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Abstract: Assessing the health status of old trees is crucial for the effective protection and health
management of old trees. In this study, we utilized an unmanned aerial vehicle (UAV) equipped
with multispectral cameras to capture images for the rapid assessment of the health status of old
trees. All trees were classified according to health status into three classes: healthy, declining, and
severe declining trees, based on the above-ground parts of the trees. Two traditional machine learning
algorithms, Support Vector Machines (SVM) and Random Forest (RF), were employed to assess their
health status. Both algorithms incorporated selected variables, as well as additional variables (aspect
and canopy area). The results indicated that the inclusion of these additional variables improved the
overall accuracy of the models by 8.3% to 13.9%, with kappa values ranging from 0.166 and 0.233.
Among the models tested, the A-RF model (RF with aspect and canopy area variables) demonstrated
the highest overall accuracy (75%) and kappa (0.571), making it the optimal choice for assessing the
health condition of old trees. Overall, this research presents a novel and cost-effective approach to
assessing the health status of old trees.

Keywords: health status; multispectral imagery; old trees of Platycladus orientalis L.; machine learning
algorithms

1. Introduction

Old trees hold great significance as living cultural relics, serving as invaluable histori-
cal, cultural, scientific, and ecological resources. They are keystone structures in forests,
woodlands, savannas, agricultural landscapes, and urban areas, playing unique ecological
roles not provided by younger, smaller trees [1]. Furthermore, they have an important place
in the human psyche and have many human cultural and aesthetic values [2]. Within an-
cient tree communities, multiple single or diverse tree species grow together in a relatively
concentrated manner, highlighting their exceptional significance and value. However, the
survival of old trees is constantly threatened by various abiotic and biotic factors. Hence, it
becomes essential to ensure the accurate and timely monitoring of stand and tree health
status for the effective health management of old trees [3,4]. Traditionally, the assessment
of the health status of trees relies on time-consuming field sampling and observations of
symptoms exhibited on the trunks and foliage of trees, with a high degree of uncertainty,
only feasible at the plot-scale [5]. Remote sensing enables the acquisition of forest health
indicators based on spectral or structural features derived from sensor data in an objective,
quantitative, and repetitive manner at multiple spatial scales [6]. In forests of old trees, up-
to-date and regularly acquired information becomes a key requirement. Besides timeliness,
a very high spatial resolution is also critical in sustainable forest management [7].

Unmanned aerial vehicles (UAVs) offer a promising solution to this issue, as they
enable high-intensity data collection at a lower operational cost, providing a more fre-
quent and comprehensive method for assessing the health of old trees [8]. Minařík and
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Langhammer [9] used a UAV equipped with a multispectral sensor to distinguish the
boundary categories represented by healthy and dead trees, which presents a new method-
ological approach for the assessment of spatial and qualitative aspects of forest health.
Nguyen et al. [10] used UAV images and deep learning to identify individual sick fir trees
(Abies marriesii) in insect-infested forests and managed to correctly detect/classify 78.59%
of all tree classes (39.64% for sick fir).

From the literature survey, in the field of forest health assessment based on UAVs,
the remaining works have mainly focused on detecting forest damage [11,12] rather than
individual trees, specifically old trees. Most are solely based on RGB sensors [13,14] and
limited to spectral and texture information [15,16]. Studies have been conducted on low
tree density and low levels of structural complexity, but forest conditions may pose unique
challenges for detection [16]. In forests, many large branches overlap, which affects the
segmentation of individual trees, and some studies have errors in the acquisition of spectral
features due to the angle of elongation. With respect to the aforementioned studies and
their limitations, we propose a more diverse and detailed methodological framework, using
a combination of spectral and textural information and two algorithms (support vector
machines (SVM) and random forest (RF)), followed by introducing additional variables to
improve performance and mapping.

Machine learning algorithms are widely used to classify the health of individual
trees [5]. Random forest (RF) and support vector machine (SVM) are representative [17]. RF
is a machine learning method with a large data processing capacity, fast operation speed,
high noise immunity, and an ability to suppress overfitting, based on the generation of
classification trees and on the aggregation of their results [18]. SVM is one of the classic
machine learning techniques that learns by example to assign labels to objects based on
statistical learning theory [19]. SVM is preferred for its ability to perform better with limited
training samples. It utilizes only the subset of the training samples that define the location
of the SVM optimum hyperplane.

Large old trees are among the most imperiled organisms on earth, and their protection
demands innovative approaches to management and monitoring over unprecedented time
frames [2]. This study provides useful information for assessing–mapping the health status
of old trees aiming to support precision health management and decision making for indi-
vidual old trees. Here, based on multispectral data collected by a small UAV, our research
aims to (1) verify the performance of the rapid health assessment of old trees framework
based on UAVs; (2) compare the advantages and disadvantages of different algorithms.

2. Material and Methods
2.1. Study Area

The central part of the Huangling National Forest Park (Figure 1), located in the south-
ern area of Yan’an City, Shaanxi Province, Northwestern China (35◦35′33′′–35◦35′14′′ N,
109◦15′29′′–109◦15′50′′ E), was selected as the test area. There are more than 200 centenarian
trees here. The total area of the study area is 130,000 m2, and the altitude is 940–965 m. It
belongs to the temperate continental monsoon climate, with an average annual temperature
of 9.4 ◦C and an average annual rainfall of 568.8 mm. In the study area, the high-density
forest is mainly composed of Platycladus orientalis.
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Figure 1. Location of the study area.

2.2. Field Measurement Data

Field-based sampling was carried out to provide reference data for each forest health
status. In the field, 142 old trees were positionally located using a high-precision South RTK
GPS (Yinhe Plus 1), and their heights, diameters at breast height, sites and crown widths in
the east–west and north–south directions were recorded. The field survey was conducted
in July 2022. To assess the health of each sampled tree, twelve parameters were used to
evaluate crown vigor and degradation [20]. Each parameter had five-level evaluation
criteria, ranging from 0 (best) to 4 (worst), and the evaluation criteria for each level had
well-defined visual characteristics of trees. The standardized data of the 12 evaluation
indices were subjected to the Kaiser–Meyer–Olkin (KMO) test and the Bartlett spherical test
to determine the suitability of principal component analysis. The common factor variance
of each index was calculated by principal component analysis, and the proportion of the
variance of each common factor to the sum of the common factor variance was further
calculated, which was used as the weight of the assessment index. The overall health score
of each tree was then obtained. The K-means clustering method was used to evaluate
the health status of the old trees, and the ancient trees were divided into three categories:
healthy, declining, and severe declining (Table 1). The field data were used as a reference
for modelling the predicted tree health status. In the above process, Excel was used for
statistical tabulation and IBM SPSS Statistics 27 for data analysis and processing.
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Table 1. Tree health condition evaluation according to above-ground parts and count of old trees.

Assessment
Items

Evaluation Benchmark

0 1 2 3 4 Score Weight (%)

Tree vigor Vigorous growth Adversely
affected

Apparent
weakness Extremely poor Almost dead 9.62

Tree form Natural tree form
Nearly natural
tree form but
some exceptions

Natural tree form
partially
damaged

Natural tree form
damaged and
deformed

Natural tree form
damaged
completely

10.31

Branch access Normal
Having a certain
but not obvious
influence

Shorter and
thinner branches

Branches
extremely
shortened,
internodes
inflated

Only having
lower growth
branches

9.76

Upper branches
and tree apex
mortality

None Not obvious Many A great many No tree apex and
branches 9.08

Lower branches
mortality None Not obvious Some and some

broken
Many, mostly
broken

Without healthy
branches 7.96

Damage of trunk
and large
branches

None
Rarely and
having been
restored

Obvious Obvious and
broken

Defect in the
upper part 7.26

Foliage density
Branch and leaf
density
equilibrium

Normal foliage
density Relatively sparse Few branches,

sparse Dead branches 9.07

Size of leaf buds Leaf (bud) is
sufficiently large

Some leaves
(bud) smaller

Most buds
smaller

All significantly
smaller

Only a small
number of buds
present and
smaller

8.89

Foliage colors Almost thick
green Green

Some obvious
yellow/brown
leaves

Almost light
green

All
yellow/brown
leaves

9.11

Bark damage
(peeled/necrosis) No damage

Few holes, no
significant
damage

Old scars Wound decayed
significantly

Large hole or
severe peeling 5.14

Bark metabolism
Fresh bark,
strong
metabolism

Most of the bark
fresh, few
locations with
weak individual
metabolism

Apparent lack of
vigor, weak
metabolism

Almost all bark
without vigor

Most of the bark
necrotic 5.60

Germination and
sprouting

Large amount of
foliage, much
germination and
sprouting

Large amount of
foliage, some
green shoots
sprouting

Less foliage,
fewer green
shoots sprouting

Little foliage, few
green shoots
sprouting

No germination
and sprouting 8.21

Degree of senescence = the sum of the products of the indicator scores and their weights Final score

Final score <1.40 1.40–1.67 1.67–2.20 2.20–2.48 >2.48

Grade I II III IV V

Senescent degree Healthy Declining Severe declining

Count 53 68 21

2.3. UAV-Based Multispectral Data

The multispectral imagery was collected by a multispectral UAV (DJI Phantom 4,
Shenzhen, China) equipped with a real-time kinematic (RTK) module. The integrated
multispectral imaging system includes one visible light (RGB) camera and five multispectral
cameras, blue light (B), green light (G), red light (R), red edge, and near infrared (NIR),
responsible for visible light imaging and multispectral imaging, respectively.

The multispectral data were acquired from 10:00 to 11:30 on 22–23 July 2022 in the
study area. The weather was clear, and the surface temperature was about 25–30 ◦C. The
flight height was 80 m, and the front and side overlap were set to 80% and 75%, respectively.
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When processing the UAV data, we transformed the projection coordinate system to WGS
1984 UTM Zone 49 N. The digital surface model (DSM) and orthophotos of the study area
were generated by Terra v2.3.3. In this study, the canopy height model (CHM), subtracting
the digital elevation model (DEM) from the digital surface model (DSM), as extracted
from the DSM using tools in ArcMap 10.8 [21]. Compared with object-oriented image
segmentation, object segmentation based stereoscopic information is more conducive to
the recognition of single tree structural features, and the marker-controlled watershed
algorithm (MCWS) was used for individual tree segments [22]. We depicted the crown
shape of 142 old trees as a reference value to verify the results of single tree segmentation
(Figure 2a). Then, the segmentation states were divided into true positive (TP), false positive
(FP), false negative (FN). Two indexes were used to evaluate the accuracy of results: overall
accuracy and F-score. Finally, we obtained a high accuracy (0.836) and an available F-score
(0.882). The individual tree segmentation was based on R Studio 4.2 (Figure 2b).
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Figure 2. Health status of old trees and individual tree segments. (a) The distribution of health status
of old trees; (b) individual tree segments.

2.4. Feature Extraction

We extracted candidate explanatory variables from the UAV data at the canopy scale,
including both spectral and 3D structural features of the tree canopy.

We used the set of 31 selected vegetation indices to extract canopy values, and we
used eight grey level co-occurrence matrices (GLCMs) to extract the texture variables NDVI
and DSM, which are useful for describing canopy structure (Table 2) [23]. Mean values
were then calculated using all pixels within the canopy. All of the texture variables were
calculated using a window size of 3 × 3 pixels and a shift of 45 degrees. All of the above
data processing and analysis steps were carried out using the ArcMap 10.8 software and
the ENVI 5.4 software.
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Table 2. Vegetation indices and texture variables with their corresponding formula and reference.

Class Variable Formula Reference

Vegetation indices

NDVI (Nir − R)/(Nir + R) [24]
NDWI (Rededge − Nir)/(Rededge + Nir) [25]
RG R/G [26]
GB G/B [26]
DVI Nir-R [27]
MSAVI 0.5[(2Nir + 1) −

√
(2Nir + 1)2 − 8(Nir − R)] [28]

MSR (Nir/R − 1)/
√

Nir/R + 1 [29]
NDGI (G − R)/(G + R) [30]
RVI Nir/R [31]
SAVI 1.5(Nir − R)/(Nir + R + 0.5) [32]
WDEVI (0.1Nir − R)/(0.1Nir + R) [33]
ARVI (Nir − 2R + B)/(Nir + 2R − B) [34]
ARVI2 −0.18 + 0.17(Nir − R)/(Nir + R) [34]
WBRVI (0.2Nir − R)/(0.2Nir + R) [33]
CVI Nir × R/G2 [35]
GDVI Nir − G [36]
EVI 2.5(Nir − R)/(Nir + 6R − 7.5B + 1) [37]
EVI2 2.4(Nir − R)/(Nir + R + 1) [38]
EVI2-2 2.5(Nir − R)/(Nir + 2.4R + 1) [39]

GARI [Nir − (G − (B − R))]/[Nir − (G + (B −
R))] [40]

GBNDVI (Nir − (G + B))/(Nir + (G + B)) [41]
GRNDVI (Nir − (G + R))/(Nir + (G + R)) [41]
MRVI (RVI − 1)/(RVI + 1) [42]
ANDVI (0.5Nir − R)/(0.5Nir + R) [43]
RDNDVI (Rededge − R)/(Rededge + R) [44]
PNDVI (Nir − (R + G + B))/(Nir + (R + G + B)) [41]
RBNDVI (Nir − (R+B))/(Nir + (R + B)) [41]
LCI (Nir − Rededge)/(Nir + R) [45]
NDRE (Nir − Rededge)/(Nir + Rededge) [46]
OSAVI (Nir − R)/(Nir + R + 0.16) [47]
GNDVI (Nir − G)/(Nir + G) [40]

Texture
DSM_GLCM and
NDVI_GLCM(window size of
3 × 3 pixels and a 45 degree shift)

“mean”, “variance”, “homogeneity”,
“contrast”, “dissimilarity”, “entropy”,
“second_ moment”, “correlation”

[23]

Note: R, G, B, Nir and Rededge represent spectral reflectance of red, green, blue, near-infrared and red edge
bands, respectively.

The variables were further analyzed using the Boruta feature selection algorithm [48],
which can reduce the influence of a large number of explanatory variables. The Boruta
algorithm consists of the following steps [48]: 1. Extend the information system by adding
copies of all variables (the information system is always extended by at least five shadow
attributes, even if the number of attributes in the original set is lower than 5); 2. Shuffle
the added attributes to remove their correlations with the response; 3. Run a random
forest classifier on the extended information system and gather the Z scores computed;
4. Find the maximum Z score among shadow attributes (MZSA), and then assign a hit to
every attribute that scored better than MZSA; 5. For each attribute with undetermined
importance perform a two-sided test of equality with the MZSA; 6. Deem the attributes
which have importance significantly lower than MZSA ‘unimportant’ and permanently
remove them from the information system; 7. Deem the attributes which have importance
significantly higher than MZSA ‘important’; 8. Remove all shadow attributes; 9. Repeat the
procedure until importance is assigned for all the attributes or the algorithm has reached
the previously set limit of the random forest runs. We introduced aspect and crown area
as additional variables. The aspect was divided into four types (Figure 3.) based on DEM
data from DSM in individual tree segmentation [49], and we set two data sets (selected
variables, selected and additional variables) to build RF and SVM models separately.
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Figure 3. Schematic diagram of aspect division [43].

Training/validation data extraction at the crown level was based on the identification
and manual delineation on the RGB orthomosaics of the 142 old trees surveyed in the
field and stored as polygon vectors. Pixel values of the candidate explanatory variables
were retrieved for each tree crown polygon using the extraction function embedded in
ArcMap 10.8. The extracted values were used to calculate the mean of the variables for
each individual canopy. The derived statistics were stored in a database and used as the
input data for further analysis using RF and SVM classifiers.

2.5. Tree Health Status Modelling and Mapping of P. orientalis Health Status

SVM and RF were used to assess the health status of old trees. The two models
were implemented with the “e1071”, and “random Forest” packages in R, version 4.2.1,
respectively. During model building, the field measurement data were randomly divided
into a training set (75%) and a validation set (25%). The training set was used to build
scoring models, and the validation set was used to validate the models. Confusion matrices
were constructed using the validation samples and corresponding classification results from
the four scenarios described in Section 2.4. A confusion matrix is a table layout that allows
a visualization of the performance of a supervised learning algorithm. Each column of the
matrix represents the instances in a predicted class, while each row represents the instances
in an actual class. Producer’s accuracy (PA), user’s accuracy (UA), overall accuracy (OA),
and kappa coefficients were calculated and used to assess accuracy. Producer accuracy is
the probability that ground truth reference data for the category is correctly classified. User
accuracy is the probability that a target is correctly classified in a category. Overall precision
is the number of all correct classifications as a percentage of the total number of extractions.
The kappa coefficient is a metric used to test consistency. By comparing the classification
accuracies of the different scenarios, the optimal scenario of the feature combination and
classification algorithm was determined and then used to predict the health status of old
trees in the whole area.
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3. Result
3.1. Field Health Assessment

We used principal component analysis (PCA) to obtain the overall health score of old
trees, and we obtained KMO = 0.878 > 0.5, Bartlett’s test of sphericity p < 0.001, representing
a suitable candidate for principal component analysis. Based on the criterion of eigenvalue
greater than 1, three common factors were extracted using principal component analysis
and using the maximum variance method; the eigenvalue of component 1 was 6.107, the
eigenvalue of component 2 was 1.234, and the eigenvalue of component 3 was 1.034, and
the variance contribution ratio of these three was 69.80% (Table 3). The weights of the
components and the overall health score were obtained by calculation (Table 2). Then, after
K-means clustering, they were divided into three categories, healthy, declining, and severe
declining, and the numbers were 53, 68, and 21, respectively.

Table 3. Total Variance Explained.

Component Initial Eigenvalue Extract the Sum of the Squares of
the Loads Rotational Load Sum of Squares

Total Percentage
of Variance

Accumulated
% Total Percentage

of Variance
Accumulated

% Total Percentage
of Variance

Accumulated
%

1 6.107 50.894 50.894 6.107 50.894 50.894 3.203 26.694 26.694
2 1.234 10.283 61.177 1.234 10.283 61.177 3.038 25.316 52.011
3 1.034 8.62 69.797 1.034 8.62 69.797 2.134 17.787 69.797
4 0.748 6.231 76.029
5 0.671 5.595 81.623
6 0.592 4.937 86.56
7 0.439 3.659 90.219
8 0.344 2.865 93.083
9 0.271 2.26 95.344

10 0.223 1.862 97.206
11 0.218 1.816 99.022
12 0.117 0.978 100

3.2. Feature Selection

In the feature selection, the Z score of the most important shadow attribute clearly
separates important and unimportant attributes. Red, yellow, and green boxplots represent
Z scores of, respectively, rejected, tentative, and confirmed attributes. Four variables were
selected, including three vegetation indices (NDVIredge, NDGI, and rbNDVI) and one
texture measure (DSM-mean) (Figure 4).
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3.3. Model Comparison

SVM performed better than RF with the same selected features in terms of overall
accuracy and kappa coefficient. As shown in Table 4, the overall accuracies and kappa
values based on selected features were 55.6% and 0.197 for SVM and 61.1% and 0.338 for RF.
In SVM, the main errors came from a misclassification of the healthy and severe declining
as declining, resulting in low PA for the healthy (0.14) and severe declining (0.4). In RF, the
main error came from misclassifying severe declining as declining, resulting in a low PA
for severe declining (0.2).

Table 4. Accuracies of old tree health conditions based on selected features with Support Vector
Machine (SVM) and Random Forest (RF) algorithms.

Data and Method Classified Levels
Reference Data

Total UA
Healthy Declining Severe

Declining

Selected with SVM

Healthy 2 1 0 3 0.67
Declining 12 16 3 31 0.52

Severe declining 0 0 2 2 1
Total 14 17 5 36
PA 0.14 0.94 0.40
OA 55.6% Kappa 0.197

Selected with RF

Healthy 11 6 1 18 0.61
Declining 3 10 3 16 0.62

Severe declining 0 1 1 2 0.50
Total 14 17 5 36
PA 0.78 0.59 0.2
OA 61.1% Kappa 0.338

3.4. Models with Crown Area and Aspect Variables

For the models with crown area and aspect variables, accuracy was improved in terms
of both overall accuracy and kappa (Table 5). The overall accuracy of A-SVM and A-RF was
63.9% and 75%, respectively, showing an increase of 8.3% and 13.9%. The kappa coefficients
of A-SVM and A-RF were 0.363 and 0.571, representing an increase of 0.166 and 0.233,
respectively. After adding variables, all categories performed better, including UA and
PA. The A-RF model, which had the higher OA (75%) and kappa (0.571), was considered
optimal for estimating the health status of old trees.

Table 5. Accuracies of old tree health conditions based on selected and added features with Support
Vector Machine (SVM) and Random Forest (RF) algorithms.

Data and Method Classified Levels
Reference Data

Total UA
Healthy Declining Severe

Declining

Selected & Area & Asp
with SVM(A-SVM)

Healthy 4 1 0 5 0.8
Declining 10 16 2 28 0.57

Severe declining 0 0 3 3 1.0
Total 14 17 5 36
PA 0.28 0.94 0.60
OA 63.9% Kappa 0.363

Selected & Area & Asp
with RF(A-RF)

Healthy 12 3 1 16 0.75
Declining 1 14 3 18 0.78

Severe declining 1 0 1 2 0.50
Total 14 17 5 36
PA 0.86 0.82 0.2
OA 75% Kappa 0.571
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3.5. Spatial Distribution of Old Trees with Different Health Conditions

The A-RF model, based on a combination of crown area and aspect characteristics,
was applied to the whole study area and produced a spatial distribution of the health status
of old P. orientalis trees (Figure 5). The number and proportion of old trees in each health
category was summarized in Table 6. About two-fifths of old trees were healthy, and more
than half were in decline. It is necessary to take urgent measures for the declining old trees.
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Table 6. The number and proportion of old trees at different health conditions.

Health Status Number of Trees Percentage of Study Area (%)

Healthy 1125 43.4
Declining 1121 43.2

Severe declining 349 13.4
Total 2595 100

4. Discussion

To our knowledge, this is the first study to assess the tree-level health status of old
trees using UAVs; although there are limitations, our study may lead to improving the
health management of old trees.
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4.1. Health Status and Management of Old Tree

In our study, the number of healthy and declining trees was more than 40%, and
the number of severe declining trees was 349, over 10%. Although incorporated into the
park management system, it was open to tourists. Habitat alteration associated with park
establishment activities (e.g., road access and soil compaction) and increased numbers of
visitors may have a negative impact on the growth of trees in these sites [50]. Old trees can
be susceptible to disease, insect attack, and dieback [51,52] and are at risk of decline [53].
Therefore, more than half were in the declining and severe declining categories. For trees
in decline, we should take timely mitigation measures according to the actual situation.
Introducing symbiotic organisms, both below ground and in the above-ground forest
microbiome, has the potential to facilitate plant growth [54]. The system developed by
Osnabriick for the further protection of crowns threatened by possible failure was a useful
path to reduce the breakage of crown parts and large branches [55]. Some large cavities
should be filled with special materials, such as zinc- and copper-based nanocompounds [56],
to prevent further damage.

4.2. Selecting Variables

Vegetation Indices and texture measures derived from multispectral UAV imagery
are widely used for assessing health status. In our study, we chose 47 variables, including
31 vegetation indices and 16 texture measures. In order to remove redundant features as
well as reduce overfitting, we used the Boruta feature selection algorithm to select variables.
Three vegetation indices (NDVIredge, NDGI, and rbNDVI) and one texture measure (DSM-
mean) were selected. The spectra of problematic canopies will differ significantly from
the reflectance spectra of normal canopies [16]. NDVI redge and rbNDVI are considered
to be a good vigor indicator [57]. NDGI is an indicator of changes in the status quo of
the vegetation [58]. They have been widely used to characterize canopy status [59,60].
Texture is a tool for documenting stand structure. We extracted texture features from DSM
and NDVI; only DSM-mean was selected, and the results were different from the study
by Guerra-Hernández, J. et al. [23]. The window size as well as the orientation of the
texture features have a significant effect on the results [61]. Further tests should therefore
be carried out.

4.3. Performance of Two Models

In this study, SVM and RF were used to estimate the health status of old trees of
P. orientalis by combining texture variables and vegetation indices based on UAV images.
Compared to SVM, RF had performed better in terms of both accuracy (61.1%) and kappa
values (0.338). When performing multi-classification, RF obtained better classification
results [62,63]. RF outperformed SVM in their ability to generalize and handle multi-
dimensional data. The training sample set affects the performance of both classifiers
SVM and RF [64,65]. RF gave better results when there was a large number of training
samples available [15]. Our training samples share of 4% was much larger than 0.25% [62],
although SVM had good performance on imbalanced training datasets [16]. However,
due to variations in stem density and spacing and the range of tree heights and sizes,
there is tremendous variability and overlap in the spectral signature of trees in old-growth
P. orientalis stands [66,67], which make the spectrum unusual and low in accuracy. In
addition, our health status results were derived from a qualitative analysis of old-growth
trees rather than the more traditional discoloration of the canopy [68,69]. Further research
needs to be used to improve accuracy.

4.4. Adjusting Models

In the field study, we found that there were significant differences (p < 0.05) in the old-
growth forests in terms of aspect and crown areas. Aspect, an important topographic factor,
can often create a local microclimate by altering ecological factors such as light, temperature,
water, and soil, which affects the health of the community [70]. The canopy is where the tree
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photosynthesizes, and its area reflects its health in old trees. Therefore, we included aspect
and area variables of canopy that influence health status in our estimation models. For
models with additional variables, the increase in overall accuracy and kappa value varied
from 8.3% to 13.9% and from 0.166 to 0.233, respectively. A-RF performed better in OA
(75%) and kappa (0.571), indicating a great potential for incorporating aspect and crown
area into old tree health assessment. In the A-RF model, healthy and declining categories
were identified with high UA and PA (over 70%). In particular, the PA of the healthy and
declining categories were 0.86 and 0.82, showing our results could be used to guide practical
forest management. A-RF had low pairwise correlations, and classification accuracy could
be significantly improved by aggregating the results of many classifiers that have little bias
by averaging or voting [71]. However, the UA and PA of the severe declining category were
0.5 and 0.2, respectively, the reason being that the number of severe declining trees in the
study area was small, so there was a high probability of complete misclassification or correct
classification [22]. Roope Näsi et al. [72] used hyperspectral imagery to identify mature
Norway spruce (Picea abies L. Karst.) trees suffering from infestation, and the best results for
the overall accuracy were 76% (Cohen’s kappa 0.60) when using three color classes (healthy,
infested, dead). Our study obtained similar accuracy through more low-cost equipment.

Old-growth stands are less structurally diverse [73]. The development of old-growth
attributes is modified by site position [74], and characteristics such as the percentage of
broken-topped crowns increase with stand age [73]. Therefore, the introduction of aspect, a
major site factor influencing the growth and development of a single plant, and canopy
area, a direct reflection of the growth status of individual trees, into the health assessment
model reflects the health of old trees and significantly improves the estimation accuracy.
Studies on the integration of CHM feature [75], normalized digital surface models [10], and
canopy cover [76] into the model also proved that the introduction of factors reflecting the
growth status can improve the accuracy of health estimation. In the future, hyperspectral
and LiDAR data should be obtained and used to assess the health status of old trees of
P. orientalis L.

5. Conclusions

In this study, we used two machine learning methods, SVM and RF, to assess the
health status of old trees, based on UAV multispectral data. Two models obtained a general
performance with traditional methods (only vegetation indices and textures variables),
but RF performed better, especially in the detection of declining trees. Furthermore, we
introduced two additional variables (aspect and canopy area) in the health assessment
models, obtaining a significantly improved performance both in accuracy and kappa value.
In the assessment of health status, A-RF (RF with aspect and canopy area variables) with
overall accuracy (75%) and kappa (0.571) had a better applicability in the study area.
Knowing the health status of old trees is of great importance for forest management. Our
study provides a suitable method for assessing the health status of old trees, making it a
reality to achieve rapid and reproducible diagnosis which provides a basis for the health
management of old trees.
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