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Abstract: This study shows the effect of hot isostatic pressing (HIP) on the porosity and the
microstructure, as well as the corresponding fatigue strength of selectively-laser-melted (SLM)
AlSi10Mg structures. To eliminate the influence of the as-built surface, all specimens are machined
and exhibit a polished surface. To highlight the effect of the HIP treatment, the HIP specimens are
compared to a test series without any post-treatment. The fatigue characteristic is evaluated by
tension-compression high cycle fatigue tests under a load stress ratio of R = −1. The influence of HIP
on the microstructural characteristics is investigated by utilizing scanning electron microscopy of
micrographs of selected samples. In order to study the failure mechanism and the fatigue crack origin,
a fracture surface analysis is carried out. It is found that, due to the HIP process and subsequent
annealing, there is a beneficial effect on the microstructure regarding the fatigue crack propagation,
such as Fe-rich precipitates and silicon agglomerations. This leads, combined with a significant
reduction of global porosity and a decrease of micro pore sizes, to an improved fatigue resistance for
the HIPed condition compared to the other test series within this study.
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1. Introduction

Additive manufacturing (AM) offers the possibility to manufacture complexly-shaped and
topographically-optimized components [1–5]. Therefore, powder bed-based AM is contemplated
to find application in various fields such as aviation, automotive, and biomedical engineering [6].
Estimations state that 55% of all failures in aeronautic engineering and, generally speaking, about 90%
of all engineering failures are caused by a fatigue-related damage mechanism [7,8]. Hence, it is of
upmost importance to investigate and understand the fracture mechanisms and fatigue characteristics,
to assess properly, as well as safely the material qualifications. It is crucial to take account of the
interaction between the microstructure, internal defects, and fatigue resistance [9,10].

Inner imperfections like unmolten areas or bonding errors between melt-pool borders and
pores are mostly responsible for fatigue failures concerning AM components. It is necessary to
control the distribution and extension of such cavities, as they are preferable spots for fatigue crack
initiation [11,12]. Given the fact that in the case of cast aluminum alloys, hot isostatic pressing (HIP)
significantly decreases the volume fraction of porosity with only minor changes of microstructural
features, leading to a considerable increase of fatigue strength, an appropriate post-treatment may be
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beneficial to AM parts, as well [13–16]. One can find that due to the extremely fine microstructure of
selectively-laser-melted (SLM) parts, an HIP treatment above the solubility temperature of AlSi10Mg
leads to microstructural coarsening because of the dissolving of grain boundaries. This results in a
reduced fatigue resistance, although the porosity is significantly lower [8,17]. To take advantage of the
beneficial effect of HIP on the porosity, the changes within the microstructure cause the necessity of
quenching and a subsequent age hardening process to counteract these negative effects [18]. The exact
HIP parameter was determined incorporating the knowledge of the specimen manufacturer with the
aim of reducing the amount of porosity in order to improve the fatigue behavior.

For this reason, the fatigue strength of the HIP-treated specimen at a commonly-used
temperature for solution annealing followed by low temperature annealing as heat treatment was
investigated. Besides their fatigue resistance, the local material properties, such as porosity and
microstructure, were analyzed and compared to specimens without any post-treatment, denoted as
the as-built condition.

2. Materials and Methods

The chemical composition of the utilized AlSi10Mg powder, shown in Table 1, is given by the
manufacturer specification and corresponds to the standard DIN EN 1706:2010 [19].

Table 1. Chemical composition of the additive manufacturing (AM) powder by weight %.

Material Si Fe Cu Mn Mg Al

AlSi10Mg 9.0–11.0 0.55 0.05 0.45 0.20–0.45 Balance

Specimens were fabricated using an EOS M290 system with a Yb fiber laser, a power of 400 W,
and a beam diameter of 100 µm. All specimens were built in the vertical direction with a certain
machining allowance in order to remove subsequently the as-built surface and eliminate surface-related
effects. The structures were manufactured according to the standard parameter set given by the system
and powder manufacturer EOS. Following the built process, hot isostatic pressing was performed
applying a temperature higher than 500 ◦C and a pressure of above 100 MPa with a holding time of at
least two hours followed by quenching under constant pressure. Low temperature annealing over a
certain time period was conducted afterwards. Subsequent to the heat treatment, the specimens were
processed to the final geometry by turning and polishing. A CAD drawing with the detailed specimen
geometry and dimensions is shown in Figure 1. The shape of the specimens was designed to show a
homogeneous stress distribution over the cross-section with a stress concentration factor as low as
possible due to the narrowing within the testing section, corresponding to no common standard.
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The specimens are fatigue tested at a load stress ratio of R = −1 on a RUMUL Mikrotron resonant
testing rig with a frequency of about 106 Hz. Collets were used for gripping in order to clamp the
specimen at both ends. The abort criterion was defined either as total fracture or as run-out at 1 × 107

load cycles. Run-outs were reinserted at higher stress levels to obtain more data in the finite life
regime, conservatively assuming pre-damaging at stress levels lower than the endurance limit [20].
For each test series, respectively with and without HIP treatment, nine specimens were manufactured
and tested.

3. Results and Discussion

3.1. Effect of HIP Treatment on the Microstructure

HIP treatment at high temperature with considerably high pressure leads to significant
microstructural differences compared to the as-built condition; hence, the effect on the material was
investigated in detail. To characterize the microstructure after HIP and heat treatment, SEM images,
taken with a Carl Zeiss EVO MA 15 microscope, of the post-processed condition were evaluated.
In Figure 2, one can clearly see Fe-rich precipitates and Si particles, which were also detected
in [21]. Silicon crystals were precipitated at the grain boundaries during the HIP treatment above the
solubility temperature, and they grew to their respective size during low temperature annealing [22–25].
Microstructural features like silicon agglomerations and needle-shaped, Fe-rich precipitates obstructed
a propagating fatigue crack and, therefore, generally improved the resistance against fatigue crack
growth. Such microstructures favor crack deflection and energy dissipation at the crack tip. Hence,
the long crack growth was decelerated, whereby the fatigue strength was enhanced [17,26].

J. Manuf. Mater. Process. 2018, 2, x FOR PEER REVIEW  3 of 9 

 

The specimens are fatigue tested at a load stress ratio of R = −1 on a RUMUL Mikrotron resonant 

testing rig with a frequency of about 106 Hz. Collets were used for gripping in order to clamp the 

specimen at both ends. The abort criterion was defined either as total fracture or as run-out at 1 × 107 

load cycles. Run-outs were reinserted at higher stress levels to obtain more data in the finite life 

regime, conservatively assuming pre-damaging at stress levels lower than the endurance  

limit [20]. For each test series, respectively with and without HIP treatment, nine specimens were 

manufactured and tested. 

3. Results and Discussion 

3.1. Effect of HIP Treatment on the Microstructure 

HIP treatment at high temperature with considerably high pressure leads to significant 

microstructural differences compared to the as-built condition; hence, the effect on the material was 

investigated in detail. To characterize the microstructure after HIP and heat treatment, SEM images, 

taken with a Carl Zeiss EVO MA 15 microscope, of the post-processed condition were evaluated.  

In Figure 2, one can clearly see Fe-rich precipitates and Si particles, which were also detected  

in [21]. Silicon crystals were precipitated at the grain boundaries during the HIP treatment above  

the solubility temperature, and they grew to their respective size during low temperature  

annealing [22–25]. Microstructural features like silicon agglomerations and needle-shaped, Fe-rich 

precipitates obstructed a propagating fatigue crack and, therefore, generally improved the resistance 

against fatigue crack growth. Such microstructures favor crack deflection and energy dissipation at 

the crack tip. Hence, the long crack growth was decelerated, whereby the fatigue strength  

was enhanced [17,26]. 

 

Figure 2. Microstructure after HIP and subsequent heat treatment. 

Comparing the microstructure of the as-built condition (Figure 3a) to the microstructure after 

the post-treatment (Figure 3b,c), appreciable differences regarding the porosity we observed. For that 

reason, these figures have the same magnification and scale. A larger magnification image is 

depictured in Figure 3d, which reveals a circular shape of the observed micro-porosity. One can see 

that the amount of porosity and the maximum extension of pores have significantly decreased. 

Additionally, after the post-treatment, melt-pool boundaries completely vanished. The 

aforementioned Fe-rich precipitates and Si-crystals were formed within the microstructure. 

Figure 2. Microstructure after HIP and subsequent heat treatment.

Comparing the microstructure of the as-built condition (Figure 3a) to the microstructure after
the post-treatment (Figure 3b,c), appreciable differences regarding the porosity we observed. For that
reason, these figures have the same magnification and scale. A larger magnification image is depictured
in Figure 3d, which reveals a circular shape of the observed micro-porosity. One can see that the amount
of porosity and the maximum extension of pores have significantly decreased. Additionally, after the
post-treatment, melt-pool boundaries completely vanished. The aforementioned Fe-rich precipitates



J. Manuf. Mater. Process. 2019, 3, 16 4 of 9

and Si-crystals were formed within the microstructure. Throughout the annealing, the Si-particles
grew at Si-rich cellular boundaries, and finally, grain boundaries were no longer clearly visible at this
stage due to the heat influence [23]. The comparison between backscatter images before (Figure 3a)
and after (Figure 3b) HIP treatment highlights this microstructural change.
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3.2. Fatigue Tests

The fatigue test results are presented in Figure 4. The dashed line with square marks represents
the data for the as-built series. The full line with triangle markings shows the data for the HIP
condition. Within the finite life region, the specimen was tested at several load levels with a certain
incrementation. The evaluation of the SN-curve in the finite life region is based on the ASTM E739
standard [27]. The high cycle fatigue strength at 1 × 107 load-cycles was statistically evaluated by
applying the arcsin

√
P-transformation procedure given in [28]. Run-outs were reinserted at higher

stress levels in order to obtain additional data within the finite life region. The results were normalized
to the nominal ultimate tensile strength (UTS) of the additively-manufactured material without any
post-treatment, given by the powder manufacturer [29]. The peak load level was set at about 35% of
the UTS, which was well below the yield strength according to the powder manufacturer, to ensure
testing within the linear-elastic region of the material and obtain reasonable results regarding endured
load cycles. The results revealed that the HIP test series provided an increase of the high cycle fatigue
strength of about 14% considering a survival probability of PS = 50%. The scatter band between
10% and 90% survival probability, referring to the stress amplitude, minorly decreased for the HIP
condition compared to the as-built condition. Furthermore, the slope in the finite life region was less
steep for the HIP condition. The fatigue test results are summarized in Table 2.
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Table 2. Statistically evaluated SN-curve parameters for both test series.

Condition Normalized Fatigue
Strength (PS = 50%) Difference Slope in the Finite

Life Region
Scatter Band in the
Finite Life Region

As-built 0.253 Basis 12.99 1:1.15
HIP-treated 0.288 +14% 19.37 1:1.06

3.3. Metallographic and Fracture Surface Analysis

In order to evaluate the decrease in porosity, the average maximum pore extension, as well as
the equivalent circle pore diameter, several micrographs of the two conditions were investigated.
Figure 5a shows an example of the as-built condition, whereas Figure 5b is taken from the microsection
of an HIP-treated specimen. All pictures of micrographs and fracture surfaces were recorded with
a KEYENCE VHX-5000 light optical digital microscope. The microsections were prepared only by
polishing and received no additional etching. Dependent on the polished surface and the image
post-processing, different lighting options and angles were necessary. This was the reason why the
as-built specimen in Figure 5a (ring-lighting) appears blue and shows a different texture, e.g., visible
melting tracks and laser scanning strategy, than the HIP sample in Figure 5b (coaxial lighting). In order
to determine the amount of porosity, image processing tools were utilized. At first, the images were
converted to binary pictures with a certain threshold to ensure that the microsection of the specimen
area appeared white while pores appeared black. Secondly, the embedding material was subtracted
from the image. In the end, the separated pores, as well as the porosity, which is the ratio of specimen
area to pore area, could easily be evaluated. The outcome is presented in Figure 6a–c and summarized
in Table 3. The results were again normalized to the as-built condition to highlight the differences
between the two test series. The results maintained that the HIP samples possessed a significant lower
level of porosity (−64%), a decreased maximum pore extension (−22%), as well as an equivalent circle
diameter (−11%).
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Table 3. Summary of the porosity and pore size characteristics between the as-built and HIP condition.

Condition Normalized Amount
of Porosity

Normalized Maximum
Pore Extension

Normalized Equivalent
Circle Diameter

As-built 1.00 (Basis) 1.00 (Basis) 1.00 (Basis)
HIP-treated 0.36 (−64%) 0.78 (−22%) 0.89 (−11%)

To characterize the crack-initiating defect, a fracture surface analysis for each tested specimen
was carried out. A fractured surface of the as-built specimen is presented in Figure 7a. The surface is
visually differentiated into two sections, the oscillating crack growth regime and the burst fractured
area. The defect, which was responsible for the failure, can be easily identified and evaluated. In every
investigated fractured surface for the as-built condition, a pore was failure critical. An example with
a marked and measured pore is given in Figure 7b. The size and location of the failure causing
imperfection was one determining factor for the fatigue strength of the material; see also [30,31].
Therefore, an evaluation of the defect size was necessary to compare and to assess the fatigue strength
of the two investigated conditions.
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Figure 7. (a) Fracture surface of an as-built specimen; (b) size measurement of failure-critical defect.

A fracture surface for the post-processed condition (two-dimensional image with in depth focus)
is displayed in Figure 8a. As pointed out for the as-built condition, the fracture surface is again
separated into two different zones. The crack origin can be found within the fatigue fracture area,
since the fine structured area points towards the crack initiation site. The fracture surface analysis
for the HIP specimens revealed a different failure mechanism compared to the as-built ones. Due to
the remarkable decrease in porosity, cavities were no longer responsible for fatigue crack initiation,
but rather microstructural features such as silicon-rich phases. In Figure 8b, one can identify the
debonding of Si-crystals as the failure origin; see also [26]. The crack initiated near the subsurface at
all tested samples, for the HIP condition, as well as for the as-built condition. In almost every case,
no evidence of pores could be found near the crack origin.
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4. Conclusions

Based on the results presented in this paper, a beneficial effect on the fatigue strength of an
HIP treatment above the solubility temperature with subsequent low temperature annealing can
be observed for the additively-manufactured AlSi10Mg material. Concerning the microstructure,
there was a significant decrease in porosity by 64%, maximum pore extension by 22%, and equivalent
circle diameter by 11%. Because of the heat influence, melt-pool boundaries were dissolved, and grain
boundaries were no longer visible due to the growth of Si-precipitates at the cellular boundaries.
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After finishing the post-treatment, silicon agglomerations, as well as needle-shaped, iron-rich
intermetallic phases were formed. These precipitates caused a deceleration of the crack growth due to
the interference of the crack front at these microstructural features. Such a microstructure generally
improves the resistance against fatigue crack growth since the propagation of the crack is obstructed.
In summary, it was observed that the changes of the microstructure due to the application of the
post-treatment contributed to an enhanced fatigue strength.

In addition, a change of the failure mechanism was also detected. For the as-built condition,
pores were the decisive defect type. On the contrary, intermetallic inhomogeneities provoked the
failure for the HIP condition. The crack initiation site is found in every case within the surface near
region, independent of the failure mode. The combination of the microstructural changes consequently
influenced the crack initiation, as well as the propagation behavior, leading to an improvement of 14%
of the high cycle fatigue strength at a survival probability of 50% by the applied post-treatment.
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