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Abstract: Collaborative exploration in environments involving multiple unmanned aerial vehicles
(UAVs) and unmanned ground vehicles (UGVs) represents a crucial research direction in multi-agent
systems. However, there is still a lack of research in the areas of multi-target detection task assignment
and swarm path planning, both of which play a vital role in enhancing the efficiency of environment
exploration and reducing energy consumption. In this paper, we propose an air–ground collaborative
multi-target detection task model based on Mixed Integer Linear Programming (MILP). In order to
make the model more suitable for real situations, kinematic constraints of the UAVs and UGVs, dy-
namic collision avoidance constraints, task allocation constraints, and obstacle avoidance constraints
are added to the model. We also establish an objective function that comprehensively considers time
consumption, energy consumption, and trajectory smoothness to improve the authenticity of the
model and achieve a more realistic purpose. Meanwhile, a Branch-and-Bound method combined
with the Improved Genetic Algorithm (IGA-B&B) is proposed to solve the objective function, and
the optimal task assignment and optimal path of air–ground collaborative multi-target detection can
be obtained. A simulation environment with multi-agents, multi-obstacles, and multi-task points is
established. The simulation results show that the proposed IGA-B&B algorithm can reduce the com-
putation time cost by 30% compared to the traditional Branch-and-Bound (B&B) method. In addition,
an experiment is carried out in an outdoor environment, which further validates the effectiveness
and feasibility of the proposed method.

Keywords: air–ground collaborative system; task assignment; swarm path planning; MILP

1. Introduction

Recently, the focus on heterogeneous multi-agent collaborative systems has intensified,
attributed to their diverse capabilities, broad applicability, and strong adaptability [1]. As a
specific form of heterogeneous systems, the air–ground collaborative system not only has
the wide field of view and high mobility of multi-unmanned aerial vehicles (UAVs), but
also has the meticulous search capability and long-lasting endurance of multi-unmanned
vehicles (UGVs). It is used in patrol [2], rescue [3], reconnaissance attack [4], express
delivery [5], and other military or civilian fields.

In actual application scenarios, UAVs and UGVs are often required to go to certain
designated areas to complete related tasks, which involve task assignment and path plan-
ning. UAVs and UGVs are intelligent bodies with different kinematic parameters, and there
are also large differences in functions. To solve such optimization problems so that they
more closely represent reality, it is necessary to fully consider commonality and uniqueness
when constructing the model.

The Traveling Salesman Problem (TSP), as one of the most typical models of task
assignment, was initially used in scenarios where only UAVs or only UGVs are operational.
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Cities in the TSP are viewed as target points that need to perform tasks, and the connections
between cities can be viewed as paths. Murry and Chu [5] proposed the Flying Partner
Traveling Salesman Model (FSTSP) and the Parallel Drone Dispatching Traveling Sales-
man Model (PDSTSP), which are theoretical models for solving the last-mile problem in
the air–ground collaborative express delivery scenario. Mara [6] proposed the Traveling
Salesman Problem with Drone (TSP-D), similar to the FSTSP, and added the limitation of
operating mileage for UAVs. In [7–9], variants of the above model and various solutions
are proposed.

The Vehicle Routing Problem (VRP), which is similar to the TSP, is also applied
and developed in the air–ground coordination problem. Wang [10] proposed the vehicle
routing problem with drones (VRPD), which is similar to the FSTSP and used to describe
the scenario where UAVs are delivered with trucks. The literature [11] introduced multiple
UAVs, extended the model to the VRPD-MD, and realized the collaborative path planning
of UAVs and UGVs. In addition, refs. [12,13] adopted effective inequality (VIEQ) and
variable neighborhood descent processes (ILS-VND) to speed up the solution of such
problems, improving the availability of the model in practical application.

However, TSP and VRP and their variants are limited by the basic model, so it is
difficult to expand into a model with many constraints. That is the main reason that most
TSP and VRP models can only focus on the express delivery problem. Unlike the above two
models, Mixed Integer Linear Programming (MILP) does not have an initial basic model,
and as long as linear or integer constraints are satisfied, they can become part of the MILP
model. Therefore, the strong expansibility of the MILP model makes it widely used for
solving multi-target optimization problems.

In addition, the above works can be transformed into the MILP model; refs. [14–16]
added UAV collision avoidance constraints and mission event constraints to the MILP
model, making this type of mathematical model more realistic. Afterwards, in [5], a variety
of heterogeneous UAVs suitable for anti-radar operations were added to the MILP model,
and the task completion time was limited by time window constraints. In [17], UGVs were
added to provide energy supplies for UAV constraints, effectively prolonging the operating
time of UAVs.

From the above analysis, we know that the MILP is extremely suitable for describing
air–ground coordination problems. However, the applicability of the model is relatively
narrow, there is a relatively complete model only in the scenario of unmanned vehicles
carrying drones for delivery, and a model with wide applicability is desperately needed.
Therefore, the following contributions are made in this paper:

(1) A novel air–ground collaborative multi-target detection task model based on MILP,
considering kinematic constraints, dynamic collision avoidance constraints, task allocation
constraints, and obstacle avoidance constraints, is constructed to describe the air–ground
collaborative environmental coverage problem more realistically and reasonably.

(2) A more comprehensive objective function, which comprehensively considers the
time spent on task completion, the energy consumption during operation, and the smooth-
ness of the path trajectory, is proposed to obtain the optimal solution of air–ground collabo-
rative multi-target detection task assignment and path planning.

(3) A Branch-and-Bound method combined with the Improved Genetic Algorithm
(IGA-B&B) is proposed to solve the objective function, and the optimal task assignment
and optimal path of air–ground collaborative multi-target detection can be obtained. In
this method, we adjust the chromosome attributes and genetic operations in the Genetic
Algorithm to make the Improved Genetic Algorithm more suitable for the model and speed
up the operation.

(4) A simulation environment with multi-agent, multi-obstacle, and multi-task points
and several other elements is constructed to validate the effectiveness and progressiveness
of the proposed method in this work. The simulation results show that the proposed
IGA-B&B method can reduce the running time by 30% compared with the traditional B&B
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method. In addition, the practicality and feasibility are also verified through experiments
in outdoor environments.

The rest of this paper is organized as follows. Related work is introduced in Section 2.
The proposed method is described in detail in Sections 3 and 4, including the task assign-
ment and path optimization model for air–ground collaborative multi-target detection
based on MILP, the comprehensive establishment of the objective function, and the op-
timization function solution method based on the IGA-B&B method. In Section 5, the
simulation and experimental environment are introduced, and the guidelines and experi-
mental results are analyzed and compared, which verify the rationality and feasibility of
the proposed method. Finally, this work is concluded in Section 6.

2. Related Work

In this section, we review previous works focusing on the task assignment and path
planning of heterogeneous multi-agents.

2.1. Task Assignment

For UAVs or UGVs, there are many task assignment models available, including the
Traveling Salesman Model, Assignment Problem model, Transportation Problem model,
Vehicle Routing Problem model, etc. Specifically, the problem of one UAV performing
multiple tasks in chronological order can be abstracted as a Traveling Salesman Model and
Vehicle Routing Problem model, and the problem of multiple UAVs performing multiple
tasks can be abstracted as an Assignment Problem model. Common solution methods
can be divided into two categories. One is global optimal solution methods, such as the
Branch-and-Bound method and set covering method. The other is local optimal solution
methods, such as the Tabu Search method (TS), Simulate Anneal Arithmetic (SAA), Genetic
Algorithm (GA), Ant Colony Optimization (ACO), and neural network.

Under the centralized layout, Tian [18] proposed an Improved Genetic Algorithm
based on a multi-type genetic strategy to solve the task allocation problem of heterogeneous
UAV swarms. By sorting different types of tasks to form parallel genes and designing
selection, crossover, and mutation operators for multiple groups of genes, the solution
of the heterogeneous multi-UAV cooperative task assignment problem by using GA was
completed. Kim [19] proposed a distributed method of a probabilistic decision-making
mechanism based on the response threshold model for the formation area searching and
task assignment of heterogeneous UAVs, which realized fast and flexible area searching and
task assignment. Zhang [20] proposed a concurrent contract network protocol (CNP). By
changing the tenderer’s bidding strategy, the tenderer was used as a benchmark to screen
high-quality bidders, and a concurrency mechanism was introduced to allow multiple tasks
to be auctioned simultaneously. This algorithm improves negotiation efficiency, reduces
communication volume and communication frequency, and can be effectively applied to
scenarios with high real-time requirements. Yan [21] proposed a collaborative particle
swarm algorithm based on the contract network protocol and considered the resource
requirements of target points and UAV resources, which can effectively deal with the
problem of heterogeneous multi-UAV real-time task assignment.

2.2. Path Planning

Existing path planning methods can also be divided into two categories: traditional
methods and heuristic methods. Typical traditional methods include the Dijkstra algorithm,
A* algorithm, probability roadmap method, and fast search random tree method based on
sampling. The application of heuristic algorithms in path planning is similar to the process
of task assignment and typical heuristic algorithms include the Genetic Algorithm (GA),
Ant Colony Optimization (ACO), etc.

Chen [22] proposed a method that combines ACO and GA to solve the optimal route
of the air–ground collaborative delivery problem. By decoupling the UAV and UAV path
through the strategy of ACO first and then GA, the appropriate route is arranged under
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the premise of satisfying the delivery sequence. In order to solve the problems of large
memory overhead and long calculation time in the A* algorithm in a larger environmental
scale, Zhao [23] proposed an A* algorithm combined with jump point search, which can
select representative jump points; longer jumps are achieved by ignoring points in the
process that do not need to be considered. In addition, with the increasing application of
reinforcement learning in path planning, a deep reinforcement learning algorithm based on
echo state network (ESN) units was proposed in [24]. This method allows UAVs to make
decisions about invisible network states based on the rewards obtained from previous
states, and it has a predictive function, so it has a wide range of application scenarios in
dynamic environments. Liu [25] used the K-means clustering algorithm to decompose the
multi-TSP problem into multiple independent TSP problems, and then more efficiently
solved multiple TSP problems by improving the Genetic Algorithm.

3. Mathematical Model Description
3.1. Air–Ground Collaborative Multi-Target Detection Task Model

Since MILP can only deal with the problem of linear description, it is necessary to
describe the state of UAVs and unmanned vehicles in a linear and discrete form. In order to
simplify the problem model and improve the calculation speed, the following assumptions
are adopted in this paper.

1. All agents are regarded as particles and agents of the same type have the same
dynamic parameters;

2. All UAVs fly at the same height and the ground where all UGVs are located is flat;
3. All agents have sufficient energy during operation;
4. The interference of environmental factors such as wet road surfaces, air resistance,

and gusts of wind is not considered.

In fact, these assumptions only marginally diminish the mobility of UAVs and UGVs.
However, all assumptions remain within the constraints of the real-world scenarios, and
the ultimate results can still be applied in practical situations.

Under this condition, the air–ground collaborative multi-target detection problem can
be described as Nd UAVs and Nv UGVs go to Nt target points to complete the detection
task. The target points can be divided into four types, which are Nt1 target points suitable
for the UAV, Nt2 target points suitable for the UGV, Nt3 target points suitable for both types
of agents, and Nt4 target points required for both types of agents. The number of target
points satisfies

Nt = Nt1 + Nt2 + Nt3 + Nt4 (1)

Time is described by the time step ∆t and the number of time steps t.
All the above variables can be queried through Table 1. The model of the problem

is where these UAVs and UGVs visit all the target points under the condition that the
maximum number of time steps is T. In addition, we added various constraints into the
MILP to make the proposed model more suitable for describing the real physical process of
multi-target detection by using the air–ground collaborative system.

3.1.1. Kinematics Model Constraint

Under the assumption of ignoring vertical motion, the UAV and UGV have similar
kinematic characteristics. In this work, we only give the derivation process of the kinematics
model for UAVs with more complex kinematic characteristics, which can be described as


x(t + 1)
y(t + 1)
vx(t + 1)
vy(t + 1)

 =


1 0 ∆t 0
0 1 0 ∆t
0 0 1 0
0 0 0 1




x(t)
y(t)
vx(t)
vy(t)

+


(∆t)2

2 0

0 (∆t)2

2
∆t 0
0 ∆t


[

ax(t)
ay(t)

]
(2)
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where x(t) is the lateral displacement, y(t) is the longitudinal displacement, vx(t) is the
lateral velocity, vy(t) is the longitudinal velocity, ax(t) is the lateral acceleration, and ay(t)
is the longitudinal acceleration. Equation (2) can be abbreviated as

Sp(t + 1) = ASp(t) + Bap(t) (3)

where Sp(t) is the state matrix of the UAV at time step t, including displacement and
velocity, and ap(t) is the acceleration matrix of the pth UAV at time step t. A and B are the
coefficient matrixes controlled only by time step length ∆t. The acceleration parameter is
the key variable in the model and the state is only controlled by the initial position, initial
velocity, and acceleration per time step.

Table 1. Variables of air–ground collaborative system.

Symbol Description

Nd Number of UAVs
Nv Number of UGVs
Nt Number of all target points
Nt1 Number of target points suitable for the UAVs
Nt2 Number of target points suitable for the UGVs
Nt3 Number of target points suitable for both types of agents
Nt4 Number of target points required for both types of agents
∆t Time step
t Number of time steps
T Maximum number of time steps

3.1.2. Velocity and Acceleration Constraints

In real scenarios, the speed and acceleration of UAVs and UGVs are affected by their
own dynamic performance. In this work, we assume that the maximum speed is vmax
and the maximum acceleration is amax. In the Cartesian coordinate system, the constraints
of velocity and acceleration are described by circles with radii of maximum velocity and
maximum acceleration, as shown in Figure 1. The equation of the circle is nonlinear, which
needs to be linearized to embed it into the MILP model.
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In this paper, the circle is fitted in the form of a circumscribed regular polygon. Due to
the circumscribed nature of the polygon around the inscribed circle, there are still areas
within the polygon that do not belong to the inscribed circle. These areas do not comply
with the constraint. Hence, it is imperative to maximize the number of sides of the regular
polygon to ensure comprehensive coverage of the entire inscribed circle. Taking the speed
constraint as an example, a regular M-gon is circumscribed with the maximum-speed-limit
circle, as shown in Figure 1. The red line is the circle surrounded by the maximum-velocity
vector in the Cartesian coordinate system, the blue dotted line is the linear constraint, and
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the area within the green solid line is the range of the final linearization constraint. The
slope of the side m is

k = tan(2πm/M), m ∈ [1, 2, . . . , M] (4)

Then, the expression of each straight line can be obtained from the point-to-line
distance formula and can be described as

vx sin
(

2πm
M

)
+ vy cos

(
2πm

M

)
= vmax (5)

Therefore, the constraints on the final velocity can be described as

∀p ∈ [1, 2, . . . , Nd + Nv], ∀t ∈ [1, 2, . . . , T], ∀m ∈ [1, 2, . . . , M]
vx sin

( 2πm
M

)
+ vy cos

( 2πm
M

)
≤ vmax

(6)

Velocity constraints are similar to acceleration constraints, which are not discussed
individually in this article.

3.1.3. Obstacle Avoidance Constraints

During the movement of the UAVs and the UGVs, it is inevitable that they will
encounter situations that cannot be passed. For UAVs, there are circular no-fly zones,
irregular forests, etc. For UGVs, there are regular road boundaries, irregular lakes, etc. In
order to reduce the number of constraints as much as possible and improve the calculation
speed, irregular obstacle shapes are described by convex polygons or circles. As shown
in Figure 2, the red areas are obstacles, the blue dotted lines are the linear constraints,
and the green area is one of the feasible regions. Specifically, obstacles are described by
convex polygons in Figure 2a, which are suitable for obstacles with clear boundaries and
neat dividing lines. Obstacles are described by circles in Figure 2b, which are suitable
for obstacles with complex shapes and fuzzy outlines. In this work, circles are used to
represent obstacles.
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Taking an obstacle with center coordinate (xno, yno) and radius Rno as an example, the
avoidance constraints are

∀p ∈ [1, 2, . . . , Nd + Nv], ∀t ∈ [1, 2, . . . , T], ∀m ∈ [1, 2, . . . , M]

[xp(t)− xno] sin
(

2πmW
M

)
+ [yp(t)− yno] cos

( 2πm
M

)
≥ Rno − (1− cp

m)Rin f
(7)

∀p ∈ [1, 2, . . . , Nd + Nv], ∀t ∈ [1, 2, . . . , T]
M
∑

m=1
cp

m ≥ 1
(8)

where Rin f is a constant with a value much larger than Rno, and cp
m is the binary decision

variable of the obstacle avoidance constraint of the pth agent. When the value of cp
m is 0,
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Equation (8) is always established and does not act as a constraint. When the value of cp
m

is 1, it indicates that the constraint condition is satisfied, and the position of the agents is
restricted outside the constraint range. Equation (9) describes that cp

m requires at least one
of the values to be 1, and its effect is shown in Figure 2b. As long as the agent is outside
any edge of the polygon, the obstacle avoidance constraint can be satisfied.

3.1.4. Dynamic Collision Constraints

Since all UAVs operate at the same altitude, and UGVs also operate on the ground at
the same altitude, corresponding constraints must be taken to prevent individual collisions
during operation. We take the collision avoidance of multiple drones as an example, as
shown in Figure 3.
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For a UAV, there are four motion directions, as shown in Figure 3, which are the front,
back, right, and left. The dynamic anti-collision constraint of the agent can be described as
the distance to any other UAV that maintains a safe threshold in each direction.

∀p, q ∈ [1, 2, . . . , Nd + Nv], ∀t ∈ [1, 2, . . . , T]
xp(t)− xq(t) ≥ dsa f e − (1− Cpq

1 )Rin f
xq(t)− xp(t) ≥ dsa f e − (1− Cpq

2 )Rin f
yp(t)− yq(t) ≥ dsa f e − (1− Cpq

3 )Rin f
yq(t)− xp(t) ≥ dsa f e − (1− Cpq

4 )Rin f
4
∑

dir=1
Cpq

dir = 1

(9)

Similar to the obstacle avoidance constraint, the distance between two individuals is
limited by the value of the binary decision variable Cpq

dir in Equation (9). When its value is 1,
the collision avoidance constraint needs to be satisfied in this direction. At this time, the
values of the other Cpq

dir are all 0, which means that the collision avoidance constraints do
not need to be satisfied in the other three directions.

3.1.5. Task Assignment Constraints

UAVs and UGVs differ in their specific functionalities and capabilities. UAVs, or
unmanned aerial vehicles, are designed for airborne operations and are capable of tasks
such as aerial reconnaissance, surveillance, and data collection. They leverage their aerial
mobility to access difficult-to-reach areas and provide a comprehensive view from above.

On the other hand, UGVs, or unmanned ground vehicles, are ground-based platforms
designed to operate on land. Their functionalities often include tasks such as ground-
based surveillance, transportation of goods, and navigation in various terrains. UGVs are
particularly well suited for tasks that require ground-level interactions and mobility.

While both UAVs and UGVs may share certain functionalities, such as surveillance,
their differing platforms lead to variations in their capabilities. For instance, UAVs excel in
tasks that demand aerial perspectives and swift mobility, whereas UGVs are more adept at
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ground-level operations and navigating diverse landscapes. Therefore, the task assignment
of UAVs and UGVs can be treated as a multi-target detection task assignment problem for
heterogeneous agents.

UAVs have a high-altitude view and can observe ground scenes from a bird’s eye view,
which is more suitable for the exploration of vast flat areas. UGVs can observe the targets on
the ground at closer range, which is more suitable for exhaustive searches of specified areas.
However, drones are restricted by no-fly zones and cannot reach all areas. Flying in cities
will also limit the minimum and maximum flight altitudes due to safety considerations.
Therefore, in some cases, drones cannot complete all detection tasks. Similarly, UGVs also
have problems such as being unable to cross lakes and dense forests.

Therefore, to ensure that the arranged agents can complete the tasks sequentially,
we need to fully consider which agent is suitable for the geographical environment and
whether multiple agents are required in the allocation stage. The task assignment of the
air–ground coordination problem can be divided into four types. As shown in Figure 4a,
areas such as lakes, rivers, and dense forests cannot be passed by UGVs smoothly, in
which it is more suitable to detect target points by UAVs. As shown in Figure 4b, drones
cannot legally pass through military restricted areas and urban no-fly zones, and it is
more suitable to detect these target points by UGVs. As shown in Figure 4c, in scenes
such as open grasslands and roads with wild views, target points can be detected by
both UAVs and UGVs. As shown in Figure 4d, in scenes like sparse forests and dense
buildings with complex environments, target points cannot be clearly detected by UAVs or
UGVs individually.
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Figure 4. Four different example scenarios: (a) scene suitable for UAV; (b) scene suitable for UGVs;
(c) scene suitable for both UGVs and UAVs; (d) scene that needs to be detected by both UGVs
and UAVs.

Therefore, the task assignment of the air–ground coordination problem can be divided
into four cases:

Case1: target points suitable for UAVs.
Case2: target points suitable for UGVs.
Case3: target points suitable for both UGVs and UAVs.
Case4: target points that need to be detected by both UGVs and UAVs.
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In this work, the binary decision variable Ti
p(t) is used to indicate whether the pth

agent needs to reach the target point at time step t. If it does, the value of Ti
p(t) is 1.

Otherwise, the value is 0. The complete equation can be described as

∀i ∈ [1, 2, . . . , Nt1]
Nd
∑

p=1

T
∑

t=1
Ti

p(t) = 1 (10)

∀i ∈ [1, 2, . . . , Nt2]
Nv
∑

p=1

T
∑

t=1
Ti

p(t) = 1 (11)

∀i ∈ [1, 2, . . . , Nt3]
Nv+Nd

∑
p=1

T
∑

t=1
Ti

p(t) = 1 (12)

∀i ∈ [1, 2, . . . , Nt4]
Nd
∑

p=1

T
∑

t=1
Ti

p(t) = 1

Nv
∑

p=1

T
∑

t=1
Ti

p(t) = 1

(13)

where Equation (10), Equation (11), Equation (12), and Equation (13) describe Case1, Case2,
Case3, and Case4, respectively.

3.1.6. Task Completion Constraints

In the task allocation constraints, each task point is assigned for detection by the
corresponding UAV or UGV, and the arrival time (number of time steps) is clearly specified.
Therefore, it is necessary to construct the task completion constraint to ensure that the UAV
or UGV reaches the target point (or is close enough to the target point) at the specified
number of time steps. As shown in Figure 5, as long as the agent reaches target point i with
coordinates

(
xi

target, yi
target

)
, within the square with side length 2dpass at the specified time

step t, the agent can be considered to have completed the task.
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The mathematical expression of task completion constraints can be described as

∀p ∈ [1, 2, . . . , Nd + Nv], ∀i ∈ [1, 2, . . . , Nt], ∀t ∈ [1, 2, . . . , T]
xp(t)− xi

target ≤ dpass + (1− Ti
p(t))Rin f

xi
target − xp(t) ≤ dpass + (1− Ti

p(t))Rin f

yp(t)− yi
target ≤ dpass + (1− Ti

p(t))Rin f

yi
target − yp(t) ≤ dpass + (1− Ti

p(t))Rin f

(14)

3.2. Objective Function

The objective function of the air–ground collaborative multi-target detection task
model established in this paper consists of four elements, which are the shortest time, the
total time, the total energy consumption, and the smoothness of the trajectory.

3.2.1. The Shortest Time

The shortest time refers to the total time consumed when the last target point is
detected, and the mathematical expression can be written as

∀p ∈ [1, 2, . . . , Nd + Nv], ∀i ∈ [1, 2, . . . , Nt], ∀t ∈ [1, 2, . . . , T]
tmax ≥ t·Ti

p(t)
J1 = mintmax

(15)

where tmax represents the longest global time and J1 is the optimization function. By
comparing the constraint and the minimum objective function, the minimization time tmax
is described in a linear manner.

3.2.2. The Total Time

The total time equals the summation of the time cost by each UAV and UGV to
complete the task, which can be described as

∀i ∈ [1, 2, . . . , Nt], ∀t ∈ [1, 2, . . . , T]
tp
max ≥ t·Ti

p(t)

J2 = min
Nd+Nv

∑
p=1

tp
max

(16)

where tp
max represents the time for the pth agent for completion of all tasks. J2 is the

optimization function.

3.2.3. The Total Energy Consumption

Under the condition of constant speed, the energy consumption of the UGV is related
to the running time, which can be obtained by the following derivation described in [26]
for the UAV.

Assuming that the air velocity generated by a single propeller of the UAV is v, and the
air mass is mair, it can be inferred that the kinetic energy produced by the propeller without
considering air friction is

E =
1
2

mairv2 (17)

The air quality mair can be expressed as

mair = πrvvtρ (18)

where ρ is the air density at the current altitude and r is the radius of the propeller. Therefore,
for a six-rotor UAV, the energy consumption P is

P = 6
dE
dt

= 3π2v3ρ (19)
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Equation (19) can also be rewritten as

P = Fv = mgv (20)

where m is the mass of the UAV and g is the local gravitational acceleration. Combining
Equations (19) and (20), we can obtain

P =

√
(mg)3

2πr2ρ
(21)

Therefore, for UAVs, the energy consumption in the hovering state is positively related
to the time. Similarly, in the state of uniform motion, Equation (20) can be rewritten as

P = F1v =
mgv
cos θ

(22)

where θ is the angle between the axis of the drone and the vertical line. We can find that in
the state of uniform motion, the energy consumption is only positively correlated with time.

Therefore, with constant speed, the total energy consumption target J3 can be described as

J3 = min
Nd+Nv

∑
p=1

T−1

∑
t=1

α

[
xp(t + 1)− xp(t)

vpx(t)
+

yp(t + 1)− yp(t)
vpy(t)

]
(23)

where α is a proportional coefficient, which is used for the dimension conversion of energy
consumption and time and can also be used to adjust the proportion of total energy
consumption vpx(t) and vpy(t) representing the horizontal and vertical speeds of the pth
agent at time step t, respectively.

3.2.4. The Smoothness of the Trajectory

In order to facilitate the tracking of trajectory points by UAVs and UGVs in real
scenarios, the trajectory points generated by the proposed path planning algorithm should
be as smooth as possible. In this work, we construct the constraint of the smoothness of the
trajectory as

J4 = min
Nd+Nv

∑
p=1

T−1

∑
t=1

β

[
apx(t + 1)− apx(t) + apy(t + 1)− apy(t)

∆t

]
(24)

where β is a proportional coefficient, which is used for the dimension conversion of en-
ergy consumption and time and can also be used to adjust the proportion of trajectory
smoothness loss in the objective function. apx(t) and apy(t) represent the lateral and vertical
accelerations of the pth agent at time step t, respectively.

4. Optimal Solution Method of Mathematical Model

After establishing the mathematical model, it is necessary to design a corresponding
solution method to solve the model to obtain a solution with appropriate accuracy. The
model designed in this article can be solved by traditional optimization methods or heuristic
algorithms, but the original algorithm still needs to be appropriately modified to ensure
that the calculation can converge and speed up the calculation as much as possible.

4.1. Branch-and-Bound

The branch and bound (B&B) method was proposed by Land [27] in the 1960s to solve
integer programming problems and then extended by [28] to solve MILP problems. The
core idea of this method lies in branching, delimiting, and pruning.

Specifically, suppose a Mixed Integer Linear Programming problem A to find the
minimum solution, and suppose its corresponding linear programming problem B. Starting
from solving problem B, if the optimal solution does not meet the integer condition of
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A, then the optimal objective function value z must be the lower bound of the optimal
objective function value z∗ of A, denoted as z. Furthermore, the value of the objective
function for any feasible solution of A will be the upper bound of z∗, denoted as z. The
Branch-and-Bound method divides the feasible region into several sub-regions, and this
process is called branching. After that, each sub-region will solve the new upper bound
znew and lower bound znew as the boundary of the region, which is called delimitation. If
the new lower bound znew is greater than the known optimal solution z∗now, it means that
the region has been searched and no further branching is required, and its subset may not
be considered, which is called pruning. In short, the Branch-and-Bound method needs to
gradually reduce z and increase z in the iterative process, and finally find z∗. The algorithm
framework of B&B is shown in Algorithm 1.

Algorithm 1 Branch-and-Branch

Input: A mixed integer programming problem A, the upper bounds of the current solution z, the
lower bounds of the current solution z, B is the corresponding linear programming problem of A,
B′ is a branch of B
Output: The optimal solution z∗

1: while solution of B is not empty do
2: if B′ is feasible then
3: Let z be optimal solution of B′

4: if z > z then
5: Cut the branch B′

6: end if

7: if z satisfies integral solution of A then
8: if z < z then
9: z = z
10: end if
11: else
12: z = z
13: end if
14: end if
15: end while
16: return z

4.2. Improved Genetic Algorithm and A* Algorithm

The Genetic Algorithm has a faster solution speed in task allocation and path planning,
but in this paper, task planning and path planning have a strong coupling relationship,
which makes it difficult for traditional Genetic Algorithms to effectively solve this type of
problem by designing simple chromosomes and genetic operators. Therefore, in this paper,
the Genetic Algorithm is used to assign tasks, the A* algorithm is used to obtain the path
planning results, and the objective function value obtained as a whole is used as the fitness
value of the Genetic Algorithm. The specific process is described in Algorithm 2.

The population size Nper, selection probability, crossover probability, mutation prob-
ability, and maximum evolutionary algebra need to be determined for initialization of
the population.

To encode the chromosome, we take the chromosome as a two-layer code. Among
them, the first layer of the chromosome code represents the execution order of all target
points, and the second layer represents the ID number of the agent required for detection
of the corresponding target point. If the total number of target points is Nt, and the number
of target points that need to be detected by both UAV and UGV is Nt4, then the length of
the chromosome is Nt + Nt4. For instance, if there are three UAVs and two UGVs—a total
of 5 target points, including 2 target points that need to be detected by both UAVs and



Drones 2024, 8, 110 13 of 20

UGVs and 3 target points that need to be detected by UAVs or UGVs—then the encoded
chromosome can be described as in Figure 6.

Algorithm 2 Genetic Algorithm Process

1: Initialize the population
2: Coding chromosome
3: while the number of iterations is not reached do
4: Calculate fitness
5: Select operation
6: Crossover operation
7: if chromosomes need to be adjusted then
8: Adjust operation
9: end if
10: Mutate operation
11: Generate a new generation
12: end while
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Figure 6. Description after chromosome encoding and meaning after decoding.

From Figure 6, we know that UAV No. 1 performs the detection task of target point
No. 1, UAV No. 2 performs the detection task of target point No. 3 and No. 4 in turn, UAV
No. 3 performs the detection task of target point No. 5, UGV No. 1 performs the detection
task of target point No. 2, and UGV No. 2 performs the detection task of target point No. 4
and No. 5 in turn. Chromosomes encoded by this method can meet the constraints of
assignment of task points.

In this step, according to the target points that need to be detected by the correspond-
ing agent after decoding the individual iper, the planned path of each agent can be obtained
through the A* algorithm. After that, the optimization solution calculated by the above ob-
jective function is the original fitness J(iper). In order to facilitate the selection of population
individuals later, the final fitness Fitness(iper) is set as

Fitness(iper) =
1

J(iper)
(25)

The magnitude of fitness implies the length of the path and, consequently, the resource
consumption. A higher fitness value indicates a lower resource consumption.

The selection phase adopts elitism, that is, individuals with higher fitness are more
likely to be retained in the genetic process. Therefore, the selection probability for an
individual is

p(iper) = Fitness(iper)/
Nper

∑
iper=1

Fitness(iper) (26)

According to the crossover probability, we can select two chromosomes from the
population, randomly determine the crossover position on the chromosome, and perform
crossover operation on the gene codes. For example, after selecting two individuals
to cross at the fifth position, the specific effect can be obtained as shown in Figure 7.
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The chromosome is divided into two parts by a green line, and the parent and mother
generations cross over on the right half of the green line.

Drones 2024, 8, x FOR PEER REVIEW 15 of 22 
 

cross at the fifth position, the specific effect can be obtained as shown in Figure 7. The 

chromosome is divided into two parts by a green line, and the parent and mother gener-

ations cross over on the right half of the green line. 

 

Figure 7. Schematic diagram of chromosome crossover operation. 

Unless the genes of the crossover position of the two individuals of the parent are 

identical, the offspring generated by this method will have the phenomenon of missing 

target points and repeated target points at the same time, and the number of missing tar-

get points will be the same as that of repeated target points. Therefore, a one-step adjust-

ment operation is required to replace redundant task points with missing target points. 

After that, it is necessary to check whether the agent distribution of the offspring meets 

the requirements. The adjusted individual is shown in Figure 8, and the two offspring can 

meet the coding requirements and can further participate in the subsequent evolution. 

 

Figure 8. Schematic diagram of chromosome crossover-adjustment operation. 

According to the mutation probability, the individual that needs to be mutated is 

randomly selected in the population, two mutation positions are also randomly selected 

from the chromosome of the individual, and the two mutation positions are exchanged. 

The specific implementation of the proposed method is shown in Figure 9. The genes in 

the green and blue boxes meet the model requirements through reasonable mutation. 

 

Figure 9. Schematic diagram of chromosome mutation operation. 

The selected parent chromosomes and the offspring chromosomes generated after 

crossover and mutation operations are merged to form a new generation of populations. 

The fitness value of the new population is calculated, and it is determined whether 

the contemporary optimal result satisfies the iteration termination condition. If not, we 

skip to step 4 to select a new generation and start a new generation of evolutionary itera-

tion. If the maximum number of iterations has been reached, the Genetic Algorithm ends. 

4.3. Branch-and-Bound with Improved Genetic Algorithm (IGA-B&B) 

The hot start method for the B&B algorithm is commonly used to solve small-scale 

MILP problems. It requires pre-provision of a set of feasible solutions to limit the bounds. 

In this paper, we pre-provide a set of feasible solutions, which can be obtained by the 

Figure 7. Schematic diagram of chromosome crossover operation.

Unless the genes of the crossover position of the two individuals of the parent are
identical, the offspring generated by this method will have the phenomenon of missing
target points and repeated target points at the same time, and the number of missing target
points will be the same as that of repeated target points. Therefore, a one-step adjustment
operation is required to replace redundant task points with missing target points. After
that, it is necessary to check whether the agent distribution of the offspring meets the
requirements. The adjusted individual is shown in Figure 8, and the two offspring can
meet the coding requirements and can further participate in the subsequent evolution.
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Figure 8. Schematic diagram of chromosome crossover-adjustment operation.

According to the mutation probability, the individual that needs to be mutated is
randomly selected in the population, two mutation positions are also randomly selected
from the chromosome of the individual, and the two mutation positions are exchanged.
The specific implementation of the proposed method is shown in Figure 9. The genes in the
green and blue boxes meet the model requirements through reasonable mutation.
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Figure 9. Schematic diagram of chromosome mutation operation.

The selected parent chromosomes and the offspring chromosomes generated after
crossover and mutation operations are merged to form a new generation of populations.

The fitness value of the new population is calculated, and it is determined whether the
contemporary optimal result satisfies the iteration termination condition. If not, we skip to
step 4 to select a new generation and start a new generation of evolutionary iteration. If the
maximum number of iterations has been reached, the Genetic Algorithm ends.

4.3. Branch-and-Bound with Improved Genetic Algorithm (IGA-B&B)

The hot start method for the B&B algorithm is commonly used to solve small-scale
MILP problems. It requires pre-provision of a set of feasible solutions to limit the bounds.
In this paper, we pre-provide a set of feasible solutions, which can be obtained by the
proposed Improved Genetic Algorithm to limit the upper bound of the problem, thereby
improving the efficiency of pruning and the speed of the overall operation.
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The specific implementation involves initially disregarding the kinematic parameters
of UAVs and UGVs, reducing the problem under study to a simplified single-agent path
planning problem. An Improved Genetic Algorithm is then employed to find an initial
solution. Since it is certain that this solution is not better than the optimal solution, it can
serve as an upper bound for the B&B algorithm.

Furthermore, by initializing the B&B algorithm with the upper bound obtained, it
effectively partitions the explored space, significantly enhancing the search speed and
algorithm efficiency. The algorithm framework of this specific algorithm is shown in
Algorithm 3.

Algorithm 3 Branch-and-Branch combined with Improved Genetic Algorithm

1: Employ Improved Genetic Algorithm to find initial solution ziga

2: Set ziga as the upper bound for B
3: Initialize Branch-and-Bound algorithm with the upper bound ziga

4: while solution of B is not empty do
5: Select a branch B′ from B
6: if B′ is feasible then
7: Let z′ be optimal solution of B′

8: if z′ > ziga then
9: cut the branch B′

10: else
11: Update ziga ← z′

12: end if
13: end if

14: if ziga satisfies integral solution of A then
15: z∗ ← ziga

16: Break
17: end if
18: end while
19: return z∗

5. Simulation Comparison and Experimental Verification

In order to increase the contrast and minimize the impact of environmental changes on
the model, a grid map with the same environmental scene is used in our simulation test and
the kinematic constraints are limited to the maximum speed and maximum acceleration.
Each agent can only move in 8 directions. There are three UAVs and two UGVs, a total
of eight mission points, two no-fly zones for UAVs, and two no-go zones for UGVs in the
simulation maps.

Although the Branch-and-Bound method has the ability to solve the global optimiza-
tion problem, the excessive running time is unacceptable. It can be seen from the curve
in Figure 10 that after 34 min, as the running time increases, the value of the objective
function barely changes and the final generated trajectory hardly improves. Therefore, in
the subsequent simulation experiments, the running time is set as 34 min.

In the model with only the shortest time as the objective function, due to the lack of
constraints on the running mileage, there are two bad results: one is that the agent with a
task will not stop after completing the task; the other is the behavior of the agent without a
task is not guided and constrained by the objective function, resulting in trajectory chaos,
as shown in Figure 11a. These problems can be effectively solved after adding energy
consumption constraints, as shown in Figure 11b.
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After adding the trajectory smoothness constraint to the objective function, compared
with the model with only time and energy consumption constraints, the problem of con-
tinuous direction changes of each agent can be greatly improved, thereby reducing the
difficulty of path following controlling and unnecessary energy consumption, as shown in
Figure 12.
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To verify the superiority of the proposed IGA-B&B algorithm, we compared simulation
results by using several different objective-function-solving methods, as shown in Figure 13.
From Figure 13a, we know that the Genetic Algorithm has a faster calculation time, but
due to the lack of dynamic constraints of the A* algorithm, the final path is relatively
discontinuous and the final optimal value of the objective function is lower. The final
value of the objective function is 633 by using the Genetic Algorithm method and this
value barely reduces with the increase in calculation time. Although the traditional B&B
method can effectively obtain the optimal solution, the traversal search speed is slow and
high computation memory is needed, resulting in slow running speed and even memory
overflow, as shown in Figure 13b. The proposed IGA-B&B method can fully take advantage
of the Genetic Algorithm and B&B methods, which means that the calculation time is
effectively reduced by 30% and a relatively good allocation result can also be obtained, as
shown in Figure 13c.

In order to verify the feasibility of the proposed model, experiments are carried out in
the outdoor environment. The relevant testing equipment used in this work is shown in
Figure 14.

There are one UAV and one UGV, a total of four mission points, one simulated no-fly
zone for UAVs, and one simulated no-go zone for UGVs in our experimental scene, which
is located in a square area with a side length of 250 m in the Southeast University campus,
as shown in Figure 15.

Using our proposed method, the target point detection tasks of UAVs and UGVs are
assigned, and the optimal paths are also planned. Under the action of their respective
path tracking controller, the UAVs and UGVs move along the planned paths. They are
able to closely follow the planned trajectories and successfully complete tracking of all
path points within 3 min. Their respective trajectories are shown in Figure 16a,b. It can be
seen that UAVs and UGVs effectively reach the target points and successfully avoid their
respective prohibited areas, further demonstrating the effectiveness and practicability of
the proposed method.
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6. Conclusions

In this paper, an air–ground collaborative multi-target detection task model based
on Mixed Integer Linear Programming (MILP) is proposed. In this model, kinematic
constraints of the UAVs and UGVs, dynamic collision avoidance constraints, task allocation
constraints, and obstacle avoidance constraints are considered. In addition, an objective
function with optimization directions of time consumption, energy consumption, and
trajectory smoothness is established. To solve this objective function, a Branch-and-Bound
method combined with the Improved Genetic Algorithm (IGA-B&B) is proposed and
the optimal task assignment and optimal path of air–ground collaborative multi-target
detection can be obtained. A simulation environment with multi-agents, multi-obstacles,
and multi-task points is established. The simulation and experimental results show the
effectiveness and feasibility of the proposed method.

In order to facilitate calculation and simplify the problem, many assumptions were
set during our model construction process, which to some extent lost the authenticity of
the model. For example, we ignore the energy loss caused by the ascent and descent of
the drone. In addition, when facing extremely complex environmental conditions, such as
scenes with a large number of UAVs and UGVs, and a significant number of target task
points and no-go or no-fly zones, the proposed method may not be able to find a feasible
solution within the specified time. Therefore, in order to further broaden the application
range of the proposed model, we will focus on designing a novel objective-function-solving
algorithm to achieve fast and approximate solutions in our following work.
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