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Abstract: This paper discusses a key technique for passive localization and tracking of radiation
sources, which obtains the motion trajectory of radiation sources carried by unmanned aerial vehicles
(UAVs) by continuously or periodically localizing it without the active participation of the radiation
sources. However, the existing methods have some limitations in complex signal environments and
non-stationary wireless propagation that impact the accuracy of localization and tracking. To address
these challenges, this paper extends the δ-generalized labeled multi-Bernoulli (GLMB) filter to the
scenario of passive localization and tracking based on the random finite-set (RFS) framework and
provides the extended Kalman filter (EKF) and unscented Kalman filter (UKF) implementations of
the δ-GLMB filter, which fully take into account the nonlinear motion of the radiation source. By
modeling the “obstacle scenario” and the influence of external factors (e.g., weather, terrain), our
proposed GLMB filter can accurately track the target and capture its motion trajectory. Simulation
results verify the effectiveness of the GLMB filter in target identification and state tracking.

Keywords: δ-generalized labeled multi-Bernoulli filter (GLMB); passive localization and tracking;
random finite set (RFS); extended Kalman filter (EKF); unscented Kalman filter (UKF)

1. Introduction

The goal of passive localization and tracking is to continuously or periodically localize
the target or radiation source without the active participation of the target or radiation
source, thus obtaining the motion trajectory of the target or radiation source carried by un-
manned aerial vehicles (UAVs) [1]. Passive localization and tracking of radiation sources is
a critical technology used to determine the position and motion of wireless signal transmit-
ters without active contact, which has a wide range of applications in various fields, such
as wireless communications, radio frequency interference (RFI) monitoring, environmental
surveillance, and military reconnaissance [2–4]. By analyzing the characteristics of received
wireless signals, passive localization and tracking provide valuable insights into the spatial
distribution of radiation sources, ensuring efficient spectrum management and enhancing
situational awareness.

With the rapid proliferation of wireless devices and communication systems, the
electromagnetic spectrum is becoming increasingly congested, leading to challenges in
efficient spectrum utilization and interference management [5]. In such complex and
dynamic electromagnetic environments, it becomes critical to precisely locate and track
the radiation sources. Furthermore, passive techniques prove to be essential in situations
where the active detection or engagement of the sources is not feasible or desirable. Also,
they provide valuable information about the location and behavior of the radiation source,
which enables effective monitoring, interference mitigation, and spectrum allocation.
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Recently, researchers have proposed different methods for passive localization and
tracking of radiation sources. These approaches can be broadly categorized as follows:
(1) Time-of-arrival (TOA) techniques [6,7]—These methods estimate the source location
based on the time difference between the arrival of the signal at multiple receivers. By
calculating the delay time, the position of the transmitter can be deduced. (2) Angle-of-
arrival (AOA) method [8]—The AOA method depends on the observation of the direction
of arrival (DOA) of the signal at multiple receiving antennas. By triangulating the angle,
the location of the transmitter can be determined. (3) Received-signal-strength (RSS, [6])
approaches—RSS-based methods utilize the strength of the received signal to estimate
the distance between the source and the receiver. By combining distance measurements
from multiple receivers, the location of the transmitter can be inferred. (4) Time-of-flight
(TOF) measurements [9,10]—ToF ranging methods are bi-directional ranging techniques,
which primarily use the time of flight of a signal traveling back and forth between two
asynchronous transceivers (or reflected surfaces) to measure the distance between nodes.
In line-of-sight (LOS) environments, ToF-based ranging methods can compensate for the
shortcomings of RSSI-based methods.

However, the above methods have some limitations. Firstly, in a complex multipath
signal environment or when there are obstacles between the target and the receiver (when
the number of targets observed by the receiver is variable), the accuracy of localization and
tracking may be compromised. Secondly, the non-ideal signal propagation results in an
increased error, which affects the accuracy of localization and tracking. Finally, wireless
signal propagation environments are usually non-stationary and impacted by factors such
as weather, terrain, and other wireless devices. These variations may lead to a change in
parameters such as propagation loss, multipath effect, etc., compromising the localization
and tracking results. The random finite-set (RFS) method, as introduced by Mahler in [11],
offers a solution to the multi-target tracking problem. Bayesian filtering based on RFS
theory is adept at dynamically detecting the number of targets and their states, finding
extensive applications in various domains [12–18].

Because of the multi-target Bayesian filter’s numerical complexity, some alternative ap-
proaches have been proposed, including the probability hypothesis density (PHD) [19–21],
cardinality PHD (CPHD) [22,23], and multi-Bernoulli filter [24,25] methods. Neverthe-
less, these methods do not function as multi-target trackers since they lack the ability to
track target trajectories and, consequently, cannot discern the identity information of the
targets. Therefore, Vo et al. proposed the RFS-based generalized labeled multi-Bernoulli
(GLMB) [26–28] and δ-GLMB [29] filters, where the δ-GLMB [29] filter yields stronger
results compared to the GLMB filter and is more applicable to the multi-target tracking
problem [30–35].

In this paper, we extend the δ-GLMB [29] filter to the passive localization and tracking
scenarios. The major contributions of this paper are as follows:

• For the complex electromagnetic environment, we model the “scenario with obstacles
between the target and the receiver” as an RFS, in which both the state and the
number of targets received by the receiver of the base station change during the
observation time.

• The non-stationary wireless signal propagation environment is usually affected by
weather, terrain, other wireless devices, etc. Therefore, we model external factors
such as weather and terrain (which may impact the information received by the
receiver) as a clutter RFS and identify that each clutter generates a false alarm (a false
measurement). Our proposed filter is capable of accurately tracking targets of interest
from clutter interference and capturing their trajectory onset remarkably well.

• We describe the extended Kalman filter (EKF) and unscented Kalman filter (UKF)
implementations of the δ-GLMB filter, which are able to accurately capture the target’s
motion state. Moreover, we extend the PHD and CPHD filters to the scenarios of
interest in this paper for comparison with the proposed method. Simulation tests
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verify the effectiveness of the δ-GLMB filter for target number identification and
state tracking.

This paper is structured as follows. In Section 2, we provide an overview of the relevant
background, encompassing the dynamic physics model of a single target, measurement
model, multi-target random finite-set (RFS) system model, Bayesian multi-target recursion,
and δ-GLMB filter. Section 3 presents a concise overview of the nonlinear recursive imple-
mentation of the δ-GLMB filter for passive localization and tracking. Sections 4 and 5 offer
some numerical examples and conclusions, respectively. Additionally, Appendices A and B
present some fundamental theories. We use upper-case (lower-case) bold characters to
indicate matrices (vectors). Some symbols and their implications are given in Abbreviations.

2. Background

This section presents the background relevant to passive localization and tracking,
including the dynamic physical model of the target radiation source, measurement model,
multi-target random finite-set system model for time-varying multi-radiation source track-
ing, fundamental theories of Bayesian multi-target recursion, and δ-GLMB filter. Addition-
ally, some random finite-set fundamentals involved in this section are supplemented in
Appendix B.

2.1. Dynamic Physics Model

Assume that the state of the n-th target is xn
k = [xn

k , ẋn
k , yn

k , ẏn
k ]

T , n = 1, 2, . . . , Nk, where
xk and yk are the Cartesian coordinates of the x and y positions, respectively; ẋn

k and ẏn
k

denote the velocities in the x and y directions; and Nk denotes the total number of radiation
sources. The dynamic physics model (also known as the state equation) is given as follows:

xn
k = Fkxn

k−1 + ωk−1, (1)

where Fk is the transfer matrix, and its type determines the kinematic model of the target
xk−1 at time k. ωk−1 denotes the state noise, which comes from the fact that there is a certain
error between our physical model and the actual trajectory of the target, and this part of
the error is denoted by ωk−1. Since ωk−1 is a random quantity, we generally describe it by
its statistic. In this case, we describe it by the covariance matrix Qk−1 of ωk−1. If the value
of Qk−1 is smaller, we consider that the system model we built is closer to the actual target
trajectory, i.e., at this point, we trust the predicted value obtained from the system model
more than the measurement.

It is important to note that the value of Qk−1 is not as small as possible. There are two
reasons for this: (1) the compatibility between the dynamic model and the actual motion
trajectory of the target; and (2) whether the target is in nonlinear motion or not. This point
is explained later in the simulations. Additionally, the state noise ωk−1 is more accurately
expressed as Γk multiplied by vk−1. The process noise input matrix Γk is given by

Γk =


∆T2/2 0

∆T 0
0 ∆T2/2
0 T

, (2)

where ∆T is the time-sampling interval. Then, the dynamic physics model (Equation (1))
can be expressed as

xn
k = Fkxn

k−1 + Γkvk−1, (3)

where vk−1 =
[
δx, δy

]T is the process noise and vk−1 ∼ N (0, Qk−1).

Remark 1. In this paper, we introduce a labeled scheme for each source, assigning a unique label
l to each source. This label is constructed as an ordered pair (k, n), where n represents the index
of targets that originated at time k. We define the labeled space for all targets up to time k as a
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disjoint union Lk =
⋃k

h=1 Bh, where Bh is the labeled space of targets born at time h (notably,
Lk = Lk−1 ∪ Bk). Then, the states presented in Equation (1) can be denoted as labeled vectors
xn

k :=
(
xn

k , ln
k
)
, where ln

k = (k, n).

2.2. Measurement Model

Figure 1 illustrates a two-dimensional passive localization model between a base
station (BS) and multi-radiation sources, where both the base station and the radiation
source are moving. Using the starting position of the base station (x0, y0) as the reference
point to build a two-dimensional plane rectangular coordinate system, the measurement
information obtained by the BS at time k is

Figure 1. The passive localization model between the moving BS and multi-radiation sources carried
by UAVs.

zk =
[
θk, θ̇k, ḟk

]T
+ nk, (4)

with
θk = arctan

yk − y0k
xk − x0k

, (5)

θ̇k =

(
ẏk − vy0

)
(xk − x0k)− (ẋk − vx0)(yk − y0k)√
(xk − x0k)

2 + (yk − y0k)
2

, (6)

ḟk = −
((

ẏk − vy0

)
(xk − x0k)− (ẋk − vx0)(yk − y0k)

)2

λ
(
(xk − x0k)

2 + (yk − y0k)
2
)3/2 , (7)

where θk, θ̇k, and ḟk are the azimuth, angular velocity, and Doppler frequency change-rate
measurements, respectively. λ denotes the carrier wavelength. Appendix A provides the
specific calculations of θk, θ̇k, and ḟk. (x0k, y0k) is the position of the base station at time k

with velocity (vx0 , vy0); nk =
[
δθk , δθ̇k

, δ ḟk

]T
denotes the measurement noise, where δθk , δθ̇k

,
and δ ḟk

are the azimuth error, angular velocity error, and Doppler frequency change-rate

error that are independent of each other; and nk ∼ N(0, Rk), with Rk = diag
(

σ2
θk

, σ2
θ̇k

, σ2
ḟk

)
.

σθk , σθ̇k
, and σ ḟk

are the (statistics) standard deviations of δθk , δθ̇k
, and δ ḟk

, respectively.
According to the geometric theory of kinematics, the distance rk between the base

station (x0k, y0k) and the target radiation source xk can be expressed as

rk =
−λ ḟk

θ̇2
k

, (8)
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with the above equation being the expression for passive ranging. Finally, the estimated
position of the target radiation source is derived from the azimuth information{

x̃k = x0k + rk cos θk

ỹk = y0k + rk sin θk
. (9)

Remark 2. Obviously, Equation (9) is over-idealized. In practical passive localization scenarios,
two key issues need to be addressed: (1) the kinematic state of the target radiation sources and their
number may be variable during the observation time; and (2) the interference signals from other
uninterested targets (called clutter, as shown in Figure 1) can also be observed by the base station.
The strength of the clutter signal affects the final tracking performance. Our task is to track the
target location from a cluttered environment. In the next two subsections, we briefly describe the
multi-target RFS system model and Bayesian multi-target recursion.

2.3. Multi-Target RFS System Model

Based on RFS theory [19], the multi-target state RFS Xk and observation RFS Zk can
be expressed as

Xk =
{

xk,1, · · · , xk,Nk

}
∈ F (X ),

Zk =
{

zk,1, · · · , zk,Mk

}
∈ F (Z).

(10)

where Nk and Mk are the number of targets and the measurements at time k, X ∈ Rnx

denotes the state space, and Z ∈ Rnz is the measurement space.
Using RFS theory, it can be seen that Nk and Mk are time-varying, which enables us to

construct the basic model of the problem we are aiming to solve. Given a random set of
multi-target state Xk−1 at time k − 1, each state xk−1 ∈ Xk−1 either survives with probability
PS,k(xk−1) and travels along the kinematic density fk|k−1(xk−1) to xk, or disappear with
death probability 1 − PS,k(xk−1). Moreover, there are also new targets that appear in the
target state space with a newborn probability PB,k(xB,k). Then, the multi-target RFS Xk is in
the form of a union set

Xk =

 ⋃
xk−1∈Xk−1

Sk|k−1(xk−1)

 ∪ Bk, (11)

where Bk represents the multi-Bernoulli RFS of spontaneous newborn targets (provided in
Appendix B) and Sk|k−1 denotes the survival targets. The multi-target RFS integrates the
target’s motion, including the appearance of new targets as well as their disappearance. It
is assumed that the RFSs described by Equation (11) are independent of each other, i.e., Xk
is the proposed multi-Bernoulli RFS based on Xk−1.

At time k, for a given target xk from the set Xk, it follows one of two scenarios: either
it is detected by the BS with a probability of PD,k(xk) and produces a measurement zk
with likelihood gk(zk|xk ), or it is undetected with probability 1 − PD,k(xk). In other words,
each state results in a Bernoulli RFS denoted as Θk(xk), characterized by r = PD,k(xk) and
p(·) = gk(·|xk ). Additionally, the BS also encounters a collection of clutter represented
as a Poisson RFS Kk with an intensity function κk(·). Consequently, the multi-target
measurement Zk is

Zk =

 ⋃
xk∈Xk

Θk(xk)

 ∪ Kk, (12)

where the RFSs comprising the union in (12) are independent of each other.
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2.4. δ-GLMB FILTER

The labeled RFS form of the multi-target state in Equation (10) is given in Appendix B.3,

and the RFSs for δ-GLMB are also given in Appendix B.4. For simplicity, let L+
∆
=L ∪ B,

L ∆
=L0:k, B ∆

=Lk+1, π
∆
=πk, π+

∆
=πk+1|k, g

∆
= gk, f

∆
= fk+1|k, X

∆
=Xk, Z

∆
=Zk.

The numerical implementation of the GLMB RFS becomes notably more challenging
under Bayesian recursion. However, drawing insights from [26,29], the δ-GLMB RFS (refer
to Appendix B.4) emerges as a specialized variant of the GLMB RFS, offering a simplified
numerical approach that is exceptionally well suited for multi-target tracking applications.
Then, the δ-GLMB prediction density at time k + 1 is

π+(X+) = ∆(X+)× ∑
(I+ ,ϑ)∈F (L+)×Ξ

ω+
(I+ ,ϑ)δI+ [L(X+)]

[
p+(ϑ)

]X+
, (13)

where

ω+
(I+ ,ϑ) = ωϑ

S(I+ ∩L)ωB(I+ ∩B), (14)

ωϑ
S(L) =

[
η
(ϑ)
S

]L
∑
L⊆I

1I(L)
[
1 − η

(ϑ)
S

]I−L
ω(I,ϑ), (15)

η
(ϑ)
S (l) =

∫ 〈
PS(·, l) f (x|·, l), p(ϑ)(·, l)

〉
dx, (16)

p(ϑ)+ (x, l) = 1L(l)p(ϑ)+,S(x, l) + 1B(l)pB(x, l), (17)

p(ϑ)+,S(x, l) =

〈
PS(·, l) f (x|·, l), p(ϑ)(·, l)

〉
η
(ϑ)
S (l)

. (18)

In the above equations, the following notations are used:

• I+ is a collection of predicted trajectory labels within the set F(L+). Each tuple (I+, ϑ) ∈
F(L+) × Ξ is a prediction hypothesis with probability ω+

(I+,ϑ). ϑ
∆
=(θ1, · · · , θk) ∈

Ξ
∆
=Θ1 × Θ2 × · · · × Θk represents the historical association mapping.

• ωB(I+ ∩B) represents the weight associated with the newborn trajectory labels, where
I+ ∩ B ̸= ∅ and B denote the labeled space for newborn sources. pB(x, l) is the
probability density function (PDF) for the newborn source x with label l. ωϑ

S(L) is the
weight of the survival label set.

• p(ϑ)+ (x, l) is the prediction PDF, and pϑ(·, l) is the update PDF. f (x|·, l) denotes the
transition kinematic density, and PS(·, l) represents the survival probability.

At time k + 1, the multi-target prediction density adheres to the δ-GLMB formulation,
as defined in Equation (13). Then, the multi-target filtering (update) density is also a
δ-GLMB structure, i.e.,

π(X|Z) ∝ ∆(X) ∑
(I,ϑ)∈F (L)×Ξ

∑
θ∈Θ(I)

ω(I,ϑ,θ)(Z)× δI(L(X))
[

p(ϑ,θ)(·|Z)
]X

, (19)

where

ω(I,ϑ,θ)(Z) ∝
[
µ
(ϑ,θ)
Z

]I
ω(I,ϑ), (20)

µ
(ϑ,θ)
Z (l) =

〈
p(ϑ)+ (·, l), ψZ(·, l; θ)

〉
, (21)

ψZ(x, l; θ) =


PD(x,l)g(zθ(l) |x,l)

κ(zθ(l))
, θ(l) > 0

1 − PD(x, l), θ(l) = 0
. (22)
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p(ϑ,θ)(x, l|Z) =
p(ϑ)+ (x, l)ψZ(x, l; θ)

µ
(ϑ,θ)
Z (l)

, (23)

where Θ represents the measurement association mapping, denoted as θ : L → {0, 1, · · · , |Z|},
and θ adheres to the condition that θ(i) = θ(j) > 0 ⇒ i = j. Θ(I) is the subset of the
association mapping associated with I. (I, ϑ, θ) denotes the hypothesis when I possesses an

association mapping history ϑ
∆
=(θ1, · · · , θk+1) ∈ Ξ

∆
=Θ1 × Θ2 × · · · × Θk+1, with ω(I,ϑ,θ)

indicating the corresponding weight assigned to this hypothesis. PD(x, l) denotes the
detection probability, and g

(
zθ(l)|x, l

)
is the likelihood function of state x.

3. Nonlinear δ-GLMB Filter for Passive Localization and Tracking

We explore the expansion of the δ-GLMB filter to accommodate nonlinear target
models. Specifically, we need to relax the state and observation process Equations (1) and
(4) to incorporate the nonlinear model Equations (24) and (25), given by

xk = fk(xk−1, vk−1), (24)

zk = hk(xk, nk), (25)

where fk and hk are the nonlinear functions and vk and nk denote the process and mea-
surement noise, both with zero mean covariance Qk−1 and Rk, respectively. The posterior
density cannot be described in Gaussian form because of the nonlinearity presented by fk
and hk. Nevertheless, we can adjust the δ-GLMB filter ([29]) to fit this nonlinear Gaussian
model. For the nonlinear Gaussian model, we propose two nonlinear implementations
(EKF and UKF) for the δ-GLMB filter.

3.1. δ-GLMB Prediction for Nonlinear Gaussian Model

The predicted density presented in Equation (13) is a compact form, but in Equation (20), it
requires the summation of all supersets of L, and consequently, is more difficult to compute.
To this end, [26] provided an equivalent version as follows:

π+(X+) = ∆(X+) ∑
(I,ϑ)∈F (L)×Ξ

∑
J∈F (I)

ω
(I,ϑ)
S (J) ∑

L∈F (B)
ωB(L)δJ∪L(L(X+))

[
p+(ϑ)

]X+
, (26)

where J ⊆ I, L ⊆ B. For the newborn radiation sources, the labeled multi-Bernoulli
newborn model is used

ωB(L) = ∏
l∈B

(
1 − r(l)B

)
∏
l∈L

1B(l)r
(l)
B(

1 − r(l)B

) , (27)

pB(x, l) := p(l)B (x), (28)

where r(l)B denotes the existence probability with newborn label l with PDF p(l)B (x). The

weight ω
(I,ϑ)
S (J) is the survival probability of the labels in J. Since the new label space B

cannot contain any labels of the surviving target, then I ∩B = ∅.

3.1.1. K-Shortest Path Algorithm

Given the hypothesis (I, ϑ), the surviving label set weight ω
(I,ϑ)
S (J) is

ω
(I,ϑ)
S (J) = ω(I,ϑ)

[
1 − η

(ϑ)
S

]I
[

η
(ϑ)
S

1 − η
(ϑ)
S

]J

. (29)
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Figure 2 shows the directed graph of the K-shortest path algorithm, and the detailed
process can be found in [29]. By stretching the directed graph in Figure 2 to include
survival and newborn nodes with appropriate costs, we can determine the total K-best
components. However, the value of newborn weights ωB(L) is often much smaller than
the survival weights ω

(I,ϑ)
S (L), leading to the discarding of many newborn components

and making it challenging to detect newborn targets. In contrast, a much larger value
of K is desirable to preserve the newborn hypothesis and prevent the rejection of new
trajectories. Nevertheless, to mitigate computational complexity, the separated pruning
strategy ensures that there exists a certain number of newborn hypothesis components
exist to process the new trajectories with a high degree of parallelism.
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Figure 2. The directed graph comprises nodes l1, · · · , l|I| along with their associated cost function

values c(I,ϑ)(l1), · · · , c(I,ϑ)
(

l|I|
)

. Here, S and E denote the starting and ending nodes, respectively.

3.1.2. Computing the Predicted Parameter Sets (EKF Implementation)

For the EKF approximation, the PDF p(ϑ)(·, l) can be expressed as the Gaussian

distribution parameter sets
{

ω
(ϑ)
i (l),N

(
x; m(ϑ)

i (l), P(ϑ)
i (l)

)}J(ϑ)(l)

i=1
, with mean m(ϑ)

i and

covariance P(ϑ)
i (l), Then, we have

η
(ϑ)
S (l) = PS(·, l), (30)

p(ϑ)+ (x, l) = 1L(l)
J(ϑ)(l)

∑
i=1

ω
(ϑ)
i (l)N

(
x; m(ϑ)

S,i (l), P(ϑ)
S,i (l)

)
+ 1B(l)p(l)B (x), (31)

with
m(ϑ)

S,i (l) = f
(

m(ϑ)
i (l), 0

)
, (32)

P(ϑ)
S,i (l) = F̃(l)P(ϑ)

i (l)F̃(l)T
+ ΓQΓT , (33)

F̃(l) =
∂ f (x, 0)

∂x

∣∣∣∣x=m(ϑ)
i (l)

. (34)

3.1.3. Computing the Predicted Parameter Sets (UKF Implementation)

The UKF approximation proposes a recursive nonlinear approach to the δ-GLMB filter,
utilizing the unscented transform (UT). For the i-th Gaussian componentN

(
x; m(ϑ)

i (l), P(ϑ)
i (l)

)
,

the UT is employed with mean µ
(ϑ)
i (l) and covariance M(ϑ)

i (l) to provides the sigma points

set
{

y(ϑ)
i,g (l), ug

}G

g=0
, where



Drones 2024, 8, 96 9 of 21

µ
(ϑ)
i (l) =

[
m(ϑ)

i (l); 02×1

]
, (35)

M(ϑ)
i (l) = diag

(
P(ϑ)

i (l), Q
)

, (36)

and ug is the weight of g-th sigma point y(ϑ)
i,g (l). Then, these sigma points are divided into

y(ϑ)
i,g (l) =

[
x(ϑ)i,g (l); vi,g(l)

]
(37)

for g = 1, · · · , G, and the operations are performed as follows:

• Predict the sigma points: x̃(ϑ)i,g (l) = f
(

x(ϑ)i,g (l), vi,g(l)
)

.

• Use the given approximation Equations (38) and (39) instead of Equations (32) and (33) in
the EKF implementation:

m(ϑ)
S,i (l) =

G

∑
g=1

ugx̃(ϑ)i,g (l), (38)

P(ϑ)
S,i (l) =

G

∑
g=1

ug

(
x̃(ϑ)i,g (l)− m(ϑ)

S,i (l)
)(

x̃(ϑ)i,g (l)− m(ϑ)
S,i (l)

)T
. (39)

3.1.4. Pruning the Predicted Density

Given the δ-GLMB filter density with parameter sets
{(

I(h), ϑ(h), ω(h), p(h)
)}H

h=1
,

where H ∈ N is the number of all hypotheses, p(h)
∆
= p(ϑ(h)) and ω(h) ∆

=ω(I(h),ϑ(h)). The
predicted δ-GLMB filter density (13) can be simplified to

π+(X+) = ∑H
h=1 π

(h)
+ (X+), (40)

π
(h)
+ (X+) = ∆(X+) ∑

J∈I(h)
∑

L∈B
ω
(I(h),ϑ(h))
S (J)× ωB(L)δJ∪L(L(X+))

[
p+(ϑ(h))

]X+
. (41)

According to [36], the pruning version of the h-th filter density π
(h)
+ is

π̃
(h)
+ (X+) = ∆(X+)

K(h)
S

∑
j=1

KB

∑
b=1

ω
(h,j,b)
+ δJ(h,j)∪L(b)(L(X+))

[
p(h)+

]X+
, (42)

where

ω
(h,j,b)
+

∆
=ω

(I(h),ϑ(h))
S

(
J(h,j)

)
ωB

(
L(b)

)
, (43)

p(h)+
∆
= p(

ϑ(h))
+ . (44)

Remark 3. The specific values for the required number of components K(h)
S and KB are generally

determined by choosing K(h)
S =

⌈
ω(h) Jmax

⌉
, where Jmax is the total number of expected hypotheses.

Additionally, for KB, the appropriate KB is chosen so that the pruning result can capture the desired
proportion of the required newborn PDF. The details of the pruning process can be found in [29].

3.2. δ-GLMB Update for Nonlinear Gaussian Model

This section outlines the implementation steps of the δ-GLMB update, involving the
pruning of the multi-target filter density using the ranked assignment algorithm ([29])
without the need for a thorough computation of all hypotheses and their weights.
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3.2.1. Ranked Assignment Algorithm

Enumerating I =
{

l1, · · · , l|I|
}

, Z =
{

z1, · · · , z|Z|
}

, each association mapping θ ∈
Θ(I) can be characterized by an assignment matrix A of dimension |I| × |Z|. This matrix
consists of 0s and 1s and adheres to the rule that each row (or column) sums to either 0 or 1.
Aij = 1 denotes that the j-th measurement is assigned to track li, i.e., θ(li) = j.

The cost matrix C(I,ϑ)
Z is constructed as follows:

C(I,ϑ)
Z =

 c1,1 · · · c1,|Z|
...

...
c|I|,1 · · · c|I|,|Z|

, (45)

with

ci,j = − ln


〈

p(ϑ)+ (·, li), pD(·, li)g
(
zj|·, li

)〉〈
p(ϑ)+ (·, li), 1 − pD(·, li)

〉
κ
(
zj
)
 (46)

being the cost of assigning the j-th measurement to track li. The assignment matrix A
represents the cost of assigning each measurement to the radiation source and can be
expressed as

tr
(

ATC(I,ϑ)
Z

)
=

|I|

∑
i=1

|Z|

∑
j=1

Cij Aij. (47)

By substituting Equation (22) into (21), we obtain the cost associated with A (and
the corresponding correlation mapping θ) in terms of the filtering hypotheses weights

ω(I,ϑ,θ)(Z) ∝
[
µ
(ϑ,θ)
Z

]I
ω(I,ϑ), where

[
µ
(ϑ,θ)
Z

]I
= exp

(
−tr

(
ATC(I,ϑ)

Z

))
∏
l∈I

〈
p(ϑ)(·, l), 1 − pD(·, l)

〉
. (48)

In essence, the ranked assignment algorithm seeks to minimize the cost of the assign-
ment matrix, enumerated in non-descending order [37,38]. Thus, the optimal assignment
problem can be addressed in terms of the cost matrix C(I,ϑ)

Z , which yields an enumeration

ordered in non-increasing
[
µ
(ϑ,θ)
Z

]I
.

3.2.2. Calculating the Updated Parameter Sets (EKF Implementation)

The (i, j)-th element of C(I,ϑ)
Z is

cij = − ln

 pD(·, li)∑
J(ϑ)(li)
n=1 ω

(ϑ)
n (li)q

(ϑ)
n

(
zj, li

)
(1 − pD(·, li))κ

(
zj
)

. (49)

Moreover, for (ϑ, θ), we have

µ
(ϑ,θ)
Z (l) = ∑J(ϑ)(l)

n=1 ω
(ϑ,θ)
Z,n (l), (50)

p(ϑ,θ)(x, l|Z) = ∑J(ϑ)(l)
n=1

ω
(ϑ,θ)
Z,n (l)

µ
(ϑ,θ)
Z (l)

N
(

x; m(ϑ,θ)
Z,n (l), P(ϑ,θ)

n (l)
)

, (51)

with

ω
(ϑ,θ)
Z,n (l) = ω

(ϑ)
n (l)


pD(·,l)q(ϑ)n (zθ(l),l)

κ(zθ(l))
, θ(l) > 0

1 − pD(·, l), θ(l) = 0
, (52)
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q(ϑ)n (z, l) = N
(

x; m̃(ϑ)
n (l), P̃(ϑ)

n (l)
)

, (53)

m̃(ϑ)
n (l) = H̃(l)m(ϑ)

n (l), (54)

P̃(ϑ)
n (l) = H̃(l)P(ϑ)

n (l)H̃(l)T
+ Ũ(l)RŨ(l)T , (55)

H̃(l) =
∂h(x, 0)

∂x

∣∣∣∣x=m(ϑ)
n (l)

, (56)

Ũ(l) =
∂h

(
m(ϑ)

n (l), n
)

∂n
|n=0 , (57)

m(ϑ,θ)
Z,n (l) =

 m(ϑ)
n (l) + K(ϑ,θ)

n (l)
(

zθ(l) − m̃(ϑ)
n (l)

)
, θ(l) > 0

m(ϑ)
n (l), θ(l) = 0

, (58)

P(ϑ,θ)
n (l) =

(
I − K(ϑ,θ)

n (l)H̃
)

P(ϑ)
n (l), (59)

K(ϑ,θ)
n (l) =

 P(ϑ)
n (l)H̃T

(
P̃(ϑ)

n (l)
)−1

, θ(l) > 0

0, θ(l) = 0
. (60)

3.2.3. Calculating the Updated Parameter Sets (UKF Implementation)

Firstly, for the j-th predicted Gaussian componentN
(

x; m(ϑ)
S,j (l), P(ϑ)

S,j (l)
)

, j = 1, · · · , J(ϑ)(l),

the UT with mean µ
(ϑ)
Z,j (l) and covariance M(ϑ)

Z,j (l) is used to provide the sigma point set{
y(ϑ)

Z,J,g(l)
}G

g=0
with weight uZ,g, where

µ
(ϑ)
Z,j (l) =

[
m(ϑ)

S,j (l); 03×1

]
, (61)

M(ϑ)
i (l) = diag

(
P(ϑ)

i (l), R
)

. (62)

Then, the sigma points are divided into

y(ϑ)
Z,j,g(l) =

[
x(ϑ)Z,j,g(l); nZ,j,g(l)

]
(63)

for g = 1, · · · , G, and the operations are performed as outlined below.
For the UKF implementation of the updated δ-GLMB density, the predicted mea-

surement sigma points are z(ϑ)j,g (l) = h
(

x(ϑ)Z,j,g(l), nZ,j,g(l)
)

, j = 1, · · · , J(ϑ)(l). Then, using
Equations (64) and (65) instead of Equations (58) and (59) in the EKF update step, and
Equations (66) and (67) instead of the original Equations (54) and (55), the update step can
be performed for the nonlinear measurement model

m(ϑ,θ)
Z,j (l) =

 m(ϑ)
S,j (l) + K(ϑ,θ)

j (l)
(

zθ(l) − z̃(ϑ)j,g (l)
)

, θ(l) > 0

m(ϑ)
S,j (l), θ(l) = 0

, (64)

P̃(ϑ,θ)
j (l) = P(ϑ)

S,j (l)− Gxz(l)(Szz(l))
−1Gxz(l), (65)

with

z̃(ϑ)j,g (l) =
G

∑
g=0

uZ,gz(ϑ)j,g (l), (66)

Szz(l) =
G

∑
g=0

ug

(
z(ϑ)j,g (l)− z̃(ϑ)j,g (l)

)(
z(ϑ)j,g (l)− z̃(ϑ)j,g (l)

)T
, (67)
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Gxz(l) =
G

∑
g=0

uZ,g

(
x(ϑ)Z,j,g(l)− m(ϑ)

S,i (l)
)(

z(ϑ)j,g (l)− z̃(ϑ)j,g (l)
)T

, (68)

K(ϑ,θ)
j (l) =

{
Gxz(l)S−1

zz (l), θ(l) > 0

0, θ(l) = 0
. (69)

3.2.4. Pruning the Updated Density

According to [36], the δ-GLMB prediction density (19) can be rewritten as

π(X|Z) = ∑H
h=1 π(h)(X|Z), (70)

with

π(h)(X|Z) = ∆(X)
|Θ(I(h))|

∑
j=1

ω(h,j)δI(h)(L(X))
[

p(h,j)
]X

, (71)

ω(h,j) ∆
=ω(I(h),ϑ(h),θ(h,j))(Z), (72)

p(h,j) ∆
= p(I(h),ϑ(h),θ(h,j))(·|Z ), (73)

and then the pruned version of π(h)(·|Z) is [36]

π̃(h)(X|Z)=∆(X)
T(h)

∑
j=1

ω(h,j)δI(h)(L(X))
[

p(h,j)
]X

. (74)

Remark 4. For δ-GLMB prediction, the h-th δ-GLMB updated component for the previous time
generates 2|I

(h) |+|B| δ-GLMB prediction components, and each δ-GLMB prediction component with
index h yields |Θ(I(h))| δ-GLMB updated components. Although we have adopted the truncation
operation in both the prediction and update stages of the proposed algorithm, the cumulative
computational complexity of the K-shortest path algorithm (see Figure 2) and the ranked assignment
algorithm (see Equations (45) and (46)) increases significantly when the number of targets increases,
which affects the algorithm’s computational efficiency and convergence speed.

4. Numerical Example

The EKF and UKF recursion implementations of the δ-GLMB filter possess their re-
spective advantages and disadvantages. It is worth noting that both the EKF and UKF
approximations are computationally more efficient than the SMC approximation when deal-
ing with nonlinearities. Furthermore, extracting state estimates remains straightforward
due to the Gaussian mixture implementation at the core of these methods. In particular, the
EKF recursion requires the computation of the Jacobi matrices, limiting its applicability to
scenarios where both the state and measurement models are differentiable. In contrast, the
UKF recursion avoids the requirement of differentiation altogether and can be applied to
the nonlinear model. Therefore, in the subsequent simulation results, we only provide the
UKF implementation.

In this section, we conduct two simulation scenarios: stationary and moving BSs. Un-
fortunately, there is a lack of existing multi-target RFS tracking methods tailored to passive
localization and tracking contexts, making direct performance comparisons challenging. Then,
we adapt the following established algorithms to the passive localization and tracking context:

• UKF implementation for the PHD filter;
• UKF implementation for the CPHD filter.

We first extend the δ-GLMB filter to the passive localization and tracking scenarios and
provide closed-form solutions for both the prediction and update. Compared to the PHD
and CPHD filters, the δ-GLMB can provide a multi-target Bayesian filtering solution for
target trajectory estimation (i.e., it can recognize the birth information of the tracked target).
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4.1. A Stationary BS for Passive Localization and Tracking

The two-dimensional workspace has a size of [−2000, 1500]m ×[−200, 1800]m, as
illustrated in Figure 3. The number of targets changes over time due to the occurrence of
births and deaths. The specific time instances for the births and deaths of the true radiation
sources are outlined in Table 1. The state kinematics equation for the radiation source is

x coordinate (m)

y
 c

o
o
rd

in
a
te

 (
m

)
Radiation source trajectories and stationery BS

Target 2

Target 4

Target 1

Target 3

BS

Figure 3. Multi-target trajectories. The start/stop positions of each trajectory are denoted as o/△,
and the stationery BS is denoted as □ in red.

Table 1. Source state.

Source Survival Time Initial State (m, m/s)

1 1–80 s [997; 3; 1494; 6]T

2 10–80 s [−245;−5; 1005;−5]T

3 15–60 s [−1493;−7; 242; 8]T

4 20–80 s [247; 3; 745; 5]T

xk = F(ϖ)xk−1 + Γkvk−1, (75)

and

F(ϖ) =


1 sin(ϖ∆T)

ϖ 0 − 1−cos(ϖ∆T)
ϖ

0 cos(ϖ∆T) 1 − sin(ϖ∆T)
0 1−cos(ϖ∆T)

ϖ 0 sin(ϖ∆T)
ϖ

0 sin(ϖ∆T) 0 cos(ϖ∆T)

, (76)

Γk =


∆T2/2 0

∆T 0
0 ∆T2/2
0 T

, (77)

where ∆T = 1s and ϖ = 0.06 rad/s. vk−1 ∼ N (·; 0, Qk−1), where Qk−1 = diag([1, 1]). We
assume that the spontaneous newborn model is the LMB RFS with the parameters πB ={

r(i)B , p(i)B

}4

i=1
, where r(1)B = r(2)B = 0.02, r(3)B = r(4)B =, 0.03, and p(i)B (x) = N

(
x; m(i)

B , PB

)
,

where m(1)
B = [−1500, 0, 250, 0]T , m(2)

B = [−250, 0, 1000, 0]T , m(3)
B = [250, 0, 750, 0]T , m(4)

B =

[1000, 0, 1500, 0]T , and PB = diag
(
[10, 5, 10, 5]T

)2
. PS,k = 0.99, PD,k = 0.90, Jmax = 3000,

and KB = 5.
If detected, each target generates a noisy azimuth, angular velocity, and Doppler

frequency change-rate measurement z =
[
θk, θ̇k, ḟk

]T . The other parameters are δθ =
2(π/180) rad , δ

θ̇
= 10−2 rad/s, and δ

ḟ
= 10−3 Hz/s. The clutter measurements are

expected to appear within the range of [−π, π] rad × [−π/10, π/10] rad/s × [−5, 0] Hz/s,
and the number of clutter obeys a Poisson RFS with a mean value of 5 and an intensity of
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κk(z) = λcU (Z), where λc = 5.07 × 10−2(rad2Hz/s2)−1, and U (Z) denotes the uniform
distribution density over the observation region.

The output of the δ-GLMB-UKF filter for one MC run is presented in Figure 4. Notably,
although our form of clutter arises from [−π, π] rad× [−π/10, π/10] rad/s× [−5, 0] Hz/s,
the corresponding x− y coordinates can be derived from Equations (8) and (9). The presence
of several clutter interferences at each time moment can be seen in Figure 4, but the δ-
GLMB-UKF filter can launch and terminate the tracks with a small delay. We also notice
that the estimated trajectory of the third target shows an orbital switch at the 22nd moment,
but the newborn labeled target is quickly captured.

Time (s)

x
-c

o
o
rd

in
a
te

 (
m

)

-GLMB-UKF Estimates

True tracks

Measurements

Time (s)

y
-c

o
o
rd

in
a
te

 (
m

)

Figure 4. Estimated and truth trajectories.

We further validate our results by comparing the performance of the δ-GLMB, PHD,
and CPHD filters via the UKF implementation. Figure 5 compares the OSPA, [39] distance
of the three filters (p = 1, c = 100 m) and its localization and cardinality components. As
can be seen from Figure 5, the δ-GLMB-UKF filter generally outperforms the other two
filters for this scenario, despite the overestimation of the target number at the 61st moment.
The cardinality statistics of the three filters are shown in Figure 6 over 500 MC trials. It can
be seen from Figure 6 that the δ-GLMB-UKF is superior to the PHD-UKF and CPHD-UKF
methods in terms of target number detection.
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Figure 5. The OSPA distance, localization, and cardinality (p = 1, c = 100 m) for the δ-GLMB-UKF,
CPHD-UKF, and CPHD-UKF filters. (a) OSPA distance; (b) OSPA localization; (c) OSPA cardinality.
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Figure 6. Cardinality for the δ-GLMB-UKF, CPHD-UKF, and CPHD-UKF filters versus time.

4.2. A Moving BS for Passive Localization and Tracking

Unlike Section 4.1, in this section, the base station is in motion (as depicted in Figure 7),
and the duration of this scenario is 60 s. The specific time points of the true radiation
sources are provided in Table 2. The other experimental parameters are consistent with
those in Section 4.1.

x coordinate (m)

y
 c

o
o

rd
in

a
te

 (
m

)

Radiation source trajectories and moving BS 

Target 2

Target 4

Target 1

Target 3

moving BS

Figure 7. Multi-target trajectories on the plane. The start/stop positions of each trajectory are denoted
as o/△, and the moving BS is denoted as □ in red.

Table 2. Source state.

Source Survival Time Initial State (m, m/s)

1 1–60 s [997; 3; 1494; 6]T

2 10–60 s [−245;−5; 1005;−5]T

3 15–40 s [−1493;−7; 242; 8]T

4 20–60 s [247; 3; 745; 5]T

Figure 8 gives the results of the true and estimated trajectories from the δ-GLMB-UKF
filter outputs in the x and y coordinates from one MC trial. Figure 8 shows that the proposed
algorithm can still accurately capture the start of the target’s trajectory even in the presence
of clutter interference. We also observe that, as expected, although there is no trajectory
switching, there is a slight occurrence of lost or spurious trajectories, ensuring that the
estimated track identity remains consistent throughout the scenario. Moreover, compared
to the trajectory results in Figure 4, the output of the tracked trajectories in the case of the
moving base station scenario is more accurate. This is due to the fact that when the base
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station is moving, we only need to extract the measurement information for time k, which
is independent of the base station’s position at the previous k − 1 moments, thus reducing
the data correlation requirements.

5 10 15 20 25 30 35 40 45 50 55 60

Time

-2000

-1000

0

1000

x
-c

o
o
rd

in
a

te
 (

m
)

-GLMB-UKFEstimates

True tracks

Measurements

5 10 15 20 25 30 35 40 45 50 55 60

Time

-1000

0

1000

2000

y
-c

o
o
rd

in
a

te
 (

m
)

Figure 8. Estimated and truth trajectories for x − y coordinates versus time.

Similarly, the cardinality statistics of the three filters over 500 MC trials are shown in
Figure 9. Compared to Figure 6, their target number estimation performance is significantly
improved. Although δ-GLMB-UKF and PHD-UKF still think that the targets have not
disappeared at the 41st moment, the overestimation error is immediately corrected at the
42nd moment. Figure 10 compares the OSPA distances with the localization and base
components of the three filters. Figure 10a shows that the δ-GLMB-UKF filter significantly
outperforms the PHD-UKF and CPHD-UKF filters. As can be seen from the OSPA cardi-
nality component, the error of the δ-GLMB-UKF method is generally smaller than that of
the other two methods for target cardinality estimation (Figure 9 provides a more intuitive
representation). The OSPA results for both the localization and cardinality components
show that the δ-GLMB-UKF filter outperforms the PHD-UKF and CPHD-UKF filters.
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Figure 9. Cardinality for the δ-GLMB-UKF, CPHD-UKF, and CPHD-UKF filters versus time.
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Figure 10. The OSPA distance, localization, and cardinality (p = 1, c = 100 m) for the δ-GLMB-UKF,
CPHD-UKF, and CPHD-UKF filters. (a) OSPA distance; (b) OSPA localization; (c) OSPA cardinality.

5. Conclusions

This paper explores the application of the δ-GLMB filter in the field of passive localiza-
tion and tracking of radiation sources. By extending the δ-GLMB filter to the scenario of
passive localization and tracking of radiation sources, this paper presents EKF and UKF
implementations based on this filter. It provides two simulation cases (stationary base sta-
tion and moving base station) and tests the UKF implementation of the proposed δ-GLMB,
and the simulation results demonstrate the effectiveness of this approach. Moreover, our
proposed δ-GLMB-UKF filter accurately tracks the target and captures its trajectory, as
demonstrated in simulation examples alongside other filters, thereby verifying the effec-
tiveness of the δ-GLMB filter in target identification and state tracking. Furthermore, the
δ-GLMB filter can achieve accurate localization and tracking in complex and dynamic
wireless environments, which provides significant theoretical and technical support for en-
hancing the performance of passive localization and tracking systems for radiation sources
and for further research in application areas. In the future, the parameters of the δ-GLMB
filter can be further optimized to achieve higher positioning and tracking accuracy. Also,
we will consider adding new measurements to the existing trajectories and validating the
proposed algorithm in engineering experimental tests.
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Abbreviations

Symbol Implication
(·)T Transpose of a matrix
diag(·) Diagonal operation
tr(·) Trace of a matrix
x and x Single-target state
X and X Multi-target states
X, R, L, and C Labeled state spaces
X and Y State spaces without labels
F (X ) Finite subsets of space X
:= and

∆
= Definition or equivalences

|X| The number of elements in set X
Aij The (i, j)-th element of the matrix A

⟨ f , g⟩ ∆
=
∫

f (x)g(x)dx Inner product

hX ∆
=∏x∈X h(x) Multi-target exponential

N (µ, Q) Gaussian distribution with mean µ and variance Q
δY(X) Kronecker delta function [29]
1Y(X) Generalized indicator function [29]
∆(X) ≜ δ|X|(|L(X)|) Distinct label indicator [29]
nx Dimensionality of target state
ny Dimensionality of measurement

Appendix A

The position of the target radiation source at time k is denoted as (xk, yk), with velocity
(ẋk, ẏk). The position of the ground-moving base station at time k is denoted as (x0k, y0k),
with velocity (vx0 , vy0), as shown in Figure 1. It is assumed that the base station and the
radiation source are as far away as possible, and their relative motion can be regarded as
a mass-point motion. According to the localization principle of mass-point kinematics, a
two-dimensional localization model based on the azimuth, angular velocity, and Doppler
change rates is established. Based on the theory of geometric kinematics, the measurement
information of the azimuth received by the base station is

θk = arctan
yk − y0k
xk − x0k

, (A1)

where arctan(·) represents the inverse tangent function. The angular velocity measurement
can be obtained by

θ̇k =
∂θk
∂k

=

(
ẏk − vy0

)
(xk − x0k)− (ẋk − vx0)(yk − y0k)

rk
, (A2)

where rk =
√
(xk − x0k)

2 + (yk − y0k)
2 denotes the radial distance between the radiation

source and the BS at time k. In addition, the incoming signal frequency of the target
radiation source contains the Doppler frequency component modulated by the radial
velocity, i.e.,

fk = f0

(
1 − rTv

crk

)
, (A3)
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where f0 is the carrier frequency of the radiation source, r = [xk − x0k, yk − y0k]
T is the

relative position vector between the radiation source and BS, v =
[
ẋk − vx0 , ẏk − vy0

]T is
the relative velocity vector, and c is the propagation velocity of the electromagnetic wave in
the medium (which is equivalent to the speed of light). Equation (A3) can be rewritten as

fk = f0 −
(xk − x0k)(ẋk − vx0) +

(
ẏk − vy0

)
(yk − y0k)

λrk
, (A4)

where λ = c/ f0 is the carrier wavelength. In Equation (A4), the change rate of the Doppler
frequency is obtained by the derivation of the time k as follows:

ḟk =
∂ fk
∂k

= −
((

ẏ − vy0

)
(yk − y0k)− (xk − x0k)(ẋ − vx0)

)2

λr3
k

. (A5)

Appendix B

Appendix B.1. Bernoulli RFS

The element in a Bernoulli RFS of state space X is either empty (with probability 1 − r)
or only one element (with probability r) obeys a PDF p defined on the state space X . The
FISST of a Bernoulli RFS can be expressed as follows:

f (X) =

{
1 − r, X = ∅

r · p(x), X = {x}.
(A6)

Appendix B.2. Multi-Bernoulli RFS

A multi-Bernoulli RFS Y is a union set of independent Bernoulli RFSs, where each
Bernoulli RFS Xi is described by the probability ri and the spatial PDF pi, represented as

Y =
M⋃

i=1

Xi, (A7)

with the FISST PDF given by

f (Y) = |Y|!
[

M

∏
j=1

(1 − rj)

]
∑

1⩽i1⩽...⩽i|X|⩽M

|Y|

∏
j=1

rij · pij(xj)

1 − rij

. (A8)

Appendix B.3. Labeled RFS

According to [26], in multi-target trajectory tracking, each object can be uniquely
identified by an (unobservable) label or tag from a discrete countable space L = {αi|i ∈ N},
where αi is distinct. In order to incorporate the identity of the objects, a label l ∈ L can be
added to each object’s state x ∈ X, and the multi-object states can be considered as a finite
set on X×L. Vo et al. introduced the labeled RFS, which is essentially a labeled RFS with
distinctive labels. For the multi-target state RFS Equation (10) in this paper, its labeled RFS
can be expressed as

Xl
k =

{
(xk,1, l1), · · · ,

(
xk,Nk

, lNk

)}
∈ F (X )×L, (A9)

where xk,i ∈ X , i = 1, · · · , Nk is the single-target state and li ∈ L is a label independent of
the target state.



Drones 2024, 8, 96 20 of 21

Appendix B.4. δ-GLMB RFS

The δ-GLMB RFS with state space X and label space L can be denoted by

C = F (L)× Ξ,

ω(c)(L) = ω(I,ϑ)(L) = ω(I,ϑ)δI(L),

p(c) = p(I,ϑ) = p(ϑ)
(A10)

where ϑ is a discrete space. Then, the δ-GLMB RFS’s distribution is

π(X) = ∆(X) ∑
(I,ϑ)∈F (L)×Ξ

ω(I,ϑ)δI(L(X))
[

p(ϑ)
]X

, (A11)

∑
(I,ϑ)∈F (L)×Ξ

ω(I,ϑ) = 1. (A12)

Each pair (I, ϑ) represents a history measurement association mapping (also called hy-
potheses), where ω(I,ϑ) denotes the weight associated with the hypotheses and I represents
the set of labels.
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