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Abstract: Artemisia frigida, as an important indicator species of grassland degradation, holds signifi-
cant guidance significance for understanding grassland degradation status and conducting grassland
restoration. Therefore, conducting rapid surveys and monitoring it is crucial. In this study, to
address the issue of insufficient identification accuracy due to the large density and small size of
Artemisia frigida in UAV images, we improved the YOLOv7 object detection algorithm to enhance the
performance of the YOLOv7 model in Artemisia frigida detection. We applied the improved model
to the detection of Artemisia frigida across the entire experimental area, achieving spatial mapping
of Artemisia frigida distribution. The results indicate: In comparison across different models, the
improved YOLOv7 + Biformer + wise-iou model exhibited the most notable enhancement in precision
metrics compared to the original YOLOv7, showing a 6% increase. The mean average precision at
intersection over union (IoU) threshold of 0.5 (mAP@.5) also increased by 3%. In terms of inference
speed, it ranked second among the four models, only trailing behind YOLOv7 + biformer. The
YOLOv7 + biformer + wise-iou model achieved an overall detection precision of 96% and a recall of
94% across 10 plots. The model demonstrated superior overall detection performance. The enhanced
YOLOv7 exhibited superior performance in Artemisia frigida detection, meeting the need for rapid
mapping of Artemisia frigida distribution based on UAV images. This improvement is expected to con-
tribute to enhancing the efficiency of UAV-based surveys and monitoring of grassland degradation.
These findings emphasize the effectiveness of the improved YOLOv7 + Biformer + wise-iou model in
enhancing precision metrics, overall detection performance, and its applicability to efficiently map the
distribution of Artemisia frigida in UAV imagery for grassland degradation surveys and monitoring.

Keywords: Artemisia frigida; unmanned aerial vehicle; object detection; deep learning; density distribution

1. Introduction

Indicator species of grassland degradation play a crucial role in community succession
and grassland degradation warning within grassland ecosystems. They are of significant
importance in studying the response of grasslands to grazing, human disturbances, and
other factors leading to degradation [1]. As indicators of grassland degradation, moni-
toring changes in various indicators of these indicator species, such as importance value
and dominance, has become essential in assessing degraded grasslands [2]. These key
parameters of grassland degradation indicator species can be utilized to evaluate the health
and ecological functionality of grasslands [3].

Given the role of indicator species in the study of grassland ecosystem degradation,
research has identified various grassland degradation indicator species, such as Iris lactea
var. chinensis, Stipa breviflora, Convolvulus ammannii, Artemisia frigida, and others. Artemisia
frigida is a small semi-shrub belonging to the Asteraceae family. It is a facultative clonal
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plant, resilient to drought, trampling, and soil erosion, with strong regenerative capabilities
through rooting and sprouting [4]. As one of the dominant species in desert grasslands,
Artemisia frigida significantly influences the structure and function of the community. Serv-
ing as an important indicator species for grassland degradation, the dynamic changes in
Artemisia frigida to some extent reflect grassland degradation [5]. Therefore, conducting
surveys and monitoring of Artemisia frigida contributes to understanding the status of
grassland degradation. Currently, investigations of degradation indicator species like
Artemisia frigida heavily rely on manual field surveys and records. However, these surveys
may be prone to noise due to the influence of staff knowledge and working conditions.
Additionally, manual surveys are time-consuming and labor-intensive, making large-scale
rapid surveys challenging [6].

In addition to field surveys, there is also relevant research utilizing remote sensing
technology for the classification and identification of degradation species such as Artemisia
frigida. Currently, research primarily focuses on fine plant classification through ground
spectral measurements within a small area. Conducting spectral measurements on a larger
scale still faces several challenges. For example, Gai et al. [7] used canopy spectral informa-
tion to identify plants such as Artemisia frigida and Lilium brownii. Niu Yalong et al. [8]
measured the spectra of five typical sand vegetation types, including Artemisia frigida, and
analyzed the similarities and differences between them. Unmanned aerial vehicle (UAV) re-
mote sensing offers maneuverability and flexibility, and through carrying multiple sensors,
it enables the acquisition of multi-source data. It can provide centimeter-level ultra-high
spatial resolution data [9], which is suitable for fine plant classification and identification.
Therefore, UAV remote sensing has found wide applications in grassland plant classifica-
tion and ecological parameter acquisition [10,11]. For instance, Yang et al. [12] obtained
images using a UAV hyperspectral imaging system. They constructed classification features
for species in desert grasslands through spectral transformations of vegetation indices.
Utilizing a decision tree model, they classified and identified key species such as Stipa
breviflora, Artemisia frigida, and Salsola collina in desert grassland. The above-mentioned
research on grassland plant identification and classification using UAVs mainly focuses
on the scale of grassland communities, with few studies conducted at the level of plant
populations or individuals for recognition.

The high-resolution images obtained by unmanned aerial vehicles (UAVs) provide
excellent data support for grassland plant recognition and identification. However, for
small and dense objects like Artemisia frigida, conventional image processing algorithms
have limited recognition capabilities, resulting in relatively low identification accuracy [13].
With the development of deep learning technology, numerous object detection algorithms
have been developed. These detection methods, trained on massive datasets and tested
on small sample sets, extract deep features from data samples, demonstrating strong
learning capabilities and high accuracy in object detection and recognition [14]. Among
these object detection algorithms, YOLO (You Only Look Once) represents a single-stage
object detection algorithm [15]. Compared to two-stage object detection algorithms, its
major advantages lie in fast execution speed and high detection accuracy. However, for
grassland plants with dense distribution and relatively small size compared to trees or
potted plants, detection algorithms face higher demands in recognizing densely packed
small targets. Considering this, this study, which is based on UAV images, improves
the detection performance of the YOLOv7 model for densely packed small objects. The
enhanced model is then applied to the detection of Artemisia frigida in sample plots. Spatial
distribution and density mapping and analysis of Artemisia frigida in sample plots are
conducted, aiming to provide technical references for the investigation of degradation
indicator species such as Artemisia frigida.
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2. Materials and Methods
2.1. Study Area

The Xilingol Grassland is located in the eastern part of the Xilingol Plateau in Inner
Mongolia Autonomous Region, China. It is one of the largest grasslands in northern China,
characterized by a predominantly continental arid and semi-arid climate. The elevation
ranges from 760 to 1926 m, with an average annual temperature of 0 to 3 ◦C and an
annual precipitation of 150 to 350 mm. The precipitation is concentrated mainly from July
to September, exhibiting distinct seasonal characteristics with warm summers and cold
winters. The grassland covers an area of approximately 179,600 square kilometers and
includes diverse grassland types such as meadow grassland, typical grassland, and dune
desert grassland. The experimental area selected for this study is located in the Maodeng
Ranch, Xilinhot City, Inner Mongolia Autonomous Region, China (116.03◦ to 116.50◦ E,
44.80◦ to 44.82◦ N), as shown in Figure 1. It is a typical grassland and is renowned as
one of the prominent ranches on the Xilinhot Grassland. This area features a rich variety
of plant species, with dominant vegetation including Poaceae, Fabaceae, and Asteraceae
pasture grasses.
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2.2. Data

We collected data in August 2022 using the DJI M300 RTK UAV (DJI, Inc., Shenzhen,
China). The UAV adopts a new flight control system and motor system, with the charac-
teristics of high-precision positioning, high stability and reliability. It has an endurance
of approximately 55 min, can withstand a maximum wind speed of 15 m/s, has a max-
imum horizontal flight speed of 23 m/s, and a maximum range of 15 km. Equipped
with the AQ600 multispectral camera (Yusense, Inc., Qingdao, China), this camera is
lightweight, easy to install, and easy to operate, compatible with various UAV. It con-
sists of one 12.3-megapixel RGB channel and five 3.2-megapixel multispectral channels.
The RGB channel has a focal length of 7.2 mm, a field of view of 47.4◦ × 36.4◦, and the
imaging resolution is 4056 × 3040 pixels. The ground sampling distance for the RGB
channel is 1.76 cm @ h80m. The five spectral bands of the multispectral channels are as
follows: blue (450 nm ± 35 nm), green (555 nm ± 27 nm), red (660 nm ± 22 nm), red
edge (720 nm ± 10 nm), and near-infrared (840 nm ± 30 nm), and the imaging resolution
is 2048 × 1536 pixels. The ground sampling distance for the multispectral channel is
2.52 cm@h80m. Given the ability to recognize target species, to improve efficiency in field
data collection, we set the flight altitude to 80 m, flight speed to 3 m/s, and the lateral
and longitudinal overlap rates to 85%. A total of 23 flight lines are set, covering an area of
500 × 500 m. At a height of 80 m, the ground resolution of multispectral channel imagery
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is 2.52 cm, making it difficult to capture the smaller Artemisia frigida. Therefore, in this
study, we only used RGB channel imagery for Artemisia frigida detection.

Before the flight, we set up 10 plots of 30 × 30 m each within a 500 × 500 m area.
Within each plot, we placed 5 sample quadrats of 1 × 1 m each and recorded the coordinates
of each plot and subplot. The distribution of plots and quadrats can be seen in Figure 1. We
conducted species surveys in each plot, meticulously recording the number of Artemisia
frigida within them. This data was used to validate the accuracy of Artemisia frigida detection
at the plot scale in subsequent analyses. To facilitate annotation in the future, we captured
images of each plot at a height of 30 m, which serve as reference images for image annotation.
Additionally, within each 30 × 30 m plot, we set 5 subplots and recorded the coordinates
of each subplot. We then captured images within and around these subplots at heights
ranging from 2–6 m with 1 m intervals, as shown in Figure 2. These images serve as
references for annotation.
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2.3. Data Preprocessing and Annotation

A total of 790 RGB images were obtained during the flight. After the flight, the relative
positions and orientations of the aerial images were reconstructed and merged into a large
orthomosaic. An orthomosaic is a visual representation of an area, created from many
photos that were stitched together in a geometrically corrected manner. We utilized the
Structure from Motion approach implemented in Agisoft Metashape Professional version
2.0.2 for this purpose. Agisoft Metashape processes all aerial images as input and aligns
them through bundle adjustment, enabling the generation of a point cloud representing the
topography of the surveyed area. From this point cloud, a digital surface model was created
to orthorectify the orthomosaic. During orthomosaic generation, we disabled blending
to preserve the original image information without smearing. The final orthomosaic we
generated was exported with a ground sample distance of 1 cm.

To ensure the quality of data annotation, we established an Artemisia frigida UAV image
annotation reference library based on ground plot survey data and UAV images captured at
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different heights. We randomly cropped 790 images captured at 80 m height, with a size of
4056 × 3040 pixels, resulting in a total of 4150 images with a size of 1280 × 1280 pixels. Out
of these, 1200 images were randomly selected for annotation, as shown in Figure 3, which
was completed in the Label Studio annotation platform. During annotation, the Artemisia
frigida UAV image annotation library was referenced, and comparison was made with
annotated images falling within the survey plot range and field survey Artemisia frigida,
ensuring the quality of annotation. The annotations were exported in YOLO format. The
annotated images were divided into training, validation, and test sets, with 1000 images in
the training set, 100 images in the validation set, and 100 images in the test set. Additionally,
to expand the training set, we performed augmentation on the training images. The
augmentation techniques included horizontal flipping, vertical flipping, random cropping,
random translation scaling rotation, center cropping, and elastic transformation.
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2.4. YOLOv7 Improvement

The YOLO series models utilize an end-to-end approach for object detection and
localization in images, predicting both categories and positions simultaneously. A typical
YOLO object detector comprises four main components: input, backbone network, neck,
and head. To enhance training data diversity, data augmentation techniques are applied in
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the input module during the training phase. The diversified data then undergoes feature
extraction at different scales in the backbone module. The neck module incorporates
upsampling and feature concatenation layers for feature injection, providing additional
details for the final stage. The head module compares the predicted object categories and
positions with ground truth labels to generate the loss function results. Subsequently,
backpropagation updates parameters in the backbone, neck, and head modules. Model
training continues based on input data until the loss function stabilizes, indicating the
completion of the training process [16–18]. In terms of architecture, the YOLOv7 model
introduces an extended efficient layer aggregation network ELAN-based extension known
as E-ELAN. E-ELAN utilizes Expand, Shuffle, and Merge Cardinality to continuously
enhance the network’s learning capability without destroying existing gradient paths. In
terms of architecture, E-ELAN only changes the architecture of the computation blocks,
while the architecture of the transition layer remains unchanged. Our strategy is to use
group convolutions to expand the channels and cardinality of the computation blocks. We
apply the same group parameters and channel multipliers to all computation blocks in the
computation layer. Then, based on the group parameter g, we shuffle the feature maps
computed by each computation block into g groups and then concatenate them together.
At this point, the number of channels in each group of feature maps will be the same as
the number of channels in the original architecture. Finally, we add g groups of feature
maps to perform merge cardinality. In addition to maintaining the original ELAN design
architecture, E-ELAN can also guide computation modules from different groups to learn
more diversified features [19]. Despite being considered one of the top-tier object detection
models, YOLOv7 still faces challenges in detecting dense small objects. To address this,
the Biformer module is introduced into the YOLOv7 backbone network to improve the
detection capability of dense small objects. Simultaneously, to mitigate the impact of low-
quality samples and enhance the overall detection performance of the model, the box loss
of the YOLOv7 model is replaced with Wise-IoU (WIoU). The improved YOLOv7 network
architecture is illustrated in Figure 4.
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The network architecture of Biformer consists of the Bi-Level Routing Attention (BRA)
module, as shown in Figure 5. Due to its adaptive attention mechanism, which focuses
on a small portion of relevant tokens without dispersing attention to unrelated tokens, it
exhibits excellent performance and high computational efficiency in dense prediction tasks.
This architecture follows the design principles of most vision transformer architectures and
adopts a four-level pyramid structure, namely, a 32× downsampling. In the first stage,
BiFormer employs overlapping block embeddings, while in the second to fourth stages,
block merging modules are used to reduce the input spatial resolution while increasing
the number of channels. Subsequently, continuous BiFormer blocks are applied for feature
transformation. It is important to note that at the beginning of each block, depthwise
convolutions are used to implicitly encode relative positional information. Following this,
BRA modules and Multi-Layer Perceptron (MLP) modules with an expansion rate of 2 are
sequentially applied, and used for modeling cross-location relationships and embedding at
each position, respectively [20,21].
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Figure 5. The structure of BiFormer.

The BRA module is a different dynamic sparse attention mechanism that enables more
flexible computation allocation and content awareness [20], allowing the model to have
dynamic query-aware sparsity. The BRA module is shown in Figure 6. The process of BRA
can be divided into three steps. Firstly, assuming we input a feature map, it is divided
into multiple regions, and queries, keys, and values are obtained through linear projection.
Secondly, we use an adjacency matrix to construct a directed graph to find the participating
relationships corresponding to different key-value pairs, which can be understood as the
regions each given region should participate in. Lastly, with the region-to-region routing
index matrix, fine-grained token-to-token attention can be applied.
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The bounding box loss function, a critical component of object detection loss, plays a
pivotal role in significantly enhancing the performance of object detection models when
well-defined. Existing research has predominantly operated under the assumption of
high-quality training data samples, concentrating on improving the fitting capability of
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the bounding box loss. However, it has been observed that object detection training sets
often include low-quality samples. Blindly intensifying bounding box regression on such
low-quality examples poses a risk to localization performance. To address this issue, Focal-
EIoU v1 was introduced as a solution [22], but due to its static focusing mechanism (FM),
the potential of non-monotonic FM was not fully exploited. Based on this idea, Tong
et al. proposed Wise-IoU, incorporating a dynamic non-monotonic FM [23]. The dynamic
non-monotonic FM assesses the quality of anchor boxes using the outlier degree instead
of intersection over union (IoU), offering a wise gradient gain allocation strategy. This
strategy diminishes the competitiveness of high-quality anchor boxes while mitigating
harmful gradients generated by low-quality examples. Consequently, WIoU focuses on
anchor boxes of ordinary quality, enhancing the overall performance of the detector.

2.5. Model Application and Artemisia Frigida Distribution Mapping

Counting plants in representative plots within the experimental area and extrapolating
these counts to the entire experimental area is a common method in field plant surveys.
However, this sampling survey places high demands on the representativeness of the
sampled plots. If the selected survey plots are not representative, it may lead to bias.
Conducting global object detection in the experimental area based on high-resolution drone
images can to some extent reduce the bias caused by sampling.

To obtain the distribution of Artemisia frigida in the experimental area, we divided the
orthomosaic of the experimental area into images of size 1280 × 1280 pixels, resulting in a
total of 6624 images. The image blocks after slicing are shown in Figure 7. We applied our
improved YOLOv7 model to each image to obtain detection bounding boxes for Artemisia
frigida in each image. The bounding boxes were then transformed to obtain the coordinates
of the centroid, which were recorded as the locations of Artemisia frigida. To obtain the
density of Artemisia frigida distribution in the experimental area, we generated a grid
of 10 × 10 m size across the entire experimental area and counted the Artemisia frigida
points in each grid, ultimately obtaining the distribution density of Artemisia frigida in the
experimental area.

Drones 2024, 8, x FOR PEER REVIEW 8 of 16 
 

often include low-quality samples. Blindly intensifying bounding box regression on such 
low-quality examples poses a risk to localization performance. To address this issue, Fo-
cal-EIoU v1 was introduced as a solution [22], but due to its static focusing mechanism 
(FM), the potential of non-monotonic FM was not fully exploited. Based on this idea, Tong 
et al. proposed Wise-IoU, incorporating a dynamic non-monotonic FM [23]. The dynamic 
non-monotonic FM assesses the quality of anchor boxes using the outlier degree instead 
of intersection over union (IoU), offering a wise gradient gain allocation strategy. This 
strategy diminishes the competitiveness of high-quality anchor boxes while mitigating 
harmful gradients generated by low-quality examples. Consequently, WIoU focuses on 
anchor boxes of ordinary quality, enhancing the overall performance of the detector. 

2.5. Model Application and Artemisia Frigida Distribution Mapping 
Counting plants in representative plots within the experimental area and extrapolat-

ing these counts to the entire experimental area is a common method in field plant sur-
veys. However, this sampling survey places high demands on the representativeness of 
the sampled plots. If the selected survey plots are not representative, it may lead to bias. 
Conducting global object detection in the experimental area based on high-resolution 
drone images can to some extent reduce the bias caused by sampling. 

To obtain the distribution of Artemisia frigida in the experimental area, we divided the 
orthomosaic of the experimental area into images of size 1280 × 1280 pixels, resulting in a 
total of 6624 images. The image blocks after slicing are shown in Figure 7. We applied our 
improved YOLOv7 model to each image to obtain detection bounding boxes for Artemisia 
frigida in each image. The bounding boxes were then transformed to obtain the coordinates 
of the centroid, which were recorded as the locations of Artemisia frigida. To obtain the 
density of Artemisia frigida distribution in the experimental area, we generated a grid of 10 
× 10 m size across the entire experimental area and counted the Artemisia frigida points in 
each grid, ultimately obtaining the distribution density of Artemisia frigida in the experi-
mental area. 

 
Figure 7. Image blocks after orthophoto slicing. 

2.6. Experimental Environment and Parameter Settings 
The experimental platform for this study is a graphical workstation with an Intel(R) 

Core(TM) i9-13900K processor operating at 3.00 GHz, 128 GB of RAM, the GPU with the 
NVIDIA GeForce RTX 4090, 24 GB of VRAM, and the Ubuntu 20.04 operating system. The 
programs are written in Python 3.8, and model training is conducted on the PyTorch-2.0.0-

Figure 7. Image blocks after orthophoto slicing.



Drones 2024, 8, 151 9 of 16

2.6. Experimental Environment and Parameter Settings

The experimental platform for this study is a graphical workstation with an Intel(R)
Core(TM) i9-13900K processor operating at 3.00 GHz, 128 GB of RAM, the GPU with the
NVIDIA GeForce RTX 4090, 24 GB of VRAM, and the Ubuntu 20.04 operating system. The
programs are written in Python 3.8, and model training is conducted on the PyTorch-2.0.0-
gpu deep learning framework. The configuration of the experiment plays a crucial role
in training deep learning models. The configuration of the experiment for this study is
outlined in the Table 1.

Table 1. Configuration.

Category Name Configuration/Parameter Values

Hardware
CPU Intel(R) Core(TM) i9-13900K
GPU NVIDIA GeForce RTX 4090 24 GB

Memory 128 GB

Software
CUDA 11.8
Python 3.8
PyTorch 2.0

Hyperparameters

Image Size 1280 × 1280
Learning Rate 0.01

Learning Rate Decay Frequency 0.1
Batch Size 6
Workers 16

Maximum Training Epochs 300

2.7. Evaluation

To evaluate the performance of the model in Artemisia frigida detection, five metrics
are employed in evaluation. These metrics include precision (P), recall (R), mean average
precision (mAP), parameters, frames per second (FPS). mAP is a metric that better reflects
the overall performance of the network. This study utilizes FPS to evaluate the real-time
detection performance of the model. A higher FPS indicates faster model detection speed.
The calculations for P, R, and mAP are as follows:

P =
TP

TP + FP
(1)

R =
TP

TP + FN
(2)

AP =
∫ 1

0
P(r)dr (3)

mAP =
∑Q

1 AP(k)
Q

(4)

where True Positive (TP) represents accurate predictions made by the model, False Positive
(FP) indicates incorrect predictions, and False Negative (FN) represents instances the model
failed to detect. AP denotes the area enclosed by the precision and recall curve. mAP is the
mean of the AP values for various classes. mAP@.5 refers to the mean average precision
(mAP) calculated with an IoU threshold set to 0.5. This means that a detection is considered
valid only if the IoU between the predicted bounding box and the ground truth bounding
box exceeds 0.5. Q represents the total number of classes; AP(k) denotes the Average
Precision (AP) value for the k-th class.
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3. Results
3.1. Model Training and Performance Evaluation

From the change in the model’s box loss, as shown in Figure 8, compared to the
YOLOv7 + Biformer model, the loss exhibits noticeable oscillations with a gradual descent
after a significant spike, indicating a relatively slow convergence speed. In contrast, the loss
curve for YOLOv7 + Biformer + Wise-IoU converges more rapidly, improving the model’s
training speed while achieving a lower loss rate. Examining the changes in model accuracy
and recall, the YOLOv7-E6E model shows the fastest initial rise, but after 150 epochs, it expe-
riences a certain degree of decline, possibly due to some low-quality samples. On the other
hand, both precision and recall for YOLOv7 + Biformer and YOLOv7 + Biformer + Wise-IoU
models steadily increase with training batches.
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We conducted a comprehensive evaluation of the improved YOLOv7 model, and the re-
sults indicate that the improved model outperforms YOLOv7 in several evaluation metrics.
Model performance comparison is shown in Table 2. YOLOv7 + Biformer + Wise-IoU model,
compared to the original YOLOv7, the improvement is most notable in the precision metric,
with a 6% increase, and the mAP@.5 has increased by 3%. YOLOv7 + Biformer, aside from
the precision metric, has also shown a certain degree of improvement compared to YOLOv7,
similar to YOLOv7 + Biformer + Wise-IoU. Considering model size and inference speed,
the YOLOv7-E6E model has the most parameters and the slowest inference speed, only
12.20 FPS. YOLOv7 + Biformer + Wise-IoU and YOLOv7 + Biformer models have reduced
parameter counts compared to YOLOv7, with the YOLOv7 + Biformer + Wise-IoU model
having the second-highest inference speed among the four models, at 22.42 FPS. Compared
to the YOLOv5n and YOLOv5x models, the improved YOLOv7 + Biformer + Wise-Iou
model shows a 20% and 12% higher precision, an 11% and 25% higher recall than YOLOv5,
and a 7% and 2% higher mAP@.5.
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Table 2. Comparison of detection performance for different methods.

Model P (%) R (%) mAP@.5 FPS Parameters/M

YOLOv5n 70 76 0.77 38.23 1.8
YOLOv5x 75 68 0.81 18.14 86.2
YOLOv7 78 82 0.80 21.83 36.5

YOLOv7-e6e 80 76 0.79 12.20 164.8
YOLOv7 + Biformer 76 83 0.81 24.21 33.5

YOLOv7 + biformer + wise-iou 84 85 0.83 22.42 33.5

3.2. Artemisia frigida Detection and Spatial Distribution Mapping

We applied the improved YOLOv7 + biformer + wise-iou model to Artemisia frigida
detection in a 30 × 30 m plot using UAV images and compared the results with field survey
results, as shown in Table 3. The overall precision for the 10 plots was 96%, and the recall
was 94%, indicating superior overall performance of the model in Artemisia frigida detection
at the plot scale. We applied the improved YOLOv7 (YOLOv7 + biformer + wise-iou) to
the entire experimental area, obtaining the distribution points of Artemisia frigida across the
entire area. Through ground truth selection and visual interpretation analysis, the detection
accuracy was high, meeting the requirements for mapping the distribution of Artemisia
frigida. After statistical analysis, a total of 15,663 Artemisia frigida distribution points were
detected in the entire experimental area, as shown in Figure 9.

Table 3. The evaluation result of Artemisia frigida detection in ten plots.

Plot TP FP FN P (%) R (%)

XM_01 0 0 0 0 0
XM_02 1 0 1 100 50
XM_03 6 0 2 100 75
XM_04 192 11 7 95 96
XM_05 68 4 7 94 91
XM_06 60 2 5 97 92
XM_07 116 3 6 97 95
XM_08 7 1 1 88 88
XM_09 36 0 1 100 97
XM_10 44 1 4 98 92
Overall 530 22 34 96 94

The distribution density of Artemisia frigida was obtained by counting detection points
within each grid, as shown in Figure 10. In terms of density level, the average density
of Artemisia frigida in the experimental area is 7 per 100 m2, with a maximum density of
160 per 100 m2. Among these, 879 grids have zero Artemisia frigida points, accounting for
33.77%. The grids with a density of 1–10 Artemisia frigida per 100 m2 are 1101, representing
47.31% of the total. The grids with a density of 11–20 Artemisia frigida per 100 m2 are 141,
accounting for 6.06%. The grids with a density of 21–50 Artemisia frigida per 100 m2 are
125, representing 5.37%. The grids with a density of 51–100 Artemisia frigida per 100 m2 are
69, accounting for 2.97%. Finally, there are 12 grids with a density exceeding 100 Artemisia
frigida per 100 m2, representing 0.52%.
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4. Discussion

Plant diversity can be measured at different scales, from satellite to ground level [24].
However, current remote sensing-based methods for observing plant diversity are mostly
focused on the community or landscape scale and have not yet achieved individual-
scale monitoring that matches ground-based observations [25]. With the development of
near-ground remote sensing technologies such as UAV, high-resolution and ultra-high-
resolution data can be obtained [26]. Combined with methods like deep learning, this
allows for the rapid localization and classification of plants, greatly enhancing the efficiency
of biodiversity surveys and monitoring [27–29].
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In this study, the improvement of YOLOv7 model was implemented to enhance the
detection performance of Artemisia frigida in UAV images, but there is still room for im-
provement in performance. Factors influencing the detection of grassland plants, including
Artemisia frigida, mainly include the following. Firstly, it is necessary to obtain a sufficient
amount of high-quality data. UAV can easily and quickly obtain images of the target
area, but the resolution of the sensors and the environmental conditions during image
acquisition may lead to some images not meeting the requirements for object detection
data, ultimately affecting the detection performance [30,31]. Secondly, the quality of data
annotation also affects the performance of the detection model. Artemisia frigida exhibits
significant differences in morphology and size during different growth stages, making it
challenging to distinguish the boundaries from the background, posing challenges for an-
notation [32]. Lastly, some Artemisia frigida has small bodies, and there may be overlapping
and unclear boundaries between individuals, which will affect the final detection results.

Therefore, for the detection of dense small targets such as grassland plants, improving
the algorithm can to some extent enhance the model’s detection performance. However,
data quality and sample quality directly impact the improved model’s detection perfor-
mance. Therefore, collecting high-quality datasets and building high-quality samples are
essential for improving model accuracy. Currently, with the use of high-definition cam-
eras equipped on UAV, analyzing the actual characteristics of the detection targets and
planning flight routes and parameter settings reasonably can yield a sufficient number
of high-quality samples. When combined with high-quality model improvements, this
approach will greatly enhance the detection performance of grassland plants [33].

5. Conclusions

In this study, based on UAV imagery data, we conducted the detection of the grassland
degradation indicator species, Artemisia frigida, by improving the YOLOv7 model. The
results indicate that the improved YOLOv7 + Biformer + Wise-IoU model outperforms
YOLOv7 overall, with a 6% improvement in precision and a 3% increase in mAP@0.5
compared to YOLOv7. The model has a reduced parameter count compared to YOLOv7,
and its inference speed is close to that of YOLOv7. The YOLOv7 + Biformer + Wise-IoU
model achieves an overall detection precision of 96% and a recall of 94% across 10 sample
sites, demonstrating superior performance in the detection of Artemisia frigida at the site
scale. Applying the model to predict Artemisia frigida across the entire experimental area
and obtaining the density, the average density of Artemisia frigida in the entire experimental
area is 7 per 100 m2, with a maximum density of 160 per 100 m2.

From the perspective of the model’s detection performance on Artemisia frigida and
its application in the experimental area, fully leveraging the advantages of UAVs in terms
of agility, flexibility, and high-resolution data acquisition, combined with the application
scenarios of grassland plant recognition, developing or improving adapted high-quality
object detection models holds broad prospects in grassland species distribution surveys.
However, there is still significant room for improvement in the model’s detection accuracy
and speed. Continuous iterations and optimizations are necessary to enhance the overall
performance of the model, thereby expanding its applicable scenarios and deployable
environments. Looking ahead to the requirements of future grassland surveys regarding
the number of identifiable species and recognition accuracy, the research will focus on
collecting UAV image data containing more grassland degradation indicator species and
constructing high-quality UAV image samples of degradation indicator species. This
will improve the model’s detection performance for degradation indicator species and
even more grassland species, establishing a comprehensive solution encompassing UAV
flight control, sensor selection, data acquisition, data processing, model training, model
deployment, and application.
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