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Abstract: Injection molding has been increasing for decades its share in the production of polymer
components, in comparison to other manufacturing processes, as it can assure a cost-efficient
production while maintaining short cycle times. In any production line, the stability of the process and
the quality of the produced components is ensured by frequently performed metrological controls,
which require a significant amount of effort and resources. To avoid the expensive effect of an out of
tolerance production, an alternative method to intensive metrology efforts to process stability and
part quality monitoring is presented in this article. The proposed method is based on the extraction
of process and product fingerprints from the process regulating signals and the replication quality
of dedicated features positioned on the injection molded component, respectively. The features
used for this purpose are placed on the runner of the moldings and are similar or equal to those
actually in the part, in order to assess the quality of the produced plastic parts. For the purpose
of studying the method’s viability, a study case based on the production of polymer microfluidic
systems for bio-analytics medical applications was selected. A statistically designed experiment was
utilized in order to assess the sensitivity of the polymer biochip’s micro features (µ-pillars) replication
fidelity with respect to the experimental treatments. The main effects of the process parameters
revealed that the effects of process variation were dependent on the position of the µ-pillars. Results
showed that a number of process fingerprints follow the same trends as the replication fidelity of the
on-part µ-pillars. Instead, only one of the two on-runner µ-pillar position measurands can effectively
serve as product fingerprints. Thus, the method can be the foundation for the development of a fast
part quality monitoring system with the potential to decrease the use of off-line, time-consuming
detailed metrology for part and tool approval, provided that the fingerprints are specifically designed
and selected.

Keywords: precision injection molding; quality control; process monitoring; process fingerprint;
product fingerprint

1. Introduction

In the last decades, the development of new technology, legislation, and customer needs have
influenced a change in the functional requirements and design of complex parts, while keeping the
focus on high volume mass production processes that maintain a cost-efficient production for many
applications. Such applications originate in the automotive, electronics, communication, and medical
industries, as well as in micro manufacturing [1,2]. A process that can maintain a cost-effective
production with short cycle times is injection molding. Injection molding is continuously gaining
market share in the production of cost effective products, accounting for 50% of the produced plastic
parts [3], in comparison to other manufacturing processes.
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In a plethora of industrial sectors, and particularly in the medical sector where biomedical
and drug delivery devices are concerned, applications with integrated µ-features, such as µ-pumps
and µ-measuring devices for the precise handling and administration of drugs, dictate the need for
tight tolerances in order to satisfy the functional requirements of the product [4]. Such functional
requirements are challenging to fulfil for all the injection-molded components in a high-volume
production. They require a stable process with frequent metrological inspections in order to ensure
process stability and high part quality. Metrological studies though require a significant amount of
time in comparison to the cycle time of injection molding, which is often in the order of few seconds.
Due to the high costs involved, especially in the cases of micro molding equipment and micro tools
for µ-applications or applications with µ-features, process monitoring is an attractive research subject.
The main objective is the monitoring of the process for the occurrence of defects and quality assurance
of the molded parts, since an out of tolerance production can lead to an inefficient production line with
high costs and scrap rate.

The current paper presents an alternative approach to continuous or statistical monitoring and
part quality control, by proposing indexes that serve as part quality indicators (QI) (i.e., “product and
process fingerprint”) based both on process and product data.

The presented approach is developed in two parallel tracks. Firstly, the “product fingerprint”
track which considers the use of dedicated µ-features positioned on the runner of the component that
are equal or similar in size and shape to the features on the part [5]. The two sides of the microfluidic
system are used as a study case. The µ-pillars positioned on the microfluidic system are designed
as functional micro features [6] that direct the flow of the liquid and inhibit the formation of air
bubbles. As functional features, their replication fidelity is of high importance for the overall quality
and acceptance of the microfluidic component. The correlation of the features’ replication on the
runner to the ones in the part is going to be explored. Current research presents numerous examples
of part features in use for fast part quality inspection. Two prominent examples are the use of weld
line position to assess the quality of the molded part as described by Tosello et al. [7], and the use of
nano-features placed on different areas of a component that provide the necessary indicators for fast
part quality assessment as discussed by Calaon et al. [8]. However, in both those cases the µ-features
are positioned in the cavity.

The “process fingerprint” track investigates the suitability of the transient time-resolved process
data originating from the injection molding machine control sensors, for process monitoring and
consequently part quality control. A number of researchers in the field of sensor technology have
studied different approaches to develop methods of process control, an optimization that could
shorten the duration of metrological investigations for the approval of injection-molded components.
Promising results are shown in studies where in-mold sensors are used for process regulation and
monitoring, though the placement of sensors involves higher tooling costs [9–13]. Chen et al. [14]
have proved that part weight and thickness can be reliably monitored with the use of a linear
variable differential transformer (LVDT) monitoring the mold separation (MS) distance. Instead
Gao et al. [12] have developed a custom multivariate sensor (MVS) in order to monitor the quality on
the injection-molded parts based on the hypothesis that part quality indicators (dimensions) can be
tightly controlled and the in-mold process parameters are already known.

Further studies are using data from external sensors placed on the mold or in-line measuring
equipment to monitor and optimize the process considering the component’s functional requirements.
An online multivariate optimization system for the optimization and control of the process has been
developed by Johnston et al. [15], while Yang et al. [16] have detected defects in the process with the use
of an in-line digital image processing method. Consequently, for the detection of a defect, the software
feeds data to a process optimization algorithm built on a model-free optimization (MFO) procedure.
Other approaches involve the use of numerical simulation procedures for the monitoring and optimization
of the process, such as the work on dynamic injection molding and sequential optimization of warpage
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based on the Kriging surrogate model, presented by Wang et al. [3], and the application of artificial neural
networks (ANNs) and genetic algorithms as discussed by Ozcelik et al. [17].

Most of the approaches discussed in literature focus on tightly controlled and optimized processes,
with the dimensional control of the injection-molded components to be indirectly considered. However,
the main target of any quality control system is the quality of the final product, and thus coupling the
replication fidelity of the parts to the sensor data is a requirement.

The current paper presents an alternative approach based on process and product fingerprints.
The remainder of the article is structured as follows: in Section 2 the experimental setup and methods
are presented; in Section 3 the results are discussed; in Section 4 a summary of the article and
conclusive remarks are given. The extraction of both process and product fingerprints is discussed
with the selection of the most suitable “fingerprints” to be completed.

2. Experimental Setup and Methods

2.1. Molding Tool Geometry

The experimental setup was designed in a way that accommodates both research tracks related
to the process and product fingerprints. To proceed with the approach of product fingerprint and in
order to access the quality of on-part micro features in correlation with on-runner µ-pillar features,
specifically developed tool inserts for the production of a biochip were manufactured. The mold
used was a two-cavity mold as seen in Figure 1 and the manufactured geometry consisted of the
two sides of a bio-fluidic microchip for drug testing. The biochip had the form of a 20 × 20 × 2 mm
plate with on-part conical µ-pillar features with 600 µm nominal height, Ø250 µm base diameter,
and Ø200 µm top diameter [6] as seen in Figure 2. The tool inserts were manufactured to accommodate
pillar µ-features on the runner equal to those on the part, as it can be seen in Figure 3.
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used for the experiment.
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Figure 3. Molded geometry with fingerprint structures on the part and runners (a,b), and measurement
positions on Cavity 1 (c) and Cavity 2 (d).

Figure 3 illustrates the geometry of the molded plastic parts and presents the positions of interest;
PP1 close to the gate, PP2 in the middle of the parts, PP3 far from the gate and RP2 on the runner of
the molding for both cavities. The pillars in the illustrated positions are used to assess the replication
quality of the molded components for all treatment combinations in the experiments as presented in
the following section of the paper. Figure 4 presents an example of the physical molded components.
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2.2. Injection Molding Process and Experimental Conditions

The proposed product and process fingerprint concept is built on the hypothesis that the quality of
the on part µ-features is correlated to the on runner µ-features and other quality indicators originated
from process signals as is discussed in Sections 2.4 and 2.5. The concept requires an experimental
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validation to confirm the hypothesis of the micro features and extracted indices suitable to be used as
quality indicators. The experiments were performed on an electric Arburg 370A injection-molding
machine (Arburg GmbH + Co KG, Lossburg, Germany), with a hydraulically actuated clamping
unit capable of a maximum clamping force of 600 kN and a screw whose diameter was Ø18 mm.
A statistically designed 24 × 3 full factorial experiment was utilized in order to investigate the
experimental process window. The parameters under consideration are: Tmelt (Tm) [◦C], Tmould
(Tmld) [◦C], Injection Speed (InjSp) [mm/s] and Packing Pressure (PackPr) [bar] that, as from
well-established research [18] and preliminary screening experiments are known to be the most
significant parameters affecting the quality of injection molded components and surface replication.
Table 1 presents the experimental treatments. The process parameter levels were selected by assessing
the specification of the material (Figure 5), a commercial grade of acrylonitrile butadiene styrene
(ABS, Styrolution Terluran GP-35, INEOS Styrolution GmbH, Frankfurt am Main, Germany), which is
characterized by a relatively large processing window. Other parameters such as packing (tpack = 10 s)
and cooling times (tcool = tpack + 10 s) were set on levels high enough to avoid their influence on the
responses of the experiment.

Table 1. Experimental Parameters.

Run

Parameter Unit 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Tm [◦C] 220 260 220 260 220 260 220 260 220 260 220 260 220 260 220 260
Tmld [◦C] 40 40 60 60 40 40 60 60 40 40 60 60 40 40 60 60
InjSp [mm/s] 100 100 100 100 140 140 140 140 100 100 100 100 140 140 140 140

PackPr [bar] 440 440 440 440 440 440 440 440 540 540 540 540 540 540 540 540
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Figure 5. (a) PvT and (b) viscosity plots of material Styrolution Terluran GP-35 (Acrylonitrile Butadiene
Styrene—ABS) [19].

For every experimental treatment, the initial 20-molded parts from the start of the process were
discarded, as the process was running to reach stability. Then the following 10 parts were collected
for assessment and the three sample parts were measured (denoted as: part 1, part 5, part 10) for the
assessment of the µ-pillars’ replication quality and then placed both on the parts and on the runners.
The sequence followed and the experiment is illustrated in Figure 6.
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J. Manuf. Mater. Process. 2018, 2, 79 6 of 22

2.3. Pillar Dimensional Measurement and Uncertainty Evaluation Procedure

The pillar height dimensional measurements were carried out by using a focus variation
microscope (Alicona Infinite Focus from Alicona Imaging GmbH, Raaba, Austria). The focus variation
method is suitable for the scanning of the 3D topologies as it can effectively acquire scans of features
with high slopes. A full scan of the µ-pillars though, proved to be challenging due to the almost vertical
slopes (88◦) of the µ-pillars. The settings used for the measurements are presented in Table 2.

Table 2. Alicona measurement settings for µ-pillars.

Measurement Settings

Objective ×20
Exposure 3.05 ms
Contrast 1.11
Vertical

resolution 299 nm

For the assessment of the process’ stability, the effect of process parameter changes and the
replication fidelity of the pillar µ-features for each experimental treatment, three pillars in each position
were scanned to measure the µ-pillar height. The middle pillars in positions PP2 and RP2 of both
cavities were measured five times in order to determine the repeatability of the measurements (standard
deviation in the range of 0.1–0.2 µm was achieved) and provide sufficient data for measurement
uncertainty calculations (see Section 3.1). The measurement data sets were consequently processed
with the use of scanning probe image processing software (SPIP V6.4.1 by Image Metrology A/S,
Hørsholm, Denmark) to extract the µ-pillar height from each scan. In SPIP, a procedure was developed
to process the scans and prepare the files for pillar height calculations following the same steps for all
four positions of interest by correcting the 1st order tilt in the scan as well as to set the zero background
for all data-points as illustrated in Figure 7.

The average pillar height was calculated with the use of four profiles that intersected the center of
the pillars with the procedure utilized to scan of both mold and molded parts in order to calculate the
height and height deviation (mold-part) as a measure of the molded features replication fidelity.

To verify the quality of measurements and procedures an uncertainty evaluation was conducted.
The evaluated expanded uncertainty U is a parameter associated with the measurement results and
describes the data dispersion always in connection to the respective measurand. The estimation of
the uncertainty and its inclusion in the replication fidelity assessment of the micro features is of great
importance as the measurement repeatability and instrument accuracy can be of similar magnitude.
The uncertainty budget of the measurements of the pillar heights on the parts and the respective
cavity features on the mold insert were estimated based on the ISO 15530-3 (Equations (1)–(4)) [20].
The method was developed for measurements conducted with a tactile coordinate measuring machine
(CMM); however, it can be adapted and applied for optical measurements [21] using Equation (4).
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Figure 7. (a) SEM 3D image of the pillars and (b–d) pillar height measurement procedure, (b) step 1:
extracting cros-section profiles, (c) step 2: assessing pillar height from the four extracted profiles as
indicated by different color, and (d) 3D representation of the pillar [5].

The expanded uncertainty was calculated with a coverage factor k = 2 to achieve a confidence
level of 95%, and four uncertainty contributors were considered (Table 3) (see Equations (1)–(3)).
Such uncertainty contributors are ucal which is the standard uncertainty as evaluated from a calibrated
step height artefact to have traceable measurements, ub which is the standard uncertainty associated
with the systematic error (b) of the measurement process, which is the measuring instrument bias.
Thirdly, the uth is the standard uncertainty associated with the systematic error of the measurement
process based on the heat expansion coefficient deviations of the material, since the measurements
were not conducted at the reference temperature, and lastly up is the uncertainty associated with the
manufacturing variation from either mold or parts (upmould and uppart), which is calculated using
a square distribution in the modified ISO 15530-3 (Equation (4)). The measurement on individual
pillars, features, and different molded parts are all affected by instrument repeatability. Thus, for uppart

the maximum value of uncertainty contributor related to instrument and process is considered in
order to avoid underestimating the uncertainty. These contributors are part of uppart, where: uppillar
is the standard deviation of five repeated measurements on the same pillar; upfeatures, the standard
deviation of repeated measurements on four different pillar areas to estimate feature repeatability
in terms of polymer replication and upsample the standard deviation of repeated measurements on
3 different samples on four different pillar area. The uncertainty contributors are used to calculate
the uncertainty of the mold (Equation (1)) and part pillar (Equation (2)) measurements, as well as
the deviation uncertainty (Equation (3)). The values of the specific uncertainties per position and
experimental runs are provided in Tables 4 and 5, respectively. Table 5 provides information on the
expanded uncertainty for pillar height and height deviation measurements per run.

Upart = k×
√

u2
cal + u2

b + u2
th + u2

ppart (1)
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Umould = k×
√

u2
cal + u2

b + u2
th + u2

pmould (2)

Udev =
√

U2
mould + U2

part (3)

| upi
=

datamax − datamin

2
√

3
, i = pillar, feature, sample for part or mold (4)

| uppart = max(uppillar, upfeature, upsample). (5)

Table 3. Uncertainty contribution for pillar height measurements.

Uncertainty Contributions
Mold Inserts Parts

Cavity 1 Cavity 2 Cavity 1 Cavity 2

ucal [µm] 0.1 0.1 0.1 0.1
uth [µm] 0.003 0.003 0.003 0.003
ub [µm] 0.034 0.034 0.034 0.034

uppart [µm] - - 0.26–0.97 0.22–0.95
umold [µm] 0.11–0.12 0.13–0.79 - -

Table 4. Expanded uncertainty for single pillar height and height deviations measurements.

Expanded Uncertainties
Mold Inserts Parts

Cavity 1 Cavity 2 Cavity 1 Cavity 2

Upart [µm] - - 0.54–1.94 0.45–1.91
Umold [µm] 0.25–0.26 0.29–1.58 - -
Udev [µm] 0.54–3.92

Table 5. Expanded uncertainty for pillar height and height deviations measurements per Run.

Expanded Uncertainties per Run (Uexp [µm])

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 R16

Cavity 1

Upart 1.04 1.10 0.77 0.88 1.42 0.84 1.94 1.87 0.55 1.40 0.74 1.43 1.05 1.29 0.76 1.02
Udev 1.65 1.74 1.77 1.86 1.86 1.77 2.09 1.69 1.98 1.95 2.02 1.83 2.49 1.68 1.80 2.28

Cavity 2

Upart 1.04 1.10 0.79 0.97 1.42 0.84 1.94 1.87 1.18 1.40 1.24 1.43 1.91 1.29 0.85 1.64
Udev 1.65 1.74 1.77 1.86 1.86 1.77 2.09 1.69 1.98 1.95 2.02 1.83 2.49 1.68 1.80 2.28

2.4. Product Fingerprint as Quality Indicator

The concept uses the microfluidic system described in Section 1 as a case study. It is of particular
interest as it builds upon past studies that used nano features (fingerprint) on the part, where a close
correlation of the fingerprint on the part to the overall quality of the component was revealed [8].

The current paper considers the use of dedicated µ-features positioned on the runner of the
molding that are equal or similar in size and shape to the features on the part [5]. The µ-pillars on the
runner can be used as a product fingerprint as they can be quickly measured with an in-line process
set up, separated from the main component and directly correlated to the overall part quality.

2.5. Process Fingerprint as Quality Indicators

Similar to product fingerprint a set of indices is proposed to serve as QIs in order to represent the
quality of the molding components with data from machine signals. Two type of QIs were considered:
the first type was calculated based on the deviation of consequent signals and the second was calculated
as single values per signal.
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The individual QIs belonging to the first type are presented in the following sections. They were
error of alignment, integrated squared error, cross correlation, shift error, and dynamic time warping.
The same quality indicators were also computed for the cross-correlated signals.

2.5.1. Work of Error and Integrated Squared Error

The controller of the injection-molding machine records the injection speed and the pressure
time resolved transient data during the process for every consecutive cycle. In theory, the controller
and the responses of an optimized process should be the same; however, in real world conditions,
the machine’s controller, the components of the machine, and the material can have different behavior.
For example, all operations include a level of uncertainty and interference from external conditions.
As such, the recorded signals in every consequent cycle of the process can deviate from the reference
cycle. This deviation describes the alignment error from each consequent cycle signal to the reference
signal by Equation (6).

ε(t) = y0(t)− yi(t) (6)

Erwork =
∫
ε(t)dt (7)

ISE =
∫
ε(t)2dt (8)

where: ε(t) the alignment error for time instance t, y0 the reference signal, yi any cycle signal, and i = 1,
2, . . . , N cycles.

The alignment error, though computed by Equation (6), is still a time series that consists of the
amplitude difference of two signals for the time instances t, where t = 0, 1, 2, . . . , 11 s. However,
although the ε(t) time resolved data contain valuable information, it is challenging to use. As such,
the work of error (Erwork) and the integrated squared error (ISE) [22] as described in Equations (7) and
(8), respectively, are used to extract the information as one single value for every signal associated
with the deviation of each processing cycle with respect to the reference cycle. The performance of
the alignment error and the ISE as a quality indicator in consequence will be discussed in a following
section of the paper.

2.5.2. Shift Error

Another quality indicator is the “Shift error” or “Shift” that originates from the cross correlation
of the input signals to the reference signal in every DOE run in the conducted experiment.
Cross correlation in discrete time series/signals y0(t) and yi(t) is described by Equation (9) [23].

Shifty0,yi
(l) =

∞

∑
t=−∞

y0(t)yi(t− l) (9)

where l is the lag of signal yi (i = 1, 2, . . . , N) in association to the reference signal y0. Cross-correlation
measures the similarity between a reference y0 and shifted (lagged) copies of y as a function of the
lag as illustrated in Figure 8. The “Shift” error can be used as a QI and will be discussed further in
Section 3.3.1. An example of cross correlation alignment from experimental Run 1 is provided in
Figure 9.
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2.5.3. Work Deviation

The work deviation of any consequent signal to the reference one as described in Equation (10),
is an alternative QI that is used to describe similarity of any signal to the reference. A graphical
representation of “WorkDev” is provided in Figure 10.

WorkDev = W0 −Wi =
∫

y0(t)dt−
∫

yi(t)dt (10)

where: i = 1, 2, 3, . . . , N cycles.
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The compatibility of the “WorkDev” QI will be discussed in Section 3.3.1 and compared with the
previously introduced QIs and the dynamic time warping (see next section).

2.5.4. Dynamic Time Warping

Dynamic time warping (DTW) is an algorithm that has found use in applications such as acoustics
and seismic motion fields, where the alignment of a pair of time series or sequences is required [24].
The algorithm considers time series data of unequal size and it is used to compute the warping distance
between two different time series or signals. The warping distance of vectors yi to the reference vector
y0 is defined as the minimum distance from the beginning of the DTW table to the current position
(k, j). Based on the dynamic programming (DP) algorithm [25] the DTW table can be calculated as
follows [26] in Equation (11):

WarpDis : D(k, j) = d(k, j) + min


D(k− 1, j)
D(k, j− 1)

D(k− 1, j− 1)
(11)

where D(i, j) is the node cost connected to points yi(k) and y0(j) of the input and reference signals y0

and yi and is calculated with the use of L2-norm in Equation (12).

d(k, j) =
√(

yi(k)− y0(j)
)2 (12)

The warping distance (“WarpDis”) is the minimum Euclidean distance in the warping DTW table.
For the purposes of this work, the single dimension DTW algorithm was used to align

each consecutive signal to a reference signal. The algorithm stretches the two vectors y0 and yi,
onto a common set of instances such that the warping distance “WarpDis”, the sum of Euclidean
distances between corresponding points yi(k) and y0(j), is minimized. To properly match the input and
reference signals, the algorithm repeats each element of vectors yi and y0 as many times as necessary
resulting in two signals yi* and y0* of equal size, as illustrated in Figure 11. As such, the warping
distance “WarpDis” can be used as a QI.
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To ensure the validity of the previously introduced QIs, the QI values were not directly comparable
to the dimensional measurements of the micro-feature on the collected samples, and the data were
standardized using Equation (12).

Zscore =
x− µ
σ

(13)

where, “x” is the xth observation, “µ” the mean value of all observations, and “σ” the standard
deviation of all observations per treatment.

Apart from the “process fingerprint” candidates originated from the deviation of both the transient
injection pressure and injection speed signals to the respective reference signals, two more “process
fingerprint” candidates were calculated from each signal. Those candidates belong to the second type
of quality indicators and were the signal integrals and signal powers as described below.

2.5.5. Signal Integral

The signal integral “Ix” is calculated with Equation (14) and of the time resolved data from the
whole signal y(t) recorded starting at the injection phase (t0 = 0 s), till the end of the packing phase
(tn = 11 s). The integral is related to the energy stored in the system and can differ on the measured
quantity. When the integral is calculated from the pressure signals, it provides the approximate value
of energy stored in the polymer from the melting, compression, and injection of the molten polymer in
the cavity.

Ix =
∫ T

0
y(t)dt (14)

T: end time of signal during (time = 11 s).

2.5.6. Signal Power

The power of a signal x, “SPx” is given as the sum of the absolute squares of the time-domain
samples of the signals divided by the signal length. Similar to the integral, signal power relates to the
energy of the system for all the recorded frequencies of the signal.

SPx = lim
T→∞

1
T

T∫
0

|y(t)|2dt (15)

T: end time of signal during (time = 11 s).
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3. Results and Discussion

3.1. Dimensional Measurements and Uncertainty Calculation

As stated in Section 2.3, three collected parts for each experimental run were examined. In order
to assess the quality of the parts and of the three pillars per measurement position, as illustrated in
Figure 3, they were examined to provide data for the replication fidelity of the pillars in each area of
the parts and the stability of the process.

In a preliminary analysis the average pillar height (part) and pillar height deviation per area is
presented in Figures 12 and 13, respectively, with their respective part measurement uncertainties as
described in Equation (1) (Upart) and Equation (3) (Udev). The uncertainty bars as illustrated on the
bar graphs are associated with the combined measurement uncertainty (Udev) (Figure 12) from both
mold (Umold) and parts (Upart) (Figure 10) measurements (Equation (3)) as calculated based in the ISO
15530-3 [20].
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Figure 12 presents the real area pillar height of the biochip, which is homogeneous for most of
the experimental runs. Figure 12 illustrates the replication fidelity of the pillars in both cavities. It is
evident that the less replicated pillars are originated to position PP1, and for the experimental runs 1, 3,
and 9, where the treatment uses the low value of the Tm parameter, and for runs 3 and 9 where Tmld
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is also at a low level. In position RP2 though, the µ-pillars positioned at the runners before Cavities 1
and 2 are better replicated for all the experimental runs where the high level of the InjSp parameter
was used, as higher injection speed increased the temperature of the molten polymer through the
mechanism of shear thinning. In comparison, when the lower level of InjSp was used, the replication
fidelity of the µ-pillars in position RP2 was lower due to the thicker cross-section where the shrinkage
was larger than the rest of the molded component.

3.2. Product Fingerprint Analysis

The dedicated µ-pillar features positioned on the runner of the molding can be potentially used
as product fingerprints, as they can be rapidly measured with an in-line process set up, while already
separated from the main component. However, for the on runner µ-pillars to be considered a suitable
candidate for product fingerprints, sensitivity and correlation analyses are required in order to
assess the sensitivity of the candidates to the process variation and their correlation to the on-part
pillars, respectively.

Figure 14 presents the results of the sensitivity analysis for the effects of the process parameter
changes. In particular, Figure 14a presents the results from the µ-pillar arrays height measurement
in position PP1 (µ-pillar structures near the gate). From the effect plots it can be seen that the
parameter with the greatest influence on the response is the injection speed (InjSp); its increase
leads to 39.9 ± 3.2 µm height deviation decrease of the feature height for Cavity 1 and a 0.06 µm
height deviation increase for features in Cavity 2. The error bars at the two parameter levels do not
overlap, and thus, the effect is considered significant for Cavity 1. The parameter with the second
most significant effect is Tm where an increase to its level results to 39.8 ± 3.2 µm height deviation
(from mold values) decrease of the µ-pillars. The rest of the parameters all appear to have an influence
with the exception of Tmld. However, the error bars at the parameter levels of the Tmld and PackPr
parameter effects do overlap indicating that the parameters cannot be considered as significant.

Figure 14b presents the results from the pillar array height deviation measurements in position
PP2 (µ-pillar structures in the middle of the part). The main effect plots reveal that the parameter with
the greatest influence on the response is the InjSp, where its increase from 100 mm/s to 140 mm/s
leads to 24.9 µm increase of the feature height deviation for Cavity 2, which is considered significant.
For the rest of the parameters only Tm appears to have an influence; however, none can be seen as
significant as the error bar in the main effect plot overlap for the two parameter levels for both cavities.

Figure 14c presents the results from the pillar arrays height deviation measurement in position
PP3 (µ-pillar structures far from the gate). However, none of the effects can be considered significant
as the error bars do overlap again.

In all three cases, the presented results are supported by the Pareto graphs at the right column of
the figure with respect to the parameters (Tm and InjSp) that have the largest effect. The effect of the
two-way interaction between Tm and InjSp is smaller from the effects of those two parameters, thus it
is considered insignificant.
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Figure 14. Influence of IM process on the eight measurand deviations (from mold values) and “product
fingerprints candidates”. (a) Position PP1 in Cavities 1 and 2, (b) position PP2 in Cavities 1 and 2,
(c) position PP3 in Cavities 1 and 2, (d) position RP2 in Cavities 1 and 2. The figure presents the main
effects (left column) and the Pareto graphs (right column), with a schematic representation of the
measurement areas to be provided at the top. The error bars in the main effect’s plots represent the
measurement uncertainty from the dataset of the respective product fingerprint (Table 6).



J. Manuf. Mater. Process. 2018, 2, 79 16 of 22

Table 6. Measurement uncertainty of the main effects (Ume) per parameter level.

Ume. per Run-Cavity 1

Tm [◦C] Tmld [◦C] InjSp [mm/s] PackPr [bar]

Position Unit 220 260 40 60 100 140 440 540
PP1 [µm] 5.6 3.6 3.9 3.8 3.0 3.8 3.2 3.0
PP2 [µm] 5.7 2.2 5.1 4.2 6.2 0.8 3.5 5.7
PP3 [µm] 16.0 1.8 13.3 13.3 17.3 3.2 12.6 14.0
RP2 [µm] 27.5 21.5 23.9 25.6 26.2 21.0 27.2 21.8

Ume. per Run-Cavity 2

Tm [◦C] Tmld [◦C] InjSp [mm/s] PackPr [bar]

Position Unit 220 260 40 60 100 140 440 540
PP1 [µm] 3.1 3.2 3.2 3.0 3.1 3.2 3.2 3.1
PP2 [µm] 3.7 4.3 3.9 4.1 3.9 4.2 4.0 3.9
PP3 [µm] 3.7 3.2 3.1 3.5 3.4 3.3 3.4 3.3
RP2 [µm] 46.8 21.8 37.3 39.4 32.8 3.7 35.2 41.3

In comparison to positions PP1, PP2, and PP3 that are located on the molded part, the µ-pillar
features in positions RP2 (at the middle of the runner for both Cavities 1 and 2) (Figure 14d) are less
sensitive to process variation than the three previously discussed measurand positions. In the case
of C2RP2 (Cavity 2—position RP2) a level increase in the Tm, Tmld, InjSp, and PackPr parameters
results to a feature height deviation decrease of 8.5 µm, 3.6 µm, 25.2 µm, and 0.66 µm, respectively,
revealing the influence of the InjSp parameter. In particular, the Pareto chart in Figure 14d presents the
larger influence of InjSp to the measurand C2RP2 in comparison to C1RP2, which is directly connected
to the different geometries in Cavities 1 and 2. However, similarly for the results of the feature
height deviation from positions C1PP3 and C2PP3 (Figure 14c), none of the parameters’ effects can be
considered significant due to the overlapping of the uncertainty bars in the presented main effects.
The reason for the influence of InjSp and Tm lies again in the lower viscosity of the melt. The melt
viscosity in combination with the geometry of µ-structure features, has an effect on the replication of
the µ-features, as molten polymer at higher injection speeds (InjSp), or melt temperature (Tm) has
a lower value of viscosity and can fill the features before a surface frozen layer is formed. When the
packing pressure (PackPr) is considered alone, the already formed frozen layer of the polymer cannot
be deformed by the higher packing pressure in order to fill the high aspect ratio µ-pillars. From the
main effect plots charts, it can be seen that lower height deviation (i.e., better replication) existed
mainly at the positions in the middle of the parts and farther from the gate where the response were
less sensitive to process variation. Table 6 presents the measurement uncertainty levels of the main
effects shown in Figure 14.

The µ-pillars in position RP2 are sensitive to process variation (although less than the rest of
the measurands), and are thus considered suitable “product fingerprint” candidates. The analysis of
the effects for the IM process parameters on the eight measurands has provided some indications on
the most suitable possible product fingerprints with respect to their sensitivity to process variation.
A product fingerprint though is required to have a high level of correlation with the overall part
quality assessed by a measurand. In the current concept, the on runner µ-pillars viability as “product
fingerprints” is examined.

Thus, the other µ-pillar positions are disregarded since they resulted in non-suitable product
fingerprints. A correlation analysis was carried out to determine the most suitable product fingerprint
related to the quality of the on part measurands and from the two on runner measurands. For the
analysis, the Pearson correlation ρ coefficient was calculated with the use of Equation (16) [27].
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ρ(x, y) = ∑n
i=1(xi − x)(yi − y)√

∑n
i=1(xi − x)2 ∑n

i=1(yi − y)2
(16)

n is the sample size of the two datasets X and Y (n∗1 vectors), xi and yi: data points in the vectors;
x and y: the sample means of datasets X and Y.

The coefficient ρ can vary between −1 and 1, where −1 indicates a perfect negative correlation
and 1 indicates a perfect positive correlation. Instead, a ρ value equal to 0 connotes that no correlation
exists between the two compared datasets. In this analysis, all the data points from the three replicates
of each treatment of a 24 × 3 full factorial experiment were used for the correlation analysis and the
calculation of the absolute Pearson coefficients.

The calculated |ρ| values for the 32 dataset combinations (16 combinations per cavity) are
presented in Figure 14. High correlations exist for many dataset combinations, though special focus
was given in the correlations of the datasets to the dataset originating to positions RP2 from Cavities
1 (C1RP2) and 2 (C2RP2). Figure 15a is focused on Cavity 1 and it illustrates that the combination
dataset with the highest correlation is C1PP1/C1RP2 (|ρ| = 0.73) (i.e., near the gate/on the runner),
followed by C1PP2/C1RP2 (|ρ| = 0.60) and C1PP3/C1RP2 (|ρ| = 0.57) (i.e., far from the gate/on
the runner), which present a strong correlation for the first combination and moderate correlation for
the two consequent ones. Instead, in Cavity 2 no strong correlations exist to the measurands in the
cavity, indicating that even though measurand C2RP2 is sensitive to process variations, particularly
for injection speed, it is not considered suitable for the quality monitoring of the µ-pillars inside the
cavity. Taking into consideration the sensitivity and correlation analyses from measurands in both
cavities, only the µ-pillars on the runner of Cavity 1 (C1RP2) can be considered as suitable “product
fingerprints” candidate and only for the measurands of Cavity 1.
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Figure 15. Pearson correlation coefficient plots of measurands to the pillar “product fingerprint”
positioned on the runner of the molding (a) in Cavity 1 and (b) in Cavity 2. A perfect correlation
|ρ| = 1 exists only for combinations of the same dataset.

3.3. Process Fingerprint Analysis

In the same way as for the “product fingerprint”, a set of “process fingerprint” candidates were
extracted from the machine process monitoring and regulation signals. The goal was to verify which
can act as indicators of the overall product quality, especially for the functional µ-pillar features.

The time-resolved machine data were used to extract two type of indicators:

(1) The first type is characterized by those indicators which originated from the deviation of both the
transient injection pressure and injection speed signals with respect to the reference signals such
as error of alignment (ε(t)), integrated squared error (ISE), cross correlation shift error (Shift),
and dynamic time warping (WarpDis);

(2) Those indicators where the “signal integral” (Ix) and “signal power” (SPx) were calculated from
each signal to extract the information from the signal curve and are subsequently converted into
a single value representative of the second type.



J. Manuf. Mater. Process. 2018, 2, 79 18 of 22

3.3.1. Process Fingerprint Based on Indicators of Type 1

As already discussed in Section 2.5.1, the machine controller records the injection speed
and the pressure time series and transient data during the process for every consecutive cycle.
The deviation of those signals from the initial reference (1st signal per run) is used for the
calculation of the deviation-based “process fingerprints” (Type 1). When this type of indicator
is considered, the “fingerprints” as well as the dataset’s values are standardized in order to be
compared. Figure 16 provides an example of the trends that exist between the standardized mold-part
deviation measurement and the standardized “process fingerprints” candidate values. It can be seen,
particularly for experimental run 16, that not all deviation datasets follow the same trend of the “process
fingerprints” candidates. However, the same fingerprints and dataset trends exist for both the nominal
(see Figure 16 top) and cross correlated aligned signals (see Figure 16 bottom). It can be seen that
“Workdev-InjPr” and “Erwork-InjPr” follow the exact trend with the dataset “C2PP2”. Analogously
“ISE-InjPr” follows a similar trend. Moreover, the dataset of position RP2 in Cavity 2 (C2RP2) follows
a similar trend to fingerprint candidate “ShiftXcorr-InjPr”. A similar trend can be observed between
the “process fingerprint” candidate “WarpDis-InjPr” and the dataset of position C1PP3.
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Figure 16. Example of process fingerprint candidates to measurand trends for experimental run 16
based on (a) nominal signals and (b) cross correlated signals. The legend of the graphs denotes both
the measurand datasets (i.e., C1PP1: Cavity 1–Position PP1) and the deviation based (Type 1) “process
fingerprints”.

When the whole experimental space is considered, the same dataset trends were not always
in agreement with the trends of the same candidates. Figure 17 illustrates the occurrence of similar
“process fingerprint” trends to the measurement datasets of each experimental run. For example,
significant trends between the measurement datasets and the candidate “WarpDis-InjPr” occur
a maximum of six times (i.e., six datasets) for Runs 7 and 15 where the Tmelt parameter is kept on the
low level. The second process fingerprint candidate occurrence is “Erwork-InjSp” with five times for
Run 9 and four times for Run 1. Instead, “process fingerprint” candidates such as “Workdev-InjPr”,
“ISE-InjPr”, and “ISE-InjSp” have less similar trends to the measurement datasets from the same
run, even though they appear to have similar trends to measurement datasets from most of the
experimental runs.
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As a conclusion, “process fingerprints” “Workdev-InjPr”, “ISE-InjPr”, and “ISE-InjSp” together
with “WarpDis-InjPr” are considered suitable for the quality control of the pillar µ-features in most
of the examined experimental space. However, their correlation and trend are directly dependent on
each of the treatments’ process parameter combination.

3.3.2. Process Fingerprint Based on Indicators of Type 2

The second type of “process fingerprint” candidates originates from each signal individually.
To examine the suitability of signal integrals and signal power to serve as “process fingerprint”
candidates, a correlation analysis to respective measurement datasets was conducted with the
correlation coefficients |ρ| to be presented in Figure 18a for Cavity 1 and Figure 18b for Cavity 2.
The maximum correlation coefficient (|ρ| = 0.436, indicating a moderate correlation) values occur for
the combination I.InjSp/C2PP2 (integral of injection speed signal vs. the dataset in position C2PP2,
in the middle of the part). The rest of the combinations had weak correlation: they exhibited |ρ| values
lower than 0.4. For this reason, the integral and power of the injection pressure and speed signals
originating from the IM machine were not considered suitable “process fingerprint” candidates for the
quality control and assurance for µ-pillar structured molded components for the particular application.
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4. Conclusions

A new approach towards process monitoring and fast-integrated quality assurance of injection
molded microstructured components based on product and process fingerprints was presented and
validated in this paper. The concept is examined on two parallel tracks. Micro pillars were positioned
on the runner before each cavity to serve as “product fingerprints” and the process controlling signals
were collected to extract “process fingerprint” candidates. The suitable fingerprints were selected after
a sensitivity and correlation analysis was conducted to assess their sensitivity to process variation and
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correlation, respectively. As far as the product quality assurance was concerned, the replication quality
of the µ-pillars was assessed using 3D scanning focus variation microscopy (i.e., off-line metrology).
For the process monitoring, the signals generated by the machine regulation embedded sensors were
used to extract the time-resolved data. Summarizing the key findings of the research, the following
conclusions can be drawn:

• The variation of the IM process parameters settings has an effect on the manufacturing quality
and replication of the molded µ-pillar structured components placed both in the cavities as well
as on the runners.

• The variation of the process was used to assess the suitability of µ-pillars in the eight different
positions to act as product fingerprint. The analysis was based on their replication quality.
A correlation analysis was then used for verification. This track was focused on the µ-pillars
positioned on the runners of the molding in positions C1RP2 and C2RP2. For Cavity 1, it can
be seen that the dataset position C1RP2 can be used to monitor the quality of the µ-features on
the part, especially for position C1PP1 (near the gate) with the highest correlation to originate to
the combination is C1PP1/C1RP2 (|ρ| = 0.73) (i.e., near the gate/on the runner), followed by
C1PP2/C1RP2 (|ρ| = 0.60) and C1PP3/C1RP2 (|ρ| = 0.57) (i.e., far from the gate/on the runner).
Instead, the µ-pillars on the runner of Cavity 2 (C2RP2), did not present strong correlations with
respect to the measurands of the features in the cavity, indicating that these µ-pillars are not
suitable to serve as a “product fingerprint”.

• Two different types of process fingerprint candidates were assessed for their suitability to
act as quality indicators of the micro structures on the molded parts. Results show that only
a small number of process fingerprint candidates from the category of deviation-based process
fingerprints (i.e., Type 1) were considered suitable for process monitoring when considered
together with the proper measurand. From the Type 2 indicators in fact, no candidate presented
a strong correlation with the quality of a measurand. This indicates that the integral and signal
power of machine injection pressure and speed signals could not be used for the monitoring of
the overall part quality in the current application.

• Finally, it can be concluded that the deviation of the quality of the part’s µ-pillars can be monitored
by monitoring the deviation of the “Workdev-InjPr”, “ISE-InjPr”, “ISE-InjSp”, and “WarpDis-InjPr”
process fingerprints. These fingerprints present similar trends with measurands for most of the
treatments in the investigated process window.

Future work will aim at the validation of the presented concept, enriched with data acquired
from in-mold temperature and pressure sensors. Furthermore, the assessment of product and process
fingerprints performance robustness will be carried out in longer manufacturing runs emulating
an actual production environment.
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