||2. (6)

However, such a direct feature-matching method may increase the difficulty of opti-
mization if the student has poor learning ability. The proposed CADiT (Figure 3b) allows
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each student channel to learn geometric cues from all the teacher’s channels to improve
feature-matching. Specifically, a C × C channel correlation map (CCM) is built between the
transposed aligned student and the teacher:

Channel 
Alignment Matching

Channel 
Alignment

Matching

(a) (b)

Correlation

Reconfiguration

S T

TS

CCM

Figure 3. Intermediate feature-matching schemes. (a) is the conventional feature-matching scheme.
(b) is the proposed CADiT that makes the student learn the channel correlations from the teacher.

CCM = So f tmax(FT
S · FT) ∈ FC×C, (7)

where (·) is the inner product, and the CCM measures correlations between student and
teacher channels. The student’s features can be reconfigured as:

FS′ = FS + FS · CCM ∈ FN×C, (8)

and the CADiT loss is computed as:

LCADiT = ||FS′ − FT ||2. (9)

3.3.2. Matching Outputs

As with the traditional KD methods [38,46,48], the L1 loss is also used to minimize the
multi-scale depth maps generated by the teacher and the student. The LOut is defined as:

LOut =
1
3 ∑

j∈{1, 1
2 , 1

4 }
||DS − DT ||1. (10)

The final loss function to train the network, combining Equation (5), is written as:

L = Lss + αLCADiT + LOut, (11)

where α is a weighting factor, set to 0.1 in this paper.

3.4. Drone Controlling

With the depth map generated by the network the nano-drone avoids obstacles based
on the behavior arbitration (BA) scheme [52]. Although this scheme was originally used
in conjunction with sonar, it can also be used with depth maps. The behavior avoid is
defined as:

ϕ̇ = favoid(ϕ) = λavoid ∑
i
[(ϕ − ψi) · e−cavoiddi · e

− (ϕ−ψi)
2

2σ2
i )], (12)

where λavoid is a weighting factor, ϕ is the heading of the drone, and di and ψi are the depth
value and direction of the i-th value in the obstacle map, respectively. σi is the horizontal
field of view of the camera, which is the angular range that the drone can change. The gain
cavoid controls the sensitivity to obstacles. Lower gain allows the drone to react to obstacles
further away. Increasing λavoid changes the angular velocity of the drone more quickly. If
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there is a single obstacle, the behavior will generate a repeller along the obstacle direction
ψi. As distant obstacles have less importance than nearby ones, the repeller’s magnitude
should decrease as the distance from the obstacle increases.

The drone started to drift a little when it was about 1.5m above the ground because the
drone’s Kalman filter was not working stably. In this paper, the flight altitude of the drone
is fixed at about 0.7 m, and an obstacle map is constructed by average pooling the center
rows of the depth map with a window size of 10 × 10 (Figure 4), resulting in a 1D obstacle
map. Although the method only uses the pixels in the horizontal center to construct the
obstacle map, the complete images are needed to train the depth estimation network. It
is not feasible to use only the center pixels during training, as there is no guarantee that
the same pixels will be seen in the previous or next frame, and this violates the training
using photometric loss. The considerations of using such a simple control strategy are as
follows: (1) The calculation is cheap, and no additional trainable parameters are required
to generate the obstacle map. (2) It allows the selection of the next waypoint based on the
depth map for path planning in future work. It is possible to use more complex control
schemes, but this is beyond the scope of this paper.

Depth Map
10×10 

Average Pooling

16×1 
Obstacle Map

······

Figure 4. An obstacle map is generated by applying a sum pooling operation on the horizontal center
of the depth map. The depth values of all the pixels in each pooling window are averaged.

In the implementation, the deep network and the controlling code do not run immedi-
ately when the drone is switched on. The drone needs about 12 s to initialize itself, connect
to the laptop, and send several testing messages. A take-off command will then be given
15 s after the start. Five seconds later, the network starts, and then the controlling code
runs. The drone will land either when a predefined flight time runs out or crashes.

4. Experiments
4.1. Drone Platform

To implement obstacle avoidance, this paper has considered several open-source drone
platforms, including Crazepony, ArduBee, DJI Tello, and Crazyflie. A comparison of these
platforms is listed in Table 1. Crazepony2 is a customizable platform, especially known for
the First-Person View (FPV) drone. ArduBee is equipped with an optical flow sensor and an
infrared sensor for object avoidance. Crazepony2 and ArduBee lack AI chips for on-board
image processing. Although DJI Tello has a good vision processing unit and is designed
for education, its closed-source system has become a hindrance to custom development.
Bitcraze Crazyflie (Figure 5) is the drone platform used in this paper. It is equipped with a
Flow Deck v2 at the bottom to measure the distance to the ground and an ultra-low power
GAP8 processor (AI Deck) integrating a monochrome camera (HM01B0-MNA), which is
designed for on-board AI computing. The active open-source community has also brought
attention to Crazyflie. This drone platform measures 92 × 92 × 29 mm (W × H × D) and
weighs 34 g. It is equipped with a 250 mAh LiPo battery and the maximum flight time is
about 5 min. It has 22.65 GOPS of processing power and 512 KB of RAM.
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Table 1. A comparison of the different open-source drone platforms.

Platform Open-Source MCU Camera AI Chip

Crazepony2 Yes STM32F303 Yes -
ArduBee Yes STM32H743VIT6 Yes -
DJI Tello No Not Specified Yes Intel® Movidius™ VPUs

Crazyflie 2.1 Yes STM32F405 Yes GAP8

Monochrome 
Camera GAP8 (AI Deck)

Figure 5. The Crazyflie is used as the drone platform in this paper.

4.2. Datasets
4.2.1. KITTI

KITTI is a multimodal dataset [53], which consists of 61 stereo road scenes. In this pa-
per, the self-supervised model is trained on the Eigen split [54]. There are 39,810 monocular
triplets used in the training, 4421 for evaluation, and 697 for testing. During training, all
the RGB images in the KITTI dataset are resized to 192 × 640 and converted to one-channel
grayscale images.

4.2.2. Gray Campus Indoor

This in-house indoor drone dataset is collected by a Crazyflie in different buildings on
our campus. It consists of 17 sequences, a total of 9140 grayscale images with an original
resolution of 244 × 324 pixels. Images are resized to 128 × 160 pixels in this paper to meet
the requirement of running speed.

4.3. Implementation Details
4.3.1. Network Training

The proposed network is implemented in PyTorch. Models are trained for 30 epochs
on KITTI and 100 epochs on Gray Campus Indoor with an NVIDIA TITAN Xp. The
teacher model Lite-Mono is pretrained on ImageNet [55] and then trained on KITTI. During
training, the teacher’s weights are fixed, and only the student’s weights are updated.
AdamW [56] optimizer is used, and the weight decay is set to 10−4. The initial learning
rate is set to 10−4 with a cosine learning rate schedule.

4.3.2. Model Quantization and Deployment

The trained PyTorch model is further converted to the ONNX (Open Neural Network
Exchange) format and quantized using an 8-bit scheme, reducing the size of the weights
from 747.6 K bytes to 201.3 K bytes. The controlling algorithm is implemented in C language.
The Fabric Controller (FC) frequency of the GAP8 is set to 250 MhZ.

4.4. Results on Grayscale KITTI

Table 2 shows the accuracy of models trained on the grayscale KITTI dataset, and
the seven commonly used accuracy indicators [57] are AbsRel, SqRel, RMSE, RMSE log,
δ < 1.25, δ < 1.252, and δ < 1.253. By comparing the results of Lite-Mono with Lite-Mono
(RGB) it can be found that the self-supervised training based on the photometric loss also
works on grayscale images, albeit with less accuracy. This confirms the feasibility of the
proposed method using grayscale images for self-supervised depth estimation. DDND
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w/o KD in the table denotes the model that does not use knowledge distillation, i.e., it
contains only the streamlined DepthNet and PoseNet as shown in Figure 2. The results
show that leveraging the proposed KD method in the training the accuracy is greatly
improved. Figure 6 shows some images generated by the networks, and it can be observed
that DDND learns knowledge from Lite-Mono and is able to perceive larger objects. In
addition, DDND can produce sharper depth maps at the edges of objects compared to the
blurred depth maps produced without KD.

Table 2. Accuracy comparison on KITTI. “RGB” means that the training uses three-channel
RGB images.

Method
Depth Error (↓) Depth Accuracy (↑)

# Params.
Abs Rel Sq Rel RMSE RMSE Log δ < 1.25 δ < 1.252 δ < 1.253

Lite-Mono (RGB) [17] 0.107 0.765 4.561 0.183 0.886 0.963 0.983 3.1 M

Lite-Mono [17] 0.110 0.848 4.713 0.187 0.881 0.961 0.982 3.1 M
DDND w/o KD 0.157 1.259 5.593 0.229 0.796 0.930 0.973 0.31 M

DDND 0.147 1.149 5.394 0.221 0.813 0.936 0.974 0.31 M

Input

Lite-Mono

DDND 
w/o KD

DDND

Figure 6. Qualitative results on KITTI. The student network can successfully learn feature representa-
tions from the teacher.

4.5. Qualitative Results on Gray Campus Indoor

Figure 7 shows some results on the in-house dataset. The dataset is challenging for the
SSDE framework as it has many lighting sources and low-texture regions, such as walls
and floors. In addition, scenes are more diverse. DDND benefits from the KD scheme and
captures more detail in scenes.
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Input

Lite-Mono

DDND 
w/o KD

DDND

Figure 7. Qualitative results on Gray Campus Indoor.

4.6. Ablation Study on KD Losses

Ablation studies with different loss settings on KITTI are performed to validate the
effectiveness of the proposed KD training and CADiT. In Table 3, the first setting is DDND
without KD, which is the baseline in this ablation study. When introducing the KD on the
generated depth maps (No. 2), the results are better than the baseline. However, experiment
No. 3 shows that not all metrics are better when using the KD in the encoder at the same
time. Simply using L2 loss to distill feature representations cannot give good results due
to the large differences between student and teacher in network learning ability. From
experiments No. 3 and No. 4, it can be found that the distillation methods using the
channel loss yield better results. This loss allows the KD process to focus on the feature
channels and enables more effective knowledge transfer. Experiments No. 6–8 show the
effectiveness of the proposed CADiT module. Even if the proposed CADiT module is
only used in the encoder, without the help of L1 loss in the decoder, good results can still
be achieved (No. 7). The best result is obtained when the CADiT module is used in the
encoder and the L1 distillation is used in the decoder.

Table 3. Accuracy comparison on KITTI of DDND using different KD losses. “E/D”: KD in the
encoder/decoder. “CD”: channel loss proposed in [43]. The best results are highlighted in bold.

No. KD Settings
Depth Error (↓) Depth Accuracy (↑)

Abs Rel Sq Rel RMSE RMSE Log δ < 1.25 δ < 1.252 δ < 1.253

1 E: n/a, D: n/a 0.157 1.259 5.593 0.229 0.796 0.930 0.973

2 E: n/a, D: L1 0.155 1.186 5.502 0.231 0.790 0.929 0.973
3 E: L2, D: L1 0.154 1.305 5.653 0.229 0.803 0.932 0.972
4 E: CD, D: n/a 0.155 1.242 5.649 0.228 0.797 0.930 0.973
5 E: CD, D: L1 0.152 1.208 5.561 0.226 0.807 0.934 0.973
6 E: n/a, D: CADiT+L1 0.149 1.172 5.472 0.226 0.807 0.933 0.974
7 E: CADiT, D: n/a 0.149 1.236 5.528 0.223 0.815 0.936 0.973

8 E: CADiT, D: L1 0.147 1.149 5.394 0.221 0.813 0.936 0.974

4.7. Test in Real Environments

The proposed approach is tested in real indoor environments. Figure 8 shows some im-
ages taken by the nano-drone, and the generated depth maps with the deployed quantized
model. The green bars on the grayscale images denote steering commands for avoiding
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obstacles calculated by Equation (12). Due to model quantization, the on-board network
is not able to generate smooth depth maps, but these maps still succeed in showing the
structure and volume of these scenes. Considering the inference speed of GAP8 the cavoid
defined in Equation (12) is set to 0.1 to make sure that the drone is able to react to obstacles
at a safer distance.

Figure 8. Real environment tests. Grayscale input images and their corresponding depth maps
generated by the quantized CNN model are shown. The green bar in each grayscale image denotes
the change in angular velocity to avoid obstacles.

4.8. Inference Speed Analysis

The inference speed of the proposed network is evaluated both on the NVIDIA TITAN
Xp GPU (graphics processing unit) and the GAP8 processor. As shown in Table 4, there is
little difference in the speed of the network inferring on TITAN Xp at either resolution, but
on GAP8, it is about six times faster for the resolution of 128 × 160. It can also be observed
that the computing power of edge computing devices such as GAP8 is extremely limited.
The inference speed of 1.24 FPS is acceptable because the nano-drone flies at a low speed
during tests.

Table 4. Inference speed evaluation under two image resolutions.

Resolution Speed (FPS)
NVIDIA TITAN Xp GAP8

128 × 160 434.78 1.24
224 × 320 431.53 0.22

4.9. Failure Cases

The proposed method fails to estimate the depth of the glass or if it is too close to a
wall, as shown in Figure 9. This is also a limitation of SSDE methods, and this problem
can be overcome by integrating additional sensors, such as ultrasonic sonar, to detect the
distance between glass and walls.

Figure 9. The method fails to avoid obstacles in areas of glass and when close to walls.

5. The Scene Reconstruction Pipeline

Since a map of the environment is useful for post-disaster rescue and it is not possible
to run SLAM algorithms on the nano-drone, this paper also implements the streaming of
collected images to a laptop using the nano-drone’s WiFi module and presents an offline
pipeline for reconstructing the environment. Figure 10 displays the entire pipeline, divided
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into on-board processing and offline processing stages. During the on-board processing,
the proposed depth estimation network runs on the nano-drone and generates relative
depth maps and angular velocity to make the drone avoid obstacles.

Meanwhile, the grayscale images that have been captured are transmitted from the
drone to a laptop through the NINA WiFi module of the GAP8 chip. On the laptop, a
SLAM algorithm can be used to estimate the poses of the sequential images. This paper
uses ORB-SLAM2 [57] to extract keyframe trajectories from the images. To create a 3D
reconstruction, it is necessary to know the accurate depth values for each pixel, but the
depth estimation models trained with a self-supervised scheme are only able to predict
relative depth values. This paper adopts ZoeDepth [56] for metric depth estimation.
ZoeDepth has 345 M parameters, and it has shown excellent generalization capacity as it
was initially pretrained on 12 datasets using relative depth and subsequently fine-tuned
on two datasets using metric depth. Then, the grayscale images and their corresponding
depth maps are used to generate colored (monochrome) point clouds. Therefore, the scene
reconstruction pipeline allows for building a map of an indoor environment by utilizing a
nano-drone equipped with a monochrome camera.

Monochrome 
Camera GAP8 (AI Deck)

Behaviour 
Arbitration 
(BA) scheme

SLAM algorithm:
Keyframes poses estimation

On‐board Processing

Offline Processing

Depth Maps

Angular Velocity

Gray‐Scale Images

Relative Depth Estimation

WiFi Streamer

Intra‐drone data flow

Data transmission via WiFi

Laptop

Metric Depth Estimation

Semi‐dense point 
cloud reconstruction

Intra‐laptop data flow

Figure 10. The application pipeline for the offline 3D reconstruction.

6. Conclusions

This paper proposes a lightweight depth estimation framework DDND, for obstacle
avoidance on the nano-drone Crazyflie. Considering the limited storage and computing
capacity of such a small drone platform, it is only possible to deploy a tiny network on
it for monocular depth estimation. To enhance the learning ability of this tiny network,
this paper integrates knowledge distillation and proposes the CADiT module for better
knowledge transfer from a teacher model. The quantitative and qualitative results on the
KITTI dataset validated the effectiveness of the proposed KD module. The model is then
quantized so that it can infer on a Crazyflie for real environment tests. The limitation of such
vision-based methods is that it is unable to avoid transparent objects such as glass. This
paper also presents an application pipeline for the reconstruction of the environment using
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offline metric depth estimation and keyframe pose estimation. With the 3D reconstruction,
future potential work will be focused on the selection of waypoints in the reconstruction for
path planning. This function requires the implementation of bilateral data communication
between the laptop and the drone. The low inference speed of the algorithm only allows
the drone to fly at a low speed. Future work will focus on improving the efficiency of the
algorithm. A more powerful GAP9 chip is also being considered.
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