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Abstract: As an important energy conversion mechanism, centrifugal compressors play an important
role in the national economy. The blade is one of the most critical components of the compressor.
Damaged blades contain extremely high added value for remanufacturing. Thus, remanufacturing
research on damaged and retired impeller/blade is getting more and more attention. Laser additive
and milling subtractive composite remanufacturing technology is an effective means to achieve
metal parts remanufacturing. In this paper, an advanced methodology for the remanufacturing of
complex geometry and expensive components via reverse engineering, free-form surface modeling,
laser additive repaired and machining is presented. The approach involves the integration of 3D
non-contact digitization to obtain the point cloud data of damaged parts, adaptive free-form surface
reconstruction to get the digital model of damage location, and laser additive manufacturing process
containing slicing and path planning and subsequent multi-axis milling operation. The methodology
has been successfully implemented on thin-curved centrifugal compressor blades. The results
have shown that the composite remanufacturing method is an effective solution to realize
the remanufacturing of damaged blades, and can be applied to the remanufacturing of other
complicated parts.

Keywords: laser additive manufacturing; milling; remanufacture; reverse engineering

1. Introduction

As an important energy conversion mechanism, centrifugal compressors play an important role
in the national economy such as electricity, oil, and natural gas [1]. The blade is a key component of the
compressor, and the material and processing costs are high. For example, the material and processing
cost of the nickel 718 blade with a diameter of about 400 mm is more than one hundred thousand
dollars. Blades that operate in harsh service environments are prone to fatigue, wear, corrosion, and the
like. If such an expensive impeller is directly scrapped due to damage, it will not only cause complete
loss of remanufacturing value, but also cause huge downtime economic loss due to the new impeller
manufacturing cycle. For example, the centrifugal compressor for natural gas transmission has a
shutdown loss of up to 1.46 million dollars per day.

With the promotion of the sustainable development strategy, remanufacturing research on
damaged and retired impellers/blades containing high additional value is getting more and more
attention, which is one of the effective ways to make full use of remanufacturing resources and solving
the problem of natural resource deficiency. There is some early research on blades repaired using
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traditional repair technologies, such as plasma transferred arc (PTA) welding [2], gas tungsten arc
welding [3], tungsten inert gas (TIG) welding [4], etc. However, these conventional techniques also
have significant technical disadvantages, such as huge heat input to the base material, hot-cracking in
the welded layers, and low bonding force between the coating and the substrate.

As a revolutionary foreword technology, additive manufacturing (AM) has received worldwide
attention and rapid growth. As one of the typical technologies for AM, laser additive manufacturing
(LAM), also known as laser direct deposition, has become an effective method to manufacture metal
parts [5]. Some scholars have conducted research on remanufacturing using LAM technology such as
laser direct deposition, laser cladding, etc. Gao et al. [6] and Yilmaz et al. [7] presented an integrated
adaptive repair solution for complex aerospace blades based on laser cladding repair. Gong et al. [8]
studied on the research of TC11 titanium alloy components repaired by the laser melting deposition
process and pointed out that the damaged impeller blades pass the over speed test after machining
and checking. Shi et al. [9] used laser cladding with Ni based powder as cladding material to repair 45
damaged steel gears, with synchronous powder feeding and gear axial scanning method, and found
the laser cladding method could repair the gear surfaces and raise the wear resistance to obtain high
strength cladding layers on damaged gears’ teeth surfaces. Vedani [10] investigated the microstructural
behavior of steel tools after repairing, welding or refurbishing by a pulsed Nd-YAG precision laser
and found the welded metal regions had a significantly finer structure with respect to the GTAW
welded materials. Paydas et al. [11] studied the effect of building strategy and incident energy on the
metallurgical characteristics of the repairs in relation to their complex thermal history.

Reverse engineering (RE) is a design process which is relative to traditional forward engineering,
from sample physical to three-dimensional digital models then to final products. Some scholars
have used reverse engineering techniques to study the reverse modeling of blades and other parts.
Zhang et al. [12] presents a damage reconstruction method based on tri-dexel modeling for laser-aided
repairing of metallic components. Wang [13] applied the optical three-dimensional scanning system
to obtain the point cloud data of high-strength steel sheet parts, and obtained the three-dimensional
model of the parts through reverse engineering through data processing. Li et al. [14] used Geomagic
studio to perform point cloud merging, streamlining, denoising, and surface fitting on the point cloud
data, and generated the surface model of motorcycle parts. Xie et al. [15] achieved model reconstruction
in the technology integration environment and completed the impeller model reconstruction based on
reverse engineering software, Geomagic studio combined with Ansys, MATLAB, and UG software.

At present, a large number of studies in LAM and RE are isolated. When the two methods are
combined, they become a remanufacturing technology based on LAM and RE aimed at restoring a
part’s geometric size and optimizing the organization. Only a few scholars have combined the two
methods to conduct research. Zhang et al. [16,17] reconstructed the engine blade model using reverse
engineering and simulated the surface wear of the blade by the laser direct deposition technique.
Wilson et al. [18] demonstrated a successful repair of defective voids in turbine airfoils based on a new
semi-automated geometric reconstruction algorithm and a laser direct deposition process.

The literature review shows that the studies on the subsequent machining of LAM forming layer
are rare in existing remanufacturing based on LAM and RE. Subsequent processing to remove excess
material is necessary to restore the geometric accuracy of the parts and meet the assembly requirements.
Therefore, laser additive and milling subtractive composite manufacturing technology is an effective
method to remanufacture metal parts. In this paper, based on the foundation studied on KMN steel
laser cladding repairing [19] and milling characteristics of the LAM forming layer [20], a methodology
for the compressor blade remanufacturing via reverse engineering, free-form surface modelling, laser
direct deposition, and multi-axis machining was presented. The methodology was implemented on
thin-curved centrifugal compressor blades, which is made by KMN steel. The experimental results
were analyzed and are demonstrated in this paper.
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2. Materials and Methods

2.1. Remanufacturing Strategy

The proposed remanufacturing system consists of a chain of different processes. The general
structure of the proposed remanufacturing system based on reverse engineering (RE) technology, LAM
and, subsequent machining is shown in Figure 1. Using the 3D non-contact laser scanner system,
the blade geometry data of polygon mesh format is quickly obtained through multi-view alignment,
data filtering, and triangulation. In addition, a high-quality polygon mesh with no defects in the
polygon modeling environment is created by the scanned data. Geometry reconstruction, based on RE
system, was used to generate paths for laser direct deposition and subsequent milling subtractive in a
CAD/CAM system (such as UG NX software). For complex components, the three-axis machining path
for laser additive forming can be created in the reverse engineering module based on additional patch.
Five-axis tool paths for milling subtractive manufacturing can be created based on the subtractive
patch. By post-processing the generated toolpath, a CNC code (such as a G code) can be generated to
drive the machine.
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2.2. 3D Digitizing System

It is well known that compressors have a harsh service environment and, after long periods of
operation, the blades often have deformation, tearing, and other defects. Therefore, the damage of the
blade has many forms. In order to solve the difficulties caused by different forms of damage, and the
part-to-part variation, the blade remanufacturing process must be able to adapt to each physically
worn blade, which makes the acquisition of geometrical data an essential process. Therefore, 3D model
reconstruction in blade remanufacturing requires a suitable digital system to provide sufficient and
accurate data. In this work, a 3D Family laser scanner machine was chosen to scan worn blades, taking
into account factors such as blade size, accuracy, scanning speed, data processing speed, and recovered
blade data quality. The main parameters are shown in Table 1. The blade scanning process is shown in
Figure 2.

Due to the complexity of the blade structure, it is difficult to obtain enough data for model
reconstruction in a single scan. Therefore, it is necessary to scan the blades in all directions and then
align these scanned data sets into a complete model. Thus, the single blade and three blades’ parts
were scanned and the point cloud data were obtained respectively.

Table 1. The main technical parameters of the laser scanner.

Type Model Laser Type Power Wavelength Scanning
Width

View
Depth Precision Sample

Density
CCD
Array

Parameter LSH-II-30 Linear
Laser (Diode) <5 mw 650 nm 30 mm 30 mm ±0.01 mm 0.056 mm 2 set
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Unexpected errors can occur during scanning due to unexpected light interference, sharp
edges, and invisible occlusion surface areas, which can result in inaccurate scan data. In addition,
the alignment process may result in anomalous triangles due to data overlap and holes or gaps between
different data blocks. This will also affect the accuracy of data. Therefore, it is necessary to preprocess
the data obtained by the scan, thereby deriving the corrected scan model. In fact, the editing process of
this raw scan data can be implemented by commercial reverse engineering software, such as Geomagic
Studio, which can usually be used to eliminate errors in the original data produced by the scanning
process [21]. The multi-angle scanning process, the original data correction process, and the blade
model reconstruction process of the damaged compressor blade are as follows:

Step 1: Filtering of the point cloud data. During the scanning process, due to slight vibration of
the scanning device, inaccurate scanning calibration, and the influence of background and lighting,
it is possible to generate a certain amount of yawp points, which may cause large errors in the
reconstruction work and should be cleared before reconstruction.

Step 2: Multi-viewed piecing-together. Since multiple scans were performed on irregular surfaces
and places with large curvature during the scanning process, multiple point clouds were generated.
It needs to splice multi-view data points, which will obtain the preliminary blades model.

Step 3: Delete abnormal topological triangles that appear in the model. Surface-triangular patches
with poor local scan quality and particularly poor surface roughness should be partially smoothed.

Step 4: Fill holes and gaps. In this work, most of the holes and gaps have no significant effect on
laser direct deposition repairing, so it is just needs a simple filling operation.

Step 5: Optimize and subdivide the model. If the point cloud data is too large, the computer
will slow down when processing the point cloud data. In this case, the point cloud data needs to be
sampled, as long as the necessary point cloud data is retained.

2.3. LAM Repaired Process

The LAM process was performed using a CO2 multimode cross-flow laser operating with a coaxial
powder head at output power of 4 kW with a 3-mm beam diameter. The beam scanning speed was
500 mm/min. FeCr alloy powder containing 1.5% wt La2O3 was used in this study. The compositions
of FeCr alloy mixture and the KMN steel are indicated in Table 2. The powder flow rate was 13.1 g/min.
The geometry of the part to be repaired is shown in the blue part of Figure 3. In order to facilitate
the planning of the laser repair path, the geometry is simplified, as shown by the thick black line in
Figure 3. According to the simplified model of damage position, at the end of each layer the Z height
was adjusted automatically. And the laser beam scanning was reciprocating scanning in each layer,
as shown in Figure 4. The LAM process is shown in Figure 5.

The microstructure and phase composition of the laser additive forming layer was tested
and analyzed by a scanning electron microscope (SEM) and X-ray diffractometer (XRD). Based
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on the measured XRD pattern, phase identification was performed using MDI JADE software.
The microhardness, wear resistance, and corrosion resistance had been investigated and published [19].

Table 2. Chemical composition of substrate and FeCr powder (wt %).

Chemical Element C Mn Si Mo Cr Ni Cu≤ P≤ S≤ B≤ Fe

KMN 0.13~0.18 0.5~0.8 0.17~0.37 0.9~1.1 2.2~2.5 - 0.30 0.030 0.030 - Balance
FeCr alloy powder 0.15 - 1.1 1.0 17.35 1.35 - - - 1.26 Balance
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3. Results

3.1. Geometry Reconstruction

The blade, as remanufacturing objects, which is part of the KMN steel impeller, was provided
by Shenyang Blower Works Group Corporation, China, as shown in Figure 6. One of the damage
positions, which were preset in the blade edge used for remanufacturing, is shown in Figure 7.
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Figure 7. Morphology of blades with preset damage.

After the steps of filtering the point cloud data, multi-viewed piecing-together (as shown in
Figure 8), deleted abnormal topological triangles, filled holes and gaps (as shown in Figure 9),
and optimized and subdivided the model described in Section 2.2. The model of blades and damage
position was obtained, as shown in Figure 10, and export as an IGES file.
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Figure 10. One of the model of damage position.

3.2. Blade Restoration by LAM

The microstructure of the LAM forming layer observed by SEM is also shown in Figure 11. It is
apparent that the growth of the crystal grains is layer by layer. The middle position of each layer is
a fine grained zone, and the junction of the layers is a coarse grained zone. The microstructure of
each layer consists of dendrite, cell grain, and eutectic. It can be seen from XRD (Figure 12) that the
phase of the LAM layer is mainly composed of Fe-Cr, CrO0.87, Fe9.7Mo0.3, MnNi, Cr9.1Si0.9, Cr7C3,
Fe0.64Ni0.36 and BMn.

J. Manuf. Mater. Process. 2018, 2, x FOR PEER REVIEW  7 of 11 

 

 

Figure 10. One of the model of damage position. 

3.2. Blade Restoration by LAM 

The microstructure of the LAM forming layer observed by SEM is also shown in Figure 11. It is 

apparent that the growth of the crystal grains is layer by layer. The middle position of each layer is a 

fine grained zone, and the junction of the layers is a coarse grained zone. The microstructure of each 

layer consists of dendrite, cell grain, and eutectic. It can be seen from XRD (Figure 12) that the phase 

of the LAM layer is mainly composed of Fe-Cr, CrO0.87, Fe9.7Mo0.3, MnNi, Cr9.1Si0.9, Cr7C3, 

Fe0.64Ni0.36 and BMn. 

One of the repaired position morphologies before and after LAM is shown in Figure 13. It is 

shown that the repaired blade without cracks and blowhole defects has already been restored to 

original size. The total height and width of the repaired blade is greater than that of the reference 

model to some degree. Additionally, a slight overbuild is necessary to account for the subsequent 

milling. 

 

Figure 11. The grains structure of the specimen cross-section: (a) substrate and first layer, (b) second, 

third and fourth layer. 

 

Figure 12. XRD results of LAM FeCr alloy. 

40mm  
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Figure 12. XRD results of LAM FeCr alloy.

One of the repaired position morphologies before and after LAM is shown in Figure 13. It is shown
that the repaired blade without cracks and blowhole defects has already been restored to original size.
The total height and width of the repaired blade is greater than that of the reference model to some
degree. Additionally, a slight overbuild is necessary to account for the subsequent milling.
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4. Machining Strategy

To ensure that the parts repaired by laser cladding are restored to the accuracy requirements of
the design, the LAM repaired part needs to be machined. The purpose of the research processing
strategy is to remove the excess material most efficiently from the repaired part and to obtain the
desired geometric properties (size requirements, surface characteristics). In addition, the problems
of interference, collision, overcutting, etc., which often occur during the cutting process, are also
considered and solved in the proposed processing strategy. The UG NX processing module provides
the user with an identical, user-friendly graphical window environment. The user can observe the
movement of the tool along the trajectory in graphical mode and can graphically modify it. Therefore,
UG NX was selected to generate the tool path for milling the LAM parts. The reconstructed blade
model of the IGES format was used in the process of generating the tool path.

For the side milling operation, the VARIABLE_ CONTOUR method was applied. In this case,
machining features are the blade repaired position, as shown in Figure 13. Machining tool paths
generated are shown in the blue lines in Figure 14, which are outputted as the ISO APT format and
post processed as G-code for milling operation performed on a five-axis machining center.
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Based on machining trials for the LAM forming layers [20], a solid cemented carbide end mill
with four cutting edges was used in this work. And the diameters (D) of the tools are 10 mm with equal
overhang length. This end mill is highly precise and ensures very tight tolerances on the machined
surface. The geometry of this end mill also has some benefits for the processing of LAM repaired
blades. For example, a relatively short contact length will effectively reduce the deflection of the end
mill. In addition, the blade tip geometry is twisted. Considering the tool-workpiece collision factor,
the spherical shape end mill is the perfect choice for machining this geometry, although the overall
depth of cut is not too large. Therefore, a 10 mm diameter ball-end solid carbide end mill with four
cutting edges was selected for removing deposits from the LAM repair position of the blade.

The TOM five-axis machining center was selected for milling subtractive operations, which has
an interchangeable palletizing system. The initial parameters used for milling and operation were
obtained by taking the recommended parameters of the tool manufacturer and the machine tool
builder into account. Then it was improved throughout the test based on actual processing quality.
The purpose of this study was to remove redundant material from the surface of LAM repaired blade
and restore the dimensional accuracy of the blade. Therefore, this study did not attempt to optimize the
milling subtractive parameters. However, some parameters (machining tolerances and path spacing)
have been calculated and/or selected in order to improve the quality of the machined surface of the
repaired blade. The recommended cutting conditions and the calculated/selected milling operation
parameters are given in Table 3. Compared with up milling, the down milling process consumes less
power, the surface quality of obtained parts is better, and the milling cutter wears less. Therefore,
down milling is used in this study.

Table 3. Operation and cutting parameters.

Machining Steps Tool Path
Direction

Machining
Tolerance (mm)

Scallop
Height (mm)

Maximum
Depth of
Cut (mm)

Number
of Levels

Roughing One way 0.01 - 0.5 3
Semi-finishing One way 0.01 0.1 0.2 1

Finishing One way 0.001 0.001 0.04 1
Spindle speed 4776 rpm

Feed rate 300 mm/min
Milling type down

The macroscopic feature of the LAM repair blade before and after milling is shown in Figure 15.
After post inspection, the final geometric tolerance of the remanufactured blade was shown to be within
150 µm, while most of the remanufactured position was within 30 µm of the desired geometry. After
an accurate and detailed analysis, the entire process of centrifugal compressor blade remanufacturing
was successfully completed.
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5. Conclusions

This work presented a remanufacture methodology for expensive components with complex
geometries and high added value for remanufacturing. The automated and adaptive measurement
of the damaged blade and the reverse reconstruction modeling process were implemented by a 3D
contactless digital system. LAM process containing slicing and path planning was used to repair the
damaged position. Based on the reconstructed 3D model of the prefabricated blade, a processing
strategy was developed to perform precision milling and material reduction on the LAM repaired
position to restore the blade geometry accuracy. The effectiveness of proposed processing strategy was
verified by experiments using a five-axis machining center. The results have shown that the composite
remanufacturing method based on reverse engineering, laser additive, and milling subtractive is
an effective solution to realize the remanufacturing of damaged blades and can be applied to the
remanufacture of other complicated parts.
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