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4 Department of Biosystems and Precision Technologies, Albert Kázmér Faculty of Agricultural and Food

Sciences, Széchenyi István University, 9200 Mosonmagyaróvár, Hungary
5 Department of Water Management and Natural Ecosystems, Albert Kázmér Faculty of Agricultural and Food

Sciences, Széchenyi István University, 9200 Mosonmagyaróvár, Hungary
* Correspondence: kulmany.istvan@sze.hu

Abstract: This work aims to compare and statistically analyze Normalized Difference Vegetation Index
(NDVI) values provided by GreenSeeker handheld crop sensor measurements and calculate NDVI
values derived from the MicaSense RedEdge-MX Dual Camera, to predict in-season winter wheat
(Triticum aestivum L.) yield, improving a yield prediction model with cumulative growing degree
days (CGDD) and days from sowing (DFS) data. The study area was located in Mosonmagyaróvár,
Hungary. A small-scale field trial in winter wheat was constructed as a randomized block design
including Environmental: N-135.3, P2O5-77.5, K2O-0; Balance: N-135.1, P2O5-91, K2O-0; Genezis:
N-135, P2O5-75, K2O-45; and Control: N, P, K 0 kg/ha. The crop growth was monitored every
second week between April and June 2022 and 2023, respectively. NDVI measurements recorded
by GreenSeeker were taken at three pre-defined GPS points for each plot; NDVI values based on
the MicaSense camera Red and NIR bands were calculated for the same points. Results showed a
significant difference (p ≤ 0.05) between the Control and treated areas by GreenSeeker measurements
and Micasense-based calculated NDVI values throughout the growing season, except for the heading
stage. At the heading stage, significant differences could be measured by GreenSeeker. However,
remotely sensed images did not show significant differences between the treated and Control parcels.
Nevertheless, both sensors were found suitable for yield prediction, and 226 DAS was the most
appropriate date for predicting winter wheat’s yield in treated plots based on NDVI values and
meteorological data.

Keywords: winter wheat; precision agriculture; GreenSeeker; MicaSense RedEdge-MX; NDVI; yield
prediction; CGDD; DFS

1. Introduction

Agriculture plays a crucial role in meeting the daily food needs of a growing pop-
ulation [1]. The ever-increasing food needs and yield levels can only be met through
constant technological improvements. Winter wheat (Triticum aestivum L.) is one of the
most important crops for global food safety [2], which also plays a crucial role in Hun-
gary’s agricultural production [3]. To continuously achieve high yields, it is essential to
integrate precision agriculture technologies into farming practices, including monitoring
solutions [4]. Over the last two decades, a significant boom in using remote-sensing tools
for agricultural purposes has occurred. Data collection can be carried out by various means,
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including different satellites [5–8], uncrewed aerial vehicles (UAVs) [9–13], or ground-based
platforms [14–17]. These tools provide opportunities to monitor changes in plant and soil
conditions, to predict in-season yields [18] and nutrient requirements [19], and to detect
various diseases [20].

The use of UAVs in agriculture has become widespread in the last decade. Depending
on the field of application, such as monitoring, spraying, etc., there are many types of
drones to choose from [11,12,21–24]. For monitoring purposes, image collection has to
be carried out. The camera, which can be an RGB [12,20,25], a multispectral [23,26], or
a hyperspectral camera [27,28], influences the quality and quantity of data collected and
mounted on the drone.

UAVs can be used to monitor the development stages of plants and the changes in the
crops. Due to their adjustable flight altitude and high spatial resolution, camera data can be
reliably collected from small areas or plots [10,11,22,29]. An additional advantage of drones
is that they make it possible—among other applications—to forecast harvests [30–32]. How-
ever, alternative options for field data collection exist alongside remote-sensing techniques.

Various plant parameters can be measured by handheld ground-based sensors such
as the SPAD 502 Plus Chlorophyll Meter (Spectrum Technologies, Plainfield, IL, USA),
GreenSeeker (NTech Industries, Trimble, Sunnyvale, CA, USA), or Crop Circle ACS-470
sensor (Holland Scientific, Inc., Lincoln, NE, USA). Most of these handheld devices measure
differences in chlorophyll content in plants. However, compared to remotely sensed image
collection, their disadvantages are that they provide spot sampling, and the area covered
by sampling is limited due to the poor resolution of collected points [17,23,29]. Despite
their limited data collection capabilities, the GreenSeeker handheld sensor is an excellent
tool for examining nitrogen conditions and biomass development of crops or predicting
in-season plant yield [11,19,30].

The GreenSeeker measurement provides an NDVI value directly measured on the spot.
Conversely, various vegetation indices can be calculated using different images collected by
the MicaSense Dual camera system. Other vegetation indices can describe different plant
characteristics; however, the most commonly used index is NDVI [18,23,33].

NDVI index can quantify vegetation greenness, understand vegetation density, and
assess plant health changes. NDVI index is calculated using red and near-infrared spectra
of the multispectral cameras or from GreenSeeker sensor measurements [34,35], and it
can be used to quantify vegetation greenness, understand vegetation density, and assess
plant health changes. Due to its versatility and ease of extraction, it is a frequently used
vegetation index among farmers and researchers. Several studies stated that a significant
correlation (p ≤ 0.05) could be found between the NDVI index and nitrogen level [36,37],
as well as the NDVI index and chlorophyll content of durum wheat genotypes in different
nitrogen levels [38]. In addition to monitoring crops, NDVI is an appropriate predictor
of yields.

Duan et al. [22] identified a strong correlation between NDVI values around flowering
time and the final yield of wheat (R2 = 0.82). This finding is corroborated by Naser et al. [38],
who found a significant correlation (p ≤ 0.05) under dryland conditions between NDVI
values and the yield of winter wheat at three different growth stages. Vannoppen et al. [39]
estimated wheat yield using NDVI and meteorological data, suggesting that monthly
precipitation during tillering and anthesis provided better predictions than NDVI-derived
yield proxies. Other studies [4,38,40] examined the relationship between NDVI values and
wheat yield, while the impact of meteorological features on yield was also investigated to
reduce the variability in yield between years.

This study examined the relationship between the NDVI index measured by the
GreenSeeker handheld crop sensor and NDVI index data obtained from the MicaSense
multispectral camera. It aimed to (i) compare the NDVI values measured by two instru-
ments to assess the data collection usability for winter wheat at various phenological stages;
(ii) determine, based on NDVI, the optimal growth stage for predicting in-season yield for
both sensors; (iii) estimate the significance of seasonal variability in yield prediction using
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cumulative growing degree days (CGDD) and days after sowing (DAS); and (iv) develop a
yield prediction model.

2. Materials and Methods
2.1. Study Area

The study area was located in Mosonmagyaróvár (N 47◦8′67.89′′ E 17◦26′9.94′′), in the
north-western part of Hungary (Figure 1) at an altitude of 119 m above mean sea level. The
two-year field experience was conducted in the 2021–2022 and 2022–2023 growing season
from October to the end of June.
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Figure 1. Research field at Széchenyi István University, Mosonmagyaróvár, Hungary. The four
treatments (Environmental, Balance, Genezis, and Control) are in different colors.

According to the Hungarian Meteorological Service (OMSZ) (Figure 2), the mean
temperature was 9.0 ◦C during the growing season in both years. On the contrary, the
monthly average temperature during the measurement period was 9.7 ◦C, 17.6 ◦C, and
21.9 ◦C in April, May, and June in 2022, while 9.2 ◦C, 15.1 ◦C, and 19.9 ◦C were in 2023.
Over the period under examination, the highest temperatures were 22.5 ◦C, 30.3 ◦C, and
35.8 ◦C in 2022 and 17.4 ◦C, 20.4 ◦C, and 25.9 ◦C in 2023, respectively. The total rainfall
was 348.6 mm in 2021–2022 and 427.1 from October to the end of June in the 2022–2023
period, while the monthly mean precipitation was 18.6 mm, 60.2 mm, 117.6 mm, and
75.5 mm, 86.1 mm, and 66.4 mm during the measurement periods. The sunshine duration
was 1549.8 h and 1135.7 h during the growing period in 2022 and 2023.
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Figure 2. Average air temperature (◦C) and monthly precipitation (mm) at the experimental field
from October to June in 2021–2022 and 2022–2023 growing season.

2.2. Experimental Design

The experimental layout was a randomized block design with four blocks and four
treatments of different fertilizer rates (Figure 1). The size of the plot was 4.2 × 22.0 m. The
area under investigation was cultivated by winter wheat during this study. The forecrop of
winter wheat (Triticum aestivum L.) was rapeseed (Brassica napus L.). The genetic soil type
of the experimental field is Danube alluvial soils.

Winter wheat was sowed on 25 October 2021 in both years, and row-to-row spacing
was 12 cm. The number of seeds sown was 4.5 million for each hectare. Fertilizer was
applied in two rounds (Table 1) immediately before sowing (25 October 2021 and 2022 and
1 March 2022 and 2023). The amount of nitrogen used was 135 kg/ha (Environmental-
135.3 kg/ha, Balance-135.1 kg/ha, Genezis-135 kg/ha). In autumn, different amounts of
phosphorus fertilizer (Environmental-77.5 kg/ha, Balance-91 kg/ha, Genezis-75 kg/ha)
were applied. The “Genezis” treatment also received potassium (45 kg/ha) as a basal
fertilizer before sowing. From each plot, 2.4 m × 22.0 m was harvested separately by
Sampo SR2010 parcel combine.

Table 1. The table provides information on the active substances applied during the treatments,
including the amount, type, and date of fertilizer application in autumn and spring.

Treatment
Active Substance Discharged
(kg/ha)

Fertilizer Applied kg/ha (Autumn)
25 October 2021 and 2022

Fertilizer Applied kg/ha (Spring)
1 March 2022 and 2023

N P2O5 K2O Type Quantity Type Quantity

Control (C) - - - - - - -

Environ-mental (A) 135.3 77.5 - NP 15-25 310 N 27% 329

Balance (B) 135.1 91.0 - NP 15-25 364 N 27% 298

Genezis (D) 135.0 75.0 45 NPK 5-18-18
NP 15-25

250
120 N 27% 387

2.3. Data Collection

The image acquisition occurred between 5 and 11 at Feekes growth stages [41] at six
different dates from April to the end of June 2022 and 2023. Two other platforms were
used for the collection of the data, i.e., GreenSeeker (NTech Industries, Trimble, Sunnyvale,
California, USA) and the MicaSense RedEdge-MX Dual Camera System (MicaSense Inc.,
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Seattle, Washington, USA) mounted on a DJI Matrice 210 V2 (Da-Jing Innovation, Nanshan,
Shenzhen, China).

A GreenSeeker Model HCS-250 manual active optical sensor carried out the ground
measurements. The NDVI index values recorded by GreenSeeker were measured at three
pre-defined GPS locations (Table A1) for each plot. The sensor was held approximately
60 cm above the canopy, following the recommendations of Zhitao et al. [33], to display
the NDVI for a 0.5 m2 area on the LCD. According to the methods of Wang et al. [11],
the measurement was repeated three times in a plot, and each measurement included an
average NDVI value of 10 readings.

The image acquisition campaigns were performed on 12 April, 28 April, 12 May,
24 May, 7 June, and 21 June in 2022. The exact dates were used for image acquisition in
2023, but starting from the third measurement date, there was a deviation of ±two days
compared to 2022 due to weather conditions. The duration of each flight was 2–3 min;
the images were acquired between 11:30 and 12:00 to ensure the same environmental
conditions [33]. The flights were carried out at 40 m height with a 2.9 cm/pixel ground
resolution. The flight route was planned with a 70% front and side overlap ratio, and
48 triggers in 10 bands were taken; thus, 480 multispectral images were acquired at each
flight. The calibration panel was consistently photographed before and after each flight to
eliminate variations caused by changing light conditions at different flight times [42].

Before the first flight, four fixed ground control points (GCPs) were placed on the
experimental field to perform accurate geo-referencing. The center of the GCPs was
geolocated by a South S660N GPS RTK Receiver (South Surveying & Mapping Instrument
Co., Ltd., Beijing, China), thus providing two centimeters of accuracy. The GCPs were
used at each flight to geo-reference the orthomosaic images to them. The geo-referencing
ensured the possibility of comparison over time.

The weather station operated by the Hungarian Meteorological Service (OMSZ) is
approximately 500 m from the experimental field and provides the essential meteorological
data (temperature, rainfall, hours of sunshine) required for this research.

2.4. Data Processing

After data capture, the raw images were processed to generate ortho-mosaic images
using Agisoft Metashape Professional (version 2.0.1). The standard Metashape workflow
was applied to all processed images, with the only adjustments made to ensure high-quality
results. The ortho-mosaic image was exported in *.tiff format in the WGS84 coordinate
system, and the pixel size was set to 2 × 2 cm.

The data were processed using the open-source QuantumGIS (version 3.22). Firstly,
using the red and NIR images, NDVI values were calculated according to the following
Equation (1):

NDVI =
(NIR − Red)
(NIR + Red)

(1)

where:
NIR = reflectance at the near-infrared (842 nm)
Red = reflectance at the red (668 nm)
To improve the accuracy of the yield prediction model, they were calculated with the

following Equation (2).
The NDVI/DFS ratio was calculated by dividing NDVI by DFS (number of days from

sowing) to sensing when GDD (growing degree days) > 0).

GDD =
Tmax + Tmin

2
− 0 ◦C (2)

where:
Tmax = daily maximum temperature
Tmin = daily minimum temperature
0 ◦C is the base growing temperature for winter wheat [43].
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The NDVI/CGDD ratio was calculated by dividing NDVI by CGDD (cumulative
growing degree days) from sowing to sensing when GDD > 0.

2.5. Statistical Analysis

The statistical analyses were conducted separately for each treatment, date, and sensor
using R statistical software and its package ‘rcompanion’ [44,45]. At first (1), descriptive
statistics were used to describe the dataset’s characteristics, including means and standard
deviations at different measurement times and with other sensors.

In the second step (2), the behavior of the sensors (MicaSense and GreenSeeker) at dif-
ferent measurement times and treatments was compared by applying a two-sample t-test,
assuming equal or unequal variances based on the outcome of Levene’s test. Then, regres-
sion analysis was conducted to show the relationship between two sensor performances in
the different treatments.

In the third step (3), Tukey’s Honestly Significant Difference (HSD) for two-way
analysis of variance (ANOVA) was performed to reveal the differences in NDVI values
between the treatments measured by the sensors. Each statistical analysis was determined
at a significance level of p ≤ 0.05.

In the fourth step (4), the correlations (significance level at p ≤ 0.05, p ≤ 0.01, and
p ≤ 0.001) between NDVI values produced from the data measured by GreenSeeker (GS)
and MicaSense (MS) cameras and winter wheat yield at different sowing dates were
examined by Pearson correlations analysis, to determine the most appropriate date for
further examination from sowing.

In the fifth step (5), the coefficient of determination (R2) was determined (significance
level at p ≤ 0.05, p ≤ 0.01, and p ≤ 0.001) between NDVI values measured by GreenSeeker
and calculated from MicaSense camera data and the yield of winter wheat by using linear,
exponential, and quadratic equations.

In the sixth step (6), based on Pearson correlation and coefficient of determination
analyses, the most appropriate date of sowing was determined to predict yield using NDVI
values. RMSE (root mean square error) values were calculated for the different prediction
equations to have information about the prediction accuracy.

In the seventh step (7), new models were set up using CGDD (cumulative growing
degree days) and DFS (days from sowing) values to minimize the impact of environmental
factors. RMSE values were also calculated for these new models.

In the eighth step (8), model validation was performed. The newly developed model,
modified with NDVI and CGDD values, was validated by calculating the coefficient of
determination and RMSE values.

3. Results
3.1. Comparison of NDVI Values among the Various Treatments

Table 2 compares NDVI values for both sensing techniques (GreenSeeker and Mi-
caSense) at six different momenta in the 2021–2022 and 2022–2023 periods. The NDVI
values produced from the MicaSense camera data in every measurement date showed
higher values than the NDVI values measured by GreenSeeker. Detailed measurement
data can be found in Table 2. During the measurement periods, NDVI data collected by
GreenSeeker were significantly lower than those collected from the treated area. MicaSense
camera-based data showed similar results, except for 12 May, when no significant difference
was observed in the NDVI values for the “Environmental”, “Balance”, “Genezis”, and
“Control” units.
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Table 2. The NDVI values were categorized by four treatments (Control, Environmental (Envir.),
Balance, Genezis) and six dates in the 2021–2022 and 2022–2023. (Within each year and sensor,
treatments that differ significantly at p ≤ 0.05 are indicated with a different letter).

Year Sensor Treatment 12 April 28 April 12 May 24 May 7 June 21 June

2021–2022

Green-
Seeker

Control 0.46 ± 0.06 a 0.55 ± 0.08 a 0.59 ± 0.06 a 0.47 ± 0.07 a 0.43 ± 0.06 a 0.13 ± 0.05 a

Envir. 0.54 ± 0.06 b 0.69 ± 0.04 b 0.70 ± 0.02 b 0.61 ± 0.03 b 0.53 ± 0.03 b 0.20 ± 0.03 b

Balance 0.51 ± 0.10 b 0.67 ± 0.10 b 0.68 ± 0.04 b 0.58 ± 0.03 b 0.51 ± 0.04 b 0.20 ± 0.05 b

Genezis 0.53 ± 0.05 b 0.68 ± 0.03 b 0.68 ± 0.03 b 0.59 ± 0.04 b 0.53 ± 0.05 b 0.20 ± 0.05 b

Mica-Sense

Control 0.60 ± 0.07 a 0.80 ± 0.05 a 0.84 ± 0.03 a 0.79 ± 0.04 a 0.71 ± 0.06 a 0.35 ± 0.08 a

Envir. 0.67 ± 0.07 b 0.89 ± 0.02 b 0.89 ± 0.01 a 0.86 ± 0.01 b 0.79 ± 0.02 b 0.47 ± 0.06 b

Balance 0.64 ± 0.10 b 0.88 ± 0.06 b 0.86 ± 0.10 a 0.85 ± 0.03 b 0.77 ± 0.05 b 0.47 ± 0.06 b

Genezis 0.66 ± 0.05 b 0.89 ± 0.02 b 0.89 ± 0.01 a 0.86 ± 0.01 b 0.78 ± 0.04 b 0.45 ± 0.07 b

2022–2023

Green-
Seeker

Control 0.65 ± 0.07 a 0.60 ± 0.07 a 0.66 ± 0.05 a 0.58 ± 0.05 a 0.45 ± 0.06 a 0.15 ± 0.03 a

Envir. 0.76 ± 0.07 b 0.76 ± 0.06 b 0.76 ± 0.04 b 0.70 ± 0.03 b 0.60 ± 0.05 b 0.25 ± 0.04 b

Balance 0.79 ± 0.02 b 0.79 ± 0.02 b 0.78 ± 0.02 b 0.71 ± 0.02 b 0.62 ± 0.02 b 0.24 ± 0.02 b

Genezis 0.78 ± 0.03 b 0.79 ± 0.02 b 0.79 ± 0.02 b 0.72 ± 0.01 b 0.62 ± 0.02 b 0.24 ± 0.03 b

Mica-Sense

Control 0.88 ± 0.04 a 0.86 ± 0.04 a 0.85 ± 0.04 a 0.80 ± 0.03 a 0.75 ± 0.03 a 0.38 ± 0.04 a

Envir. 0.92 ± 0.04 b 0.91 ± 0.03 b 0.89 ± 0.02 a 0.86 ± 0.03 b 0.83 ± 0.01 b 0.53 ± 0.04 b

Balance 0.94 ± 0.01 b 0.92 ± 0.01 b 0.89 ± 0.01 a 0.86 ± 0.02 b 0.83 ± 0.02 b 0.52 ± 0.03 b

Genezis 0.94 ± 0.01 b 0.92 ± 0.01 b 0.90 ± 0.01 a 0.87 ± 0.01 b 0.83 ± 0.01 b 0.49 ± 0.03 b

3.2. The Relationship of Yield to Different Treatments

Figure 3 depicts the yields of different treatments in the 2021–2022 and 2022–2023
growing seasons, showing a significant difference between the two years’ yields. Signifi-
cantly different yields were observed between the Control and other treatments. However,
yields showed no significant differences among the Environmental, Balance, and Genezis
treatments. The 2021–2022 period showed more notable differences between treatments,
whereas, in the 2022–2023 season, favorable weather conditions for winter wheat resulted
in excellent and optimal conditions. Consequently, the differences in yield among Environ-
mental, Balance, and Genezis treatments were insignificant during this season.
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Figure 3. (a) winter wheat yields between 2021–2022 and 2022–2023 period, (b) winter wheat yields
between treatments (Control, Environmental, Balance, Genezis) in 2021–2022 and 2022–2023 growing
season. a–significant difference (p ≥ 0.05), b–no significant difference.



Drones 2024, 8, 88 8 of 20

3.3. Correlation between NDVI Values and Winter Wheat Yields

The results of Pearson correlation analysis between NDVI values obtained from data
measured by the GreenSeeker and MicaSense camera and winter wheat yield are presented
in Table 3. For GreenSeeker, a significant relationship, indicated by the “Pearson r”, was
observed between the calculated NDVI values and the observed winter wheat yield in all
treatments except for the Control treatment. The “Pearson r” values ranged from 0.289 to
0.863 in the Control treatment, while in the Environmental, Balance, and Genezis treatments,
the values ranged from 0.672 to 0.884, 0.669 to 0.946, and 0.726 to 0.897, respectively. In the
case of the MicaSense camera, a decreasing trend was found in the relationship between
yield and NDVI values from 170 DAS to 200 DAS. However, the Genezis treatment had a
peak value of 186 DAS. Negative values are also found for the MicaSense camera at 200
DAS due to saturation of the NDVI values. The highest “Pearson r” values for treatments
were achieved on different dates, and the most robust correlations between NDVI values
and yield were at 170 DAS and 226 DAS for both sensors.

Table 3. Pearson correlation analysis of the NDVI values produced from the data measured by
GreenSeeker (GS) and MicaSense (MS) camera and winter wheat yield of four treatments (Control–
Con., Environmental–Env., Balance–Bal., Genezis–Gen.).

DAS (Day) Con. (GS) Con. (MS) Env. (GS) Env. (MS) Bal. (GS) Bal. (MS) Gen. (GS) Gen. (MS)

170 0.289 0.349 0.853 ** 0.866 ** 0.832 * 0.854 ** 0.860 ** 0.888 **
186 0.226 0.262 0.728 * 0.449 0.669 0.502 0.830 * 0.946 ***
200 0.360 −0.084 0.877 ** −0.094 0.854 ** 0.289 0.891 ** 0.296
212 0.485 0.275 0.884 ** 0.101 0.874 ** 0.516 0.897 ** 0.632
226 0.317 0.684 0.872 ** 0.869 ** 0.946 *** 0.871 ** 0.874 ** 0.821 *
240 0.863 ** 0.940 *** 0.672 0.570 0.822 * 0.834 ** 0.726 * 0.673

Significance level: * p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001. The correlation coefficients were calculated at each
sampling date n = 8 at every sampling time.

To assess the relationship between NDVI values and winter wheat yield, three equa-
tions (exponential (E), linear (L), and quadratic (Q)) from 170 DAS to 240 DAS were
employed in Table 4. No significant differences were observed in the regression analyses
of the three equations for GreenSeeker and MicaSense cameras. In the Control treatment,
the highest coefficient of determination between NDVI values and winter wheat yield was
found at 240 DAS for both sensors. However, in the Environmental, Balance, and Genezis
treatments, the highest values were observed at 170 DAS and 226 DAS. The MicaSense
camera produced the lowest coefficient of determination values between 200 DAS and 212
DAS, likely due to the high biomass of winter wheat during this period, and it could not
make a difference between treatments. The most accurate prediction results were measured
in treated plots by the GreenSeeker at 226 DAS (R2 = 0.76–0.91). Similar results were
obtained with the MicaSense camera in treated plots at 226 DAS (R2 = 0.69–0.86). However,
the coefficient of determination values was more variable with the MicaSense camera, with
the highest R2 values found at 186 DAS (R2 = 0.88) and 240 DAS (R2 = 0.89–0.90).

Comparing the data provided by the two tools, measurements by the GreenSeeker
proved more reliable and more relevant predictions of yield in all treatments from stem
extension to ripening. Table 4 shows minimal differences among the different equations;
therefore, all three models can be applied to predict wheat yield at 226 DAS for both sensors.
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Table 4. The coefficient of determination (R2) between NDVI values measured by GreenSeeker and
calculated from MicaSense camera data and yield of winter wheat of Control, Environmental, Balance,
and Genezis treatments using three different equations.

DAS
(Day)

Treatments (GreenSeeker)

Control Environmental Balance Genezis

E 1 L 2 Q 3 E 1 L 2 Q 3 E 1 L 2 Q 3 E 1 L 2 Q 3

170 0.09 0.08 0.08 0.72 ** 0.73 ** 0.74 * 0.81 * 0.70 ** 0.68 * 0.74 ** 0.75 ** 0.76 *
186 0.06 0.05 0.09 0.52 * 0.53 * 0.78 * 0.42 0.44 0.75 * 0.67 * 0.80 * 0.68
200 0.12 0.11 0.16 0.78 ** 0.89 ** 0.82 * 0.68 * 0.70 ** 0.73 * 0.77 ** 0.78 ** 085 **
212 0.25 0.23 0.47 0.81 ** 0.80 ** 0.81 * 0.74 ** 0.77 ** 0.77 * 0.78 ** 0.79 ** 0.80 *
226 0.13 0.11 0.61 0.76 ** 0.77 ** 0.82 * 0.90 *** 0.91 *** 0.91 ** 0.78 ** 0.79 ** 0.79 *
240 0.70 ** 0.70 ** 0.86 ** 0.44 0.43 0.45 0.68 * 0.66 ** 0.84 ** 0.53 * 0.53 * 0.57

DAS
(Day)

Treatments (MicaSense)

Control Environmental Balance Genezis

E 1 L 2 Q 3 E 1 L 2 Q 3 E 1 L 2 Q 3 E 1 L 2 Q 3

170 0.13 0.12 0.23 0.74 ** 0.75 ** 0.82 * 0.71 ** 0.72 ** 0.80 * 0.78 * 0.79 ** 0.86 **
186 0.32 0.09 0.12 0.19 0.20 0.21 0.28 0.29 0.88 ** 0.88 *** 0.88 *** 0.88 ***
200 0.00 - 0.12 0.08 0.01 0.01 0.07 0.08 0.20 0.15 0.15 0.15
212 0.07 0.06 0.25 0.04 0.04 0.30 0.28 0.28 0.28 0.37 0.37 0.37
226 0.50 0.48 0.70 0.79 ** 0.79 ** 0.86 ** 0.79 ** 0.78 ** 0.79 ** 0.69 * 0.69 * 0.69 *
240 0.90 *** 0.89 *** 0.89 ** 0.37 0.35 0.38 0.71 ** 0.87 * 0.69 0.47 0.47 0.48

1 Represented the exponential equation, and formula yyield = a × eb × xNDVI was used; 2 represented the linear
equation, and formula yyield = a × xNDVI + b was used; 3 represented the quadratic equation, and formula
yyield = a × xNDVI

2 + b × xNDVI + c was used, a and b are regression parameters in each equation. * Significance
level at the p ≤ 0.05 level, ** significance level at the p ≤ 0.01 level, *** significance level at the p ≤ 0.001 level.

3.4. Predicting Winter Wheat Yields Based on NDVI

Based on regression analyses (Figure 4), using both sensors, the 226 DAS demonstrated
the most accurate results for in-season prediction of winter wheat yield. The NDVI values
of four treatments and winter wheat yield were compared at this specific date for both
sensors during the 2021–2022 and 2022–2023 seasons. The results are presented in three
equations (linear, exponential, and quadratic) in Figure 4. For each equation and sensor,
the Control treatment presented the lowest relationship between measured NDVI values
and yield. In the Control treatment, GreenSeeker and MicaSense showed minor R2 values
ranging from 0.15 to 0.21 and 0.15 to 0.17. The GreenSeeker effectively explained all yield
curves in the other treatments (Environmental, Balance, and Genezis), with R2 values
ranging from 0.78 to 0.83, 0.65 to 0.70, and 0.62 to 0.85, respectively. These values were
accompanied by relatively low RMSE values 0.56 to 0.65, 0.96 to 1.03, and 0.60 to 0.87,
respectively. However, MicaSense camera could predict yield effectively only in the Genesis
treatment (R2 = 0.78 and RMSE = 0.73–1.34), while Environmental and Balance treatment
with R2 values ranged from 0.62 and 0.41 to 0.60 and RMSE values between 0.85 and 0.86
and 1.10 and 1.34, respectively. As shown in Figure 4, a significant difference was observed
between the data points regardless of the equation used for comparison.
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determination of 0.71 for all three equations. Notably, the exponential equation showed 
the lowest RMSE (1.62), while the quadratic equation had the highest (4.36). These results 
indicate slight differences in predicting winter wheat yield using GreenSeeker. However, 
the MicaSense camera showed less favorable results in the yield prediction model across 
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Figure 4. Relationship between winter wheat yield and NDVI measurements for all treatments (Con-
trol, Environmental, Balance, and Genezis) in the 2021–2022 and 2022–2023 periods, (a) GreenSeeker
linear, (b) MicaSense linear, (c) GreenSeeker exponential, (d) MicaSense exponential, (e) GreenSeeker
quadratic, (f) MicaSense quadratic equations.

3.5. Supplementing the Yield Prediction Equation with DFS and CGDD Values

Figure 3 shows a difference in yield between years despite applying the same amount
of nutrients to treatments each year; therefore, results of yield prediction models can be
significantly influenced by varying weather conditions between years. Therefore, mini-
mizing the impact of environmental effects on the model is crucial. In this study, CGDD
and DFS values were utilized to enhance the yield prediction model for both sensors, as
illustrated in Figure 5. This figure demonstrates the accuracy of the three yield prediction
equations. The CGDD values of the 2021–2022 and 2022–2023 periods were 819.1 and 964.2,
respectively. However, the DFS values were equal (170 days) during the first measurement
time in both years.
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Figure 5. Modification of linear (a,b), exponential (c,d), and quadratic (e,f) yield prediction equations
using CGDD and DFS data based on GreenSeeker (GS) measurements and MicaSense-derived (MS)
NDVI values. The figures depict the measurement results for the 2021–2022 and 2022–2023 periods
for both sensors. CGDD and DFS values represent the number of days from sowing to sensing, where
GDD (growing degree days) > 0 and the cumulative growing degree days (CGDD) from sowing to
sensing, respectively.

The NDVI/CGDD values from GreenSeeker measurements showed a coefficient of
determination of 0.71 for all three equations. Notably, the exponential equation showed
the lowest RMSE (1.62), while the quadratic equation had the highest (4.36). These results
indicate slight differences in predicting winter wheat yield using GreenSeeker. However,
the MicaSense camera showed less favorable results in the yield prediction model across
linear, exponential, and quadratic equations, with R2 values of 0.16, 0.15, and 0.32, and
corresponding RMSE values of 2.77, 2.80, and 66.5, respectively.

The NDVI/DFS values did not significantly enhance the yield prediction model using
GreenSeeker, as the R2 values remained at 0.54, and the RMSE ranged between 2.05 and 2.06
across all equations. However, MicaSense showed an R2 of 0.71 in the quadratic equation
with an RMSE of 2.63, while the other equations showed R2 values of 0.53 and 0.54 with
RMSE values of 2.07 and 2.06, respectively.
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Based on the results, CGDD proved to enhance the accuracy of the yield prediction
equations. All equations performed well when measured using GreenSeeker. However, in
the case of MicaSense, these values did not significantly improve the yield prediction model.

3.6. Model Validation

The linear equation developed from modified NDVI data of two sensors (GreenSeeker
and MicaSense) with CGDD values at 226 DAS could show a good correlation between
the in-season yield predictions for winter wheat, and the results of the integrated yield
prediction model of devices are found in Table 5. The GreenSeeker yield prediction model
demonstrated a remarkably high coefficient of determination (0.90) and a comparatively
low RMSE (0.97). The MicaSense camera presented a significantly lower R2 value (0.69),
accompanied by a higher RMSE (1.71). Based on the results of yield prediction models
(Figure 6), it could be more accurate to estimate winter wheat yield with a GreenSeeker
than with a MicaSense camera.

Table 5. Regression coefficients (a, b), coefficient of determination (R2), and root mean square error
(RMSE) for the in-season yield prediction models of winter wheat using different sensors.

Plant Index Monitoring Time R2
Regression Parameters a

RMSE
a b

Yield prediction model
(GreenSeeker) NDVI/CGDD 226 DAS 0.90 34,206 −11.483 0.97

Yield prediction model
(MicaSense) NDVI/CGDD 226 DAS 0.69 50,110 −40.336 1.71

a Regression parameter, in-season yield = a × eb × index value. The integrated yield prediction model was built using
data from four treatments (Control, Environmental, Balance, Genezis) and two sensors (GreenSeeker, MicaSense
camera) in 2021–2022 and 2022–2023 periods.
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Figure 6. Relationship between the observed and predicted yields of the linear yield prediction model
for estimating in-season yield of winter wheat based on (a) GreenSeeker data and (b) MicaSense
camera data.

4. Discussion

This research aimed to examine one of the most popular and frequently used vege-
tation indexes: NDVI. Two measurement units were compared: a handheld NDVI index
measuring instrument called GreenSeeker and a MicaSense multispectral image collection
device with a designated NIR and Red band.

4.1. Comparison of GreenSeeker and MicaSense NDVI Values

One of the primary data points of this research is the NDVI values provided by the
GreenSeeker handheld crop sensor.

The GreenSeeker can rapidly determine the state of the crop, providing an opportunity
to measure biomass changes [46,47], and examine the nutrient supply of the harvest,
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as it correlates well with changes in the amount of nitrogen supplied to the crop [12]. Li
et al. [48] found a strong correlation between biomass and nitrogen uptake at Feekes growth
stages 4–5 and 6–7. Moreover, NDVI correlated better with nitrogen uptake than nitrogen
concentration at all growth stages [48]. In line with these results, as shown in Table 2, we
found differences between the values of each treatment. However, the differences were
only minor. The Control treatment stood out distinctly from the other treatments.

In contrast, the other three treatments had NDVI values that are relatively close to
each other but still distinguishable from one another. One reason may be that the amount
of nitrogen applied was about the same in the different treatments. However, there were
minor changes in the timing of the application rates (Table 1), which the plants could
compensate for during their growth [49]. Second, phosphorus and potassium were also
applied as basal fertilizers to the three treatments (Table 1), which may have caused slight
differences. This could be a potential reason for the measured differences [50].

A relatively new possibility for NDVI value data collection is to use multispectral
cameras mounted on various UAVs [51–53]. In this case, multispectral sensors mounted
on UAVs, such as the MicaSense RedEdge MX Dual camera system, provide much more
detailed data and better spatial resolution than handheld sensors or satellites.

The hypersensitivity of a camera can be a disadvantage in cases where a plant has
too high biomass, and the NDVI values produced by the MicaSense camera can no longer
monitor changes in biomass after a certain period [53]. Dimyati et al. [54] examined paddy
fields at different phenological stages in 2023 using four different multispectral cameras,
and the data collected were compared using five different vegetation indices and NDVI.
The NDVI values obtained with the MicaSense camera were by far the highest in all
three phenological stages, i.e., 0.9 in the heading stage and 0.8 at the ripening phase [54].
According to our measurements and results, the highest NDVI values were also at the
booting stage; moreover, in the two systems that have been compared, MicaSense images
resulted in higher values than GreenSeeker data.

Upon closer examination of Table 2, it becomes apparent that NDVI indices acquired
from data measured by the MicaSense camera show NDVI values approximately 0.2 higher
than those measured by GreenSeeker. The same findings can be observed when NDVI
values measured by aerial and ground-based devices were compared in rice and wheat,
barley, and corn [18,22,38].

Based on the results of the present study, it makes a remarkable difference which
tool is used to measure NDVI at a given time, as there are times when the GreenSeeker
handheld optical sensor can detect a significant difference (p ≤ 0.05) between treatments.
Meanwhile, aerial-imagery-based vegetation indices cannot do so. The reason for this is
that NDVI values from the MicaSense camera data were already 0.2 units higher, which
could have brought the NDVI values closer to a saturation point. In the case of dense
vegetation or large biomass, the sensor can no longer detect a difference above a particular
value, even when the green mass continues to grow [55]. Goffart et al. [53] encountered a
similar problem in winter wheat between the stem elongation stage and the flag leaf stage
and proposed that another, more suitable vegetation index (e.g., Normalized Difference
Index, NDI) should be used at this crucial time.

4.2. Yield Prediction Based on NDVI

After comparing the NDVI values of two sensors (Table 2), it was demonstrated that
the devices sometimes measure different NDVI values at different growing stages. The
saturation of NDVI in wheat [38] or rice [56] poses a significant challenge during the critical
period of the beginning of the heading stage. Given this observation, predicting yields
uniformly across different growing stages is not feasible. Therefore, it is of paramount
importance to always estimate yield at the optimal time. Previous studies found a positive
correlation between wheat yield and NDVI during the anthesis and mid-grain-filling
stages [57–59]. In this experiment, the Pearson correlation analyses (Table 3) showed
that both sensors are suitable for predicting the in-season yield at the beginning of stem
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elongation (around DAS 170) and mid-filling stages (around DAS 226). These findings
have been confirmed by several studies in wheat [38,58,60–62]. However, the results in
Table 2 presented that GreenSeeker can be utilized to estimate expected yield at numerous
additional time points.

4.3. Using Yield Prediction Equations

Several studies have been conducted on winter wheat, using both linear and non-linear
equations to estimate expected yields [63–66]. In both sensors (Table 4), the linear and
exponential equations differed significantly from the quadratic equation across different
treatments. However, the quadratic equation achieved the highest R2 values, while the
linear and exponential equations presented lower values. By comparison and equation
modification, the linear equation achieved the most reliable results, so this equation was
chosen over exponential and quadratic. Several researchers have examined the relationship
between wheat yield and NDVI using linear regression [4,40,64], while Raun et al. [66]
opted for an exponential equation. As discussed earlier, the linear model achieved the most
reliable results. Thus, it was utilized for further analysis of wheat yields at 226 DAS.

4.4. Effect of Climate Conditions on the Yield Prediction Model

The yields of the two years were significantly different (Figure 3), so weather condi-
tions were also examined to create a more accurate yield estimation model. Numerous
studies have shown that in addition to soil properties, different weather conditions also
affect the expected yield of wheat [67–69]; therefore, GDD and DFS values were introduced
into the model, similar to other authors [70–72], to improve the yield prediction model.
Based on the results above, the GreenSeeker sensor emerges as a much more reliable esti-
mator of expected yields, so the two factors (CGDD, DFS) should also be considered from
the GreenSeeker perspective. Regardless of the equation, the CGDD values significantly in-
creased the accuracy of the yield estimation model by a more significant margin (R2 = 0.71)
compared to the DFS values (R2 = 0.54). Similar findings were observed in sugarcane [47];
however, neither the DFS nor the GDD values improved yield potential prediction in
rice [72], while similarly, negative results were obtained using GDD values in maize, as
they failed to increase the model estimate significantly [67]. Based on the results of previous
studies, it can be concluded that the effects of GDD and DFS values are not indifferent to
the specific plant and climatic conditions under examination. Minimal differences were
observed when comparing the different equations (linear, exponential, quadratic) for all
treatments combined. However, no significant differences were observed between the
sensor measurements. Incorporating meteorological variables into the yield prediction
model yielded promising outcomes concerning GreenSeeker metrics, as evidenced by a
notable reduction in RMSE from 0.97 to 0.04. Conversely, the integration produced less
favorable outcomes for the MicaSense camera, manifesting as a substantial escalation in
RMSE from 1.71 to 7.23.

4.5. Comparison of Sensors in the Yield Prediction Model

Based on the yield prediction model, GreenSeeker was more suitable for winter
wheat yield prediction than the MicaSense camera. This is likely the saturation point
in the NDVI value, as the MicaSense camera measures approximately 0.2 higher values
than the GreenSeeker [55]. Thus, wheat can no longer detect a significant difference
between the different treatments in mid-season and, therefore, will produce low yield
prediction values [38]. On the contrary, GreenSeeker provided reliable data from the stem
extension period to almost the end of the growing stages for the treated plots (Table 4).
However, other studies have significantly improved wheat yield prediction models using
multispectral sensors. These studies employed multispectral imaging along with wheat
elevation data [73], or they integrated vegetation indices (VI) derived from UAV-based
multispectral images, solar radiation, and crop height data [74].
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5. Conclusions

The research involved a small-scale field trial time series analysis in winter wheat,
where the same amount of nitrogen-active substance was applied. The temporal distribu-
tion of the applied amount was different. The effects of fertilizers applied at different rates
were measured using NDVI, which was also employed to assess plant biomass change.
These data were collected from a GreenSeeker (GS) handheld sensor and a MicaSense (MS)
multispectral camera.

The comparison between GS-NDVI and UAV-NDVI values shows the following:

• The Control treatment could be differentiated from the other treatments using the
GreenSeeker sensor; however, with the MicaSense camera, the same result could only
be consistently observed five out of six times.

• Higher NDVI values were obtained from the MicaSense camera data than from
GreenSeeker, making it challenging to differentiate between the treatments.

In line with expectations from the literature, the Pearson and regression analyses
revealed that NDVI values obtained from the MicaSense camera and GreenSeeker data
at 226 DAS were significantly correlated with the predicted yield. Additionally, CGDD
values improved the yield prediction model, while DFS values showed no significant effect
on wheat yield. Only minor differences were observed among linear, exponential, and
quadratic equations in most cases for both sensors. However, the GreenSeeker device
provided more reliable and accurate winter wheat yield prediction data. Moreover, it is a
less expensive and simpler device for farmers to use compared to UAVs.
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Appendix A

Table A1. Coordinates of the 48 sampling points.

Points Latitude Longitude

1 47.8940506341 17.2637578119

2 47.8940605194 17.2637935554

3 47.8940715669 17.2638307009

4 47.8941213019 17.2640041544

5 47.8941321809 17.2640401513

6 47.8941427138 17.2640768041

7 47.8941936006 17.2642487861

8 47.8942044083 17.2642854641

9 47.8942149148 17.2643212156

10 47.8942655185 17.2644942766

11 47.8942759412 17.2645303661

12 47.8942860496 17.2645665189

13 47.8940837963 17.2637346252

14 47.8940945161 17.2637698844

15 47.8941048712 17.2638069701

16 47.8941551388 17.2639813850

17 47.8941659736 17.2640164961

18 47.8941758712 17.2640529956

19 47.8942264478 17.2642248041

20 47.8942371474 17.2642625486

21 47.8942426051 17.2642807087

22 47.8942985551 17.2644709162

23 47.8943086243 17.2645082581

24 47.8943196211 17.2645446066

25 47.8941220994 17.2637077809

26 47.8941315624 17.2637449315

27 47.8941417529 17.2637816772

28 47.8941923903 17.2639548473

29 47.8942020078 17.2639910587

30 47.8942126974 17.2640278134

31 47.8942625223 17.2642000449

32 47.8942724875 17.2642369656

33 47.8942830352 17.2642726519

34 47.8943352454 17.2644482310

35 47.8943464562 17.2644868593

36 47.8943570813 17.2645222206

37 47.8941505188 17.2636876134

38 47.8941610832 17.2637233155

39 47.8941714929 17.2637604708



Drones 2024, 8, 88 17 of 20

Table A1. Cont.

Points Latitude Longitude

40 47.8942218785 17.2639338507

41 47.8942318067 17.2639709153

42 47.8942423152 17.2640068118

43 47.8942919613 17.2641801123

44 47.8943028342 17.2642160843

45 47.8943135872 17.2642521333

46 47.8943638019 17.2644258443

47 47.8943744697 17.2644621059

48 47.8943850875 17.2644969838
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