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Abstract: To evaluate the prediction accuracy of the anisotropic yield function, we propose an original
cruciform hole expansion test. Displacements on two axes were applied to the cruciform specimens
with a hole in the center. The thickness strain in the region near the hole was compared to the
simulation results. Because this forming test is free of friction and bending, it is an appropriate
method to assess the anisotropic yield function without the influences of friction or the Bauschinger
effect, or the need to consider the stress-strain curve in high-strain region. Hill1948, YLD2000-2D,
and spline yield function which is an improved version of the Vegter model were selected, and 6000
series aluminum alloy sheets (A6116-T4) were used in this study. The parameter identification method
of the spline yield function also proposed in this paper using the pseudo plane strain tensile test and
optimization software. As a result, the spline yield function has better predictive accuracy than the
conventional anisotropic yield functions Hill1948 and YLD2000-2D.

Keywords: anisotropic yield function; sheet metal forming; plane strain tensile test; biaxial tensile
test; hole expansion test

1. Introduction

High-tensile-strength steel sheets and aluminum alloy sheets are used for weight reduction of car
bodies. Because of the difficulty in forming these materials, preliminary evaluations by numerical
simulation are necessary. Hence, the requirements for the prediction accuracy of simulations of
sheet metal forming are high, and further improvement is essential. An anisotropic yield function is
indispensable for highly accurate simulation. Within this paper, we evaluate the prediction accuracy of
anisotropic yield functions Hill1948 [1], YLD2000-2D [2], and the spline yield function [3].

To evaluate the prediction accuracy of the anisotropic yield function, a hole-expansion test has
been carried out in many studies. For examples in [4–7], the thickness strain distributions along the hole
edge and its surroundings were compared with the simulation results. This approach is convenient
and effective for assessing the validity of anisotropic modeling, because the anisotropy of the material
affects the thickness strain distribution near the edge of the hole. However, the results rarely agree well
with the experimental results. It is difficult to validate anisotropic modeling by only considering the
change in thickness distribution. In general, this hole-expansion test is relatively simple, but includes
contacts between the material and the dies, as well as bending and back-bending deformation. Thus,
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it is necessary to consider not only the anisotropy of the material, but also friction, the stress-strain
relation in the high-strain region, and the Bauschinger effect. However, it is not possible to separate
these effects within the calculations. The Coulomb friction model is a simple and popular friction
model; however, friction during the forming process is affected by surface pressure, sliding speed,
and distance. There are friction models that consider these additional variables [8–10]; however, none
take anisotropy into account. In [11], the influence of anisotropic hardening was investigated using
a hole-expansion test. In addition to the anisotropic hardening, Suzuki et al. [12] considered the
Bauschinger effect using the Yoshida-Uemori model [13] and the stress-strain curve in the high-strain
region, which was obtained from a plane bending test using a biaxial tensile machine. However,
because no advanced friction model was considered only qualitative comparisons could be conducted.

In this study, we calibrate and validate the spline yield function, and compare the results with
those of other widely used yield functions for the sheet material A6116 aluminum alloy. To validate
the yield function, biaxial tensile tests were conducted using cruciform specimens with a hole in the
center. Because this forming test does not include friction and bending, it is possible to a quantitatively
compare the experimental and simulation results.

2. Anisotropic Yield Functions

Several important anisotropic yield functions have been proposed. The input variables of these
functions differ; hence, the types of material tests required also differ among functions. To minimize
simulation costs, simple functions with relatively high precision are most desirable. However,
for functions with high complexity, it is often desirable to increase the predictive accuracy, despite
additional costs and material tests. The features of the important anisotropic yield functions are
described below.

1. Hill 1948 [1]: this is the most popular anisotropic yield function especially in the car manufacturing
industry because of its simplicity. For calibration of this yield function, the results of uniaxial
tensile tests in three directions are required. Usually, parameters are identified from the flow
stress in the rolling direction (RD) and Lankford coefficients (r-values) in three directions.

2. YLD2000-2D [2]: this is a widely used yield function and is implemented in the several commercial
finite element (FE) simulation software tools. In the case of face-centered cubic lattice metal,
such as aluminum alloy, it is recommended that the order is set to 8 [14]. To calibrate this yield
function, the flow stresses and r-values at 0◦, 45◦, and 90◦ with respect to the RD, the equi-biaxial
stress value, and the strain increment direction at the equi-biaxial stress state are used.

3. Vegter [15]: this yield function is defined in the principal stress space. In addition to the uniaxial
tensile tests in five or more directions and a material test of the equi-biaxial stress state, plane-strain
tensile tests are required in five or more directions. The Vegter model can consider the results of
many material tests, but it requires substantial effort to determine all input variables, and it is
difficult to conduct pure plane-strain tensile test.

Considering the feasibility of material testing and of industrial application, Hill 1948, YLD2000-2D,
and the spline yield function, which is an improved version of the Vegter model and described in the
next section, are compared in this paper.

3. Spline Yield Function

The spline yield function is based on the Vegter model, and is defined in the principal stress space
and enhanced by making its structure flexible. For interpolation function, spline functions are used
instead of Fourier functions of the Vegter model. In previous studies [16,17], higher ordered or multi
segmented yield loci than the Vegter model were used. The structure of a spline yield function is
mathematically identical to a spline surface used in a computer aided design (CAD) system. In contrast
with the Vegter model, the spline yield function does not require a pure plane strain stress state.
This is one of its important advantages over the Vegter model. In the next section, we describe the
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calibration method of the spline yield function’s parameters using a pseudo plane strain tensile test
and inverse analysis.

We consider the yield function with rotational symmetry with respect to the origin. We consider
five points on the yield function, including the uniaxial stresses and the equi-biaxial stress in the
first quadrant, as shown in Figure 1. This is a spline curve composed of four quadratic Bézier curve
segments. Bi0 is the reference point on the curve (i = 0, 1, 2, 3), Bi1 is the hinge point, and Bi j is also
the control point ( j = 0, 1). Bi1 is determined as an intersection of two tangent lines of Bi0 and Bi j B10

and B30 do not need to be the exact plane-strain stress state. R(u) = (R1, R2) which is stress point on
the normalized yield locus in the principal stress space of σ1 and σ2 is described as follows:

R(u) = (1− u)2Bi0 + 2(1− u)uBi1 + u2B(i+1)0 (1)

where, u is the parameter of the Bézier curve (0 ≤ u ≤ 1). The direction of the principal stress, σ1 and
σ2 are orthogonal to each other, and the smaller angle from RD is set to θ, and the other one is set to θ
+ 90◦. To describe all the stress states, the angle θ between the direction of principal stress σ1 and the
RD must be continuously defined in the range of 0◦ to 90◦ in consideration of the symmetry condition
due to the orthotropic anisotropy. In this study, five directions of σ1 are defined discretely at 22.5◦

intervals, and R(θ, u) is defined continuously by interpolation using a spline basis function as follow:

R(θ, u) =
4∑

k=0

gk(θ)Rk(u) (k = 0, 1, 2, 3, 4) (2)

where Rk(u) means the “k”th R(u), if k = 1, the angle of σ1 respect to the rolling direction is 22.5◦. gk(θ)

is a one-dimensional cubic spline basis function and is given by the following boundary conditions
(l = 0, 1, 2, 3, 4).

gk

(
l
4
·90◦

)
= δkl (3)

∂gk

∂θ

∣∣∣∣∣
θ=0◦

=
∂gk

∂θ

∣∣∣∣∣
θ=90◦

= 0 (4)

gk(θ) is drawn in Figure 2.

J. Manuf. Mater. Process. 2020, 4, x FOR PEER REVIEW 3 of 20 

is mathematically identical to a spline surface used in a computer aided design (CAD) system. In 
contrast with the Vegter model, the spline yield function does not require a pure plane strain stress 
state. This is one of its important advantages over the Vegter model. In the next section, we describe 
the calibration method of the spline yield function’s parameters using a pseudo plane strain tensile 
test and inverse analysis. 

We consider the yield function with rotational symmetry with respect to the origin. We consider 
five points on the yield function, including the uniaxial stresses and the equi-biaxial stress in the first 
quadrant, as shown in Figure 1. This is a spline curve composed of four quadratic Bézier curve 
segments. ࡮௜଴ is the reference point on the curve (݅ = 0, 1, 2,  ௜௝ is࡮ ௜ଵ is the hinge point, and࡮ ,(3
also the control point (݆ = 0,  which is stress (ଵ, ܴଶܴ) = (ݑ)ࡾ .ଷ଴ do not need to be the exact plane-strain stress state࡮ ଵ଴ and࡮ ௜௝࡮ ௜଴  and࡮ ௜ଵ is determined as an intersection of two tangent lines of࡮ .(1
point on the normalized yield locus in the principal stress space of 1ߪ and 2ߪ is described as follows: (ݑ)ࡾ = (1 − ௜଴࡮ଶ(ݑ + 2(1 − ௜ଵ࡮ݑ(ݑ +  ଴ (1)(௜ାଵ)࡮ଶݑ

where, u is the parameter of the Bézier curve (0 ≦ ≧ ݑ   1). The direction of the principal stress, 1ߪ 
and 2ߪ are orthogonal to each other, and the smaller angle from RD is set to θ, and the other one is 
set to θ + 90°. To describe all the stress states, the angle θ between the direction of principal stress 1ߪ 
and the RD must be continuously defined in the range of 0° to 90° in consideration of the symmetry 
condition due to the orthotropic anisotropy. In this study, five directions of 1ߪ are defined discretely 
at 22.5° intervals, and ߠ)ࡾ,  is defined continuously by interpolation using a spline basis function (ݑ
as follow: 

,ߠ)ࡾ (ݑ = ෍ ݃௞(ߠ)ࡾ௞(ݑ)ସ
௞ୀ଴             (݇ = 0, 1, 2, 3, 4) (2) 

where ࡾ௞(ݑ) means the “k”th (ݑ)ࡾ, if k = 1, the angle of σ1 respect to the rolling direction is 22.5°. ݃௞(ߠ)  is a one-dimensional cubic spline basis function and is given by the following boundary 
conditions (݈ = 0, 1, 2, 3,4). ݃௞ ൬4݈ ∙ 90⋄൰ =  ௞௟ (3)ߜ

   ∂݃௞∂ߠ ฬఏୀ଴⋄ =   ∂݃௞∂ߠ ฬఏୀଽ଴⋄  = 0 (4) ݃௞(ߠ) is drawn in Figure 2. 

 
Figure 1. Spline yield function composed of Bézier curves. 

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

R 2

R1 

B00

B01

B10

B11

B20

B21B30B31

B40

Figure 1. Spline yield function composed of Bézier curves.



J. Manuf. Mater. Process. 2020, 4, 43 4 of 20
J. Manuf. Mater. Process. 2020, 4, x FOR PEER REVIEW 4 of 20 

 
Figure 2. Spline basis function for interpolation. 

The convexity condition of the yield function and a relationship between the principal stress and 
the stress components in the global coordinate system is described in the Appendix A. ࡮଴଴, ࡮ଶ଴, and ࡮ସ଴  and their normal vectors determined from the uniaxial tensile tests and bulge test, and the 
parameters pk and qk were introduced to identify ࡮ଵ଴, ࡮ଷ଴ and their normal vectors in Figure 1. 

In Figure 3, ࡭ଵ  is the intersection point of the tangent lines at ࡮଴଴  and ࡮ଶ଴ ଴࡭ ,  is the 
intersection point of the lines from ࡻ to ࡭ଵ and ࡮଴଴ to ࡮ଶ଴. The parameters p0, p4 and q0, q4 are 
defined as follows: ࡮ଵ଴ = (1 − ଴࡭(଴݌ + ଷ଴࡮ ଵ (5)࡭଴݌ = (1 − ଶ࡭(ସ݌ +  ଷ (6)࡭ସ݌

ଵ଴࢔ = (1 − ଴଴࢔(଴ݍ + ଶ଴|(1࢔଴ݍ − ଴଴࢔(଴ݍ +  ଶ଴| (7)࢔଴ݍ

ଷ଴࢔ = (1 − ସ଴࢔(ସݍ + ଶ଴|(1࢔ସݍ − ସ଴࢔(ସݍ +  ଶ଴| (8)࢔ସݍ

where, ࢔௜଴ is the normal vector at ࡮௜଴. In Figure 3, ܴଵ is in the RD and ܴଶ is 90° to the RD. The 
parameters p1, p3, q1, and q3, as well as p0, p4, q0 and q4 are determined for ܴଵ at 22.5° to the RD and ܴଶ 
at 112.5° to the RD which is the same as at 67.5° to the RD because of symmetry. The parameters p2 
and q2 are also determined for ܴଵ at 45° to the RD in the same way. The spline yield function was 
implemented using a user subroutine of LS-DYNA, which is a commercial code with dynamic explicit 
method. These parameters are identified by inverse analysis described in the next section. 

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

0.0 22.5 45.0 67.5 90.0

Sc
al

e 
va

lu
e

Angle from RD / °

݃଴ ݃ଵ ݃ଶ ݃ଷ ݃ସ

Figure 2. Spline basis function for interpolation.

The convexity condition of the yield function and a relationship between the principal stress and
the stress components in the global coordinate system is described in the Appendix A. B00, B20, and B40

and their normal vectors determined from the uniaxial tensile tests and bulge test, and the parameters
pk and qk were introduced to identify B10, B30 and their normal vectors in Figure 1.

In Figure 3, A1 is the intersection point of the tangent lines at B00 and B20, A0 is the intersection
point of the lines from O to A1 and B00 to B20. The parameters p0, p4 and q0, q4 are defined as follows:

B10 = (1− p0)A0 + p0A1 (5)

B30 = (1− p4)A2 + p4A3 (6)

n10 =
(1− q0)n00 + q0n20∣∣∣(1− q0)n00 + q0n20

∣∣∣ (7)

n30 =
(1− q4)n40 + q4n20∣∣∣(1− q4)n40 + q4n20

∣∣∣ (8)

where, ni0 is the normal vector at Bi0. In Figure 3, R1 is in the RD and R2 is 90◦ to the RD. The parameters
p1, p3, q1, and q3, as well as p0, p4, q0 and q4 are determined for R1 at 22.5◦ to the RD and R2 at 112.5◦ to
the RD which is the same as at 67.5◦ to the RD because of symmetry. The parameters p2 and q2 are
also determined for R1 at 45◦ to the RD in the same way. The spline yield function was implemented
using a user subroutine of LS-DYNA, which is a commercial code with dynamic explicit method.
These parameters are identified by inverse analysis described in the next section.
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4. Calibration of Spline Yield Function

To identify the material parameters for three yield functions, three different types of material
experiments were carried out. The thickness of the A6116 specimen was 0.93 mm and T4 solution heat
treatment was conducted. The specimens for the uniaxial tensile tests and the pseudo plane-strain
tensile tests were processed by wire cutting.

4.1. Uniaxial Tensile Tests

Uniaxial tensile tests are conducted for 5 specimens with tensile directions of 0◦, 22.5◦, 45◦, 67.5◦

and 90◦ from the RD. Three valid repetitions were carried out for each experiment. The material
properties obtained from these tests are summarized in Table 1. The normalized stress was determined
when the plastic work in each direction was equal to the reference plastic work in the 0◦ tensile
direction. The effective plastic strain was set to 0.05. The stress-strain curve in the 0◦ direction, which
was extended from 0.2 by the Voce approximation, is shown in Figure 4. The anisotropy of the sheet
metal is characterized by r-value, and the distribution of the anisotropic behavior of the material can
be seen in Figure 5. Within this study, the r-value was calculated as width plastic strain divided by
thickness plastic strain, the r̃-value was defined as the ratio of the width plastic strain increment to the
plastic thickness strain increment. An accurate calculation was undertaken for the tangential direction
of the equi-plastic work surface in the uniaxial stress state by using the r̃-values.

Table 1. Properties of the A6116 specimen.

Tensile
Direction/◦

Yield Strength
(0.2%)/MPa

Tensile
Strength/MPa r (εp = 0.05) r̃ Normalized Stress

(εp = 0.05)

0 144.15 262.66 0.930 0.909 1.000
22.5 140.82 256.55 0.475 0.487 0.972
45 140.37 254.88 0.313 0.310 0.962

67.5 137.42 250.07 0.424 0.418 0.956
90 137.30 251.32 0.788 0.736 0.980
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4.2. Bulge Tests

To measure the equi-biaxial stress and its strain increment ratio corresponding to the plastic strain
of the uniaxial tensile test, hydraulic bulge tests were conducted. The diameter of the die was 123 mm.
Three repetitions were carried out for each of experiment. The digital image correlation (DIC) system
GOM ARAMIS was used to measure the curvature radius, ρ, and the strain, εx or εy, at the apex
of the bulge specimen. The equi-biaxial stress state at the apex of the specimen was assumed to be
σb = σx = σy. For the determination of σb, the following equation was used.

σb =
pρ
2t

(9)

where p is the oil pressure during the bulge test, and t is the sheet thickness at the apex of the specimen,
which is calculated assuming constant volume during plastic deformation, and using the strain, εx

and εy. In Table 2, the normalized stress and strain increment ratio are shown for a reference effective
plastic strain of 0.05.

Table 2. Equi-biaxial stress and strain increment.

Normalized Stress (εp = 0.05) Strain Increment Ratio (rb=dεy/dεx) (εp=0.05)

0.981 1.005
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4.3. Pseudo Plane Strain Tensile Tests

Pseudo plane-strain tensile tests were carried out to determine the parameters for the spline yield
function, which are described in Section 4.4. The specimen geometry, which is shown in Figure 6,
with a width of 30 mm and length of 60 mm allows the same clamping system to be used for the
uniaxial tensile tests. This geometry creates an approximately plan-strain stress state in the center
of specimen; however, the strain is not homogenous over the width of the specimen. Similar to the
uniaxial tensile test, three valid repetitions in the five tensile directions were carried out, and the
load and strain were measured. ARAMIS was used to measure the strain at the center point, P1, of
the specimen and the position P2, which is 5 mm in the tensile direction from the center (Figure 7).
Figure 7 shows the maximum principal strain distribution of the specimen at 0◦ to RD. In order to
compare with the simulation results later, the average strain was introduced as an axial representative
strain. The average strain, εa, was defined as εa =

{
εx(P1) + 2εx(P2)

}
/3, where the tensile direction

is x and the specimen width direction is y. Post processing parameters of DIC are used 0.2 mm as
distance of points, 10 mm as facet size. Figure 8 shows the relationship between the nominal stress
and the average strain, and Figure 9 shows the relationship between the strain in the width direction
at P2 and the average strain. These results were applied for inverse analysis using the FE analysis
software LS-DYNA.
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Inverse analysis using FE simulation was applied to determine pk and qk from the results of the
pseudo plane strain tensile test. The optimization software LS-OPT was used for this inverse analysis,
and a mean square error method was adopted, which had two variables and two objective functions.
The input variables were pk and qk and a relationship between a tensile force and the average strain
(defined in Section 3) was used for one of the objective functions. The other objective function was the
relationship between the strain at P2 in the width direction and the average strain. A FE model for the
pseudo plane strain tensile test was determined, as shown in Figure 10. The mesh size was investigated
as far as necessary strain, which maximum average strain is 5.0%. The 1 mm mesh size and 0.5 mm
mesh size were compared, and the difference of the load force was less than 3% when the average
strain was 5.0%. The 1mm mesh was adopted in consideration of simulation cost. The solutions of
this optimization, which are parameters of spline yield function, are shown in Table 3. Furthermore,
comparisons of the experimental results in 0◦ direction and the results of the FE simulation after an
optimization of the objective functions are shown in Figure 11.
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Table 3. Parameters pk and qk for spline yield function.

k 0 1 2 3 4

Angle from
RD/◦

0 22.5 45 67.5 90

pk 0.458 0.337 0.200 0.260 0.342
qk 0.328 0.289 0.283 0.276 0.238
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The following conditions are fully satisfied in the spline yield function: The flow stresses and
r-values in 5 directions; the equi-biaxial stress and its strain increment direction; and the stresses near
the plane strain in the five directions and their normal vectors. By contrast, the Vegter model could not
be used, because this requires the pure plane-strain tensile test, so it is difficult to determine in the
same material test.

4.4. Comparison of the Equi-Plastic Work Surface Shape

The normalized equi-plastic work surfaces of the three yield functions, identified by
aforementioned material tests, are shown in Figures 12–14. Figure 12 also shows the results obtain
using Hill 1948 and YLD2000-2D for comparison. A description of the parameter identification is
given in the next section. The horizontal axis of Figure 12 corresponds to the RD and the vertical axis
is 90◦ from the RD. The horizontal axis of Figure 13 is 22.5◦ with respect to the RD and the vertical
axis is 112.5◦ (equal to 67.5◦ because of symmetry). The horizontal axis of Figure 14 is 45◦, the vertical
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axis is 135◦ (equal to 45◦ because of symmetry). In Figures 13 and 14, only the spline yield function is
shown. because other yield functions are difficult to show in the principal stress space except when
the horizontal axis is the RD. The above-mentioned equi-plastic work surfaces were normalized with
respect to the plastic work of the uniaxial tensile test for the 0◦ tensile direction. The reference plastic
strain was 0.05. Depending on angle of the axis in the principal stress space, the shape of spline yield
function changes substantially for this material.
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Figure 12. Comparison of the shape of normalized equi-plastic work surface for each yield function.
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Figure 13. Shape of normalized equi-plastic work surface in principal stress space when the horizontal
axis was 22.5◦ from the RD.
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5. Evaluation of Anisotropic Yield Functions

5.1. Experiment

To evaluate the prediction accuracy of the spline yield function, we carried out in-plane cruciform
tests, which are free of friction and bending using the biaxial tensile test machine [18], as shown in
Figure 15. The cylinders of both axes can be controlled by load or displacement. The strain was
measured by the LIMESS DIC system, using four cameras installed above the specimen. The cruciform
specimens were manufactured by milling and the face of the cross section was fine-grained. To allow
the best comparison of experimental and simulation data, the tests were carried out by displacement
control because the displacement can be directly used as a boundary condition in the simulation model.
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In total, six sets of experiments with three values of α and two displacement ratios were conducted
(Table 4). Thereby, the angle between the horizontal arm of the specimen and the RD is α (Figure 16).
Three valid repetitions were carried out. For a displacement ratio of 2:1, velocities of 4 and 2 mm min−1

were used. For the ratio 1:1, the velocity was set to 2 mm min−1 in both axes. The frequency of DIC
system was 5 frames s−1. The maximum and minimum principal true strain were determined using the
software istra4D along the specified circle, Subsequently, the thickness strain was calculated assuming
constant volume during plastic deformation. Post processing parameters of DIC are used 0.1 mm as
distance of points, 10 mm as facet size.

Table 4. Experimental conditions.

Type of Experiment α/◦ (Angle between Horizontal Arm and RD) Displacement Ratio Number of Repetitions

A 0.0 1:1 3
B 0.0 2:1 3
C 22.5 1:1 3
D 22.5 2:1 3
E 45.0 1:1 3
F 45.0 2:1 3
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5.2. Numerical Analysis

LS-DYNA was used for this FE analysis. In FE model, a fine mesh size of less than 1 mm was
used along the center hole. The displacement constraints were given as boundary condition, and the
assumed strain shell elements [19] were used. To determine the anisotropic parameters for Hill1948
yield function, three r-values at 0◦, 45◦, and 90◦ direction relative to the RD in Table 1 were used.
The order m of YLD2000-2D was set to 8, the anisotropic parameters α1 to α8 [2] were numerically
determined using the following experimental results: the flow stresses and the r-values at 0◦, 45◦, 90◦,
equi-biaxial stress and strain increment ratio rb in Table 2. Anisotropic parameters α1 to α8 and m are
shown in Table 5.

Table 5. Material parameters for YLD 2000-2D.

α1 α2 α3 α4 α5 α6 α7 α8 m

0.9760 1.0367 0.9459 1.0400 1.0166 1.0553 0.9083 1.1948 8

5.3. Comparison of Numerical and Experimental Results

The total force of the step, where the maximum effective plastic strain of the simulation results
of the spline yield function was 0.15, was taken as a reference load force to match the conditions
of the simulation and experiment. The step corresponding to this load force was selected from the
experiment and the simulation results of the other models. The effective plastic strain of 0.15 was
taken as the reference effective plastic strain, because the stress-strain curve does not include the Voce
approximation. The thickness strain contours of the experiment and the simulation results of the
considered yield functions are shown in Figure 17. For numerical comparison, circles are defined
for evaluation as shown in Figure 18. These positions were determined in the initial state before
applying the displacement. The horizontal axis of the graph for numerical comparison (Figure 18) is β,
which is in the range from 0◦ to 360◦. Comparisons of numerical and experimental results of thickness
distributions are shown in Figures 19–27. The sum of the squared errors between experimental averages
and simulation results for each case are also shown to quantify the predictive accuracy; The smaller
sum of squared errors means better prediction.
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Figure 21. Comparison of thickness strain distributions on circle 3 in experimental condition A.



J. Manuf. Mater. Process. 2020, 4, 43 15 of 20

J. Manuf. Mater. Process. 2020, 4, x FOR PEER REVIEW 15 of 20 

 
Figure 22. Comparison of thickness strain distributions on circle 1 in experimental condition B. 

 
Figure 23. Comparison of thickness strain distributions on circle 2 in experimental condition B. 

 
Figure 24. Comparison of thickness strain distributions on circle 3 in experimental condition B. 

 
 
 
 
 
 

-0.12

-0.10

-0.08

-0.06

-0.04

-0.02

0.00

0 30 60 90 120 150 180 210 240 270 300 330 360

Th
ic

kn
es

s s
tra

in

β ( angle in Fig. 18) / °

experiment1
experiment2
experiment3
Hill1948
YLD2000-2D
Spline

(Sum of squared errors regarding as  Hill 1948: 0.08027, YLD20002D: 0.00285, Spline: 0.00125)

-0.12

-0.10

-0.08

-0.06

-0.04

-0.02

0.00

0 30 60 90 120 150 180 210 240 270 300 330 360

Th
ic

kn
es

s s
tra

in

β ( angle in Fig. 18) / °

experiment1
experiment2
experiment3
Hill1948
YLD2000-2D
Spline

(Sum of squared errors regarding as Hill 1948: 0.04505, YLD20002D: 0.00166, Spline: 0.00048)

-0.12

-0.10

-0.08

-0.06

-0.04

-0.02

0.00

0 30 60 90 120 150 180 210 240 270 300 330 360

Th
ic

kn
es

s s
tra

in

β ( angle in Fig. 18)/ °

experiment1
experiment2
experiment3
Hill1948
YLD200-2D
Spline

(Sum of squared errors regarding as  Hill 1948: 0.03760, YLD20002D: 0.00048, Spline: 0.00040)

Figure 22. Comparison of thickness strain distributions on circle 1 in experimental condition B.

1 
 

 
Figure 18. Location of circles the analyzed in the measurements. 

 
Figure 23. Comparison of thickness strain distributions on circle 2 in experimental condition B. 

Figure 25. Comparison of thickness strain distributions on circle 1 in experiment condition D. 

-0.12

-0.10

-0.08

-0.06

-0.04

-0.02

0.00

0 30 60 90 120 150 180 210 240 270 300 330 360

Th
ic

kn
es

s s
tra

in

β ( angle in Fig. 18) / °

experiment1
experiment2
experiment3
Hill1948
YLD2000-2D
Spline

(Sum of squared errors regarding as Hill 1948: 0.04505, YLD20002D: 0.00166, Spline: 0.00048)

-0.12

-0.10

-0.08

-0.06

-0.04

-0.02

0.00

0 30 60 90 120 150 180 210 240 270 300 330 360

Th
ic

kn
es

s s
tra

in

β ( angle in Fig. 18) / °

experiment1

experiment2

experiment3

Hill1948

(Sum of squared errors regarding as  Hill 1948: 0.03456, YLD20002D: 0.00127, Spline: 0.00068)

β 

Circle 1: 1 mm from the edge of the hole (8.5 mm from the center) 
Circle 2: 12 mm from the center  
Circle 3: 15.5 mm from the center  

Figure 23. Comparison of thickness strain distributions on circle 2 in experimental condition B.

J. Manuf. Mater. Process. 2020, 4, x FOR PEER REVIEW 15 of 20 

 
Figure 22. Comparison of thickness strain distributions on circle 1 in experimental condition B. 

 
Figure 23. Comparison of thickness strain distributions on circle 2 in experimental condition B. 

 
Figure 24. Comparison of thickness strain distributions on circle 3 in experimental condition B. 

 
 
 
 
 
 

-0.12

-0.10

-0.08

-0.06

-0.04

-0.02

0.00

0 30 60 90 120 150 180 210 240 270 300 330 360

Th
ic

kn
es

s s
tra

in

β ( angle in Fig. 18) / °

experiment1
experiment2
experiment3
Hill1948
YLD2000-2D
Spline

(Sum of squared errors regarding as  Hill 1948: 0.08027, YLD20002D: 0.00285, Spline: 0.00125)

-0.12

-0.10

-0.08

-0.06

-0.04

-0.02

0.00

0 30 60 90 120 150 180 210 240 270 300 330 360

Th
ic

kn
es

s s
tra

in

β ( angle in Fig. 18) / °

experiment1
experiment2
experiment3
Hill1948
YLD2000-2D
Spline

(Sum of squared errors regarding as Hill 1948: 0.04505, YLD20002D: 0.00166, Spline: 0.00048)

-0.12

-0.10

-0.08

-0.06

-0.04

-0.02

0.00

0 30 60 90 120 150 180 210 240 270 300 330 360

Th
ic

kn
es

s s
tra

in

β ( angle in Fig. 18)/ °

experiment1
experiment2
experiment3
Hill1948
YLD200-2D
Spline

(Sum of squared errors regarding as  Hill 1948: 0.03760, YLD20002D: 0.00048, Spline: 0.00040)

Figure 24. Comparison of thickness strain distributions on circle 3 in experimental condition B.
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Figure 27. Thickness strain distributions on circle 1 in experimental condition F.

Comparisons of the thickness strain distributions in Figures 19–27 reveal that the spline yield
function are the most accurate yield function among the three. Moreover, not only qualitative trends but
also quantitative values of the simulation results are approximately equal to the experimental results
in all conditions. The average of the sum of squared errors between the experimental averages and
simulation results for three circles under six different conditions are shown in Table 6, which support
the above conclusion. The YLD2000-2D function generally has high accuracy, but this is reduced in
circles 1 and 2, close to the hole edge, in experiments A and B. The maximum predicted values of the
thickness strain at approximately 90◦ or 270◦ deviate from the experimental values. Furthermore, the
positions of the predicted maximum strain at approximately 90◦ and 270◦ in experiment D deviate
from those in the experiment. There were no peaks at 90◦ and 270◦ of circle 1 in experiment F; however,
the calculation result of YLD2000-2D had different upper and lower peaks from the experiments.
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The prediction accuracy of the Hill 1948 yield function is poor in the experiment A, B, and D. However,
the results at 45◦ are in good agreement, which we attribute to the equal load on both axes, which is
caused by symmetry of orthotropic anisotropy for the rolled material.

Table 6. Comparison of sum of squared errors among the yield functions.

Hill 1948 YLD2000-2D Spline Yield Function

Average of sum of squared errors between
experimental averages and simulation results

for 3 circles of 6 conditions in Table 4
0.03032 0.00114 0.00063

6. Concluding Remarks

The prediction accuracy of anisotropic yield functions was evaluated using an in plane biaxial
forming tensile test. For the investigation of our proposed yield function proposed and conventional
models, we used the aluminum alloy sheets of A6116-T4. The key messages of this work are summarized
as follows:

1. A method for determining the parameters of the spline yield function has been developed, which
includes a pseudo plane strain stress test by using inverse analysis.

2. For the evaluation of the prediction accuracy of the yield function, an in-plane cruciform tensile
test was conducted. This kind of test is appropriate, because it is frictionless and free of bending.

3. The experimental and simulation results reveal high prediction accuracy of the spline yield
function. Hence, the validity of the method for parameter determination is verified.

4. The spline yield function is the most accurate model for all considered conditions of the evaluation.

The good agreement of the spline yield function can be ascribed to the high number of input
variables (i.e., the uniaxial stresses in five directions, the equi-biaxial stress, the stresses near the
plane-strain stress state in five directions, and strain increment directions at all described stress
points). There are some differences in the pseudo plane-strain tensile strength depending on the
tensile directions. Only the spline yield function can consider these differences, which leads to the
best accurate yield function for this material. The comparison of prediction accuracy does not simply
determine the superiority or inferiority of the yield function. It should be recognized that each has
different numbers of anisotropic parameters. The YLD2000-2D also shows high accuracy considering
that the plane-strain tensile test is not needed. Thus, one fewer test yet high accuracy is a benefit of the
YLD2000-2D. In further study, other anisotropic yield functions will be evaluated in this cruciform
tensile test.
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Appendix A

The convexity of yield locus can be used to check following relationships using the control point
Bi0 and the normal vector ni0. Both relationships must be satisfied in the same time.

www.edanzediting.com/ac
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(
B(i+1)0 −Bi0

)
· ni0 < 0 (A1)(

Bi0 −B(i+1)0

)
· n(i+1)0 < 0 (A2)

The relationship between the principal stresses (σ1, σ2) and the stress components (σxx, σyy, σxy)
in the global coordinate system are as follows, where θ is the angle between direction of the principal
stress σ1 and the x-axis, which is set to RD.

σ1 =
1
2

σxx + σyy +

√(
σxx − σyy

)2
+ 4σxy2

 (A3)

σ2 =
1
2

σxx + σyy −

√(
σxx − σyy

)2
+ 4σxy2

 (A4)

cos 2θ =
σxx − σyy√(

σxx − σyy
)2
+ 4σxy2

(A5)

The effective stress σeq, of the yield function is defined by Equation (A6) using the normalized
yield function of Equation (2). (

σ1

σ2

)
= σeqR(θ, u) = σeq

(
R1(θ, u)
R2(θ, u)

)
(A6)

The plastic potential, φ, is defined by the following:

φ(σ) = σeq(σ) (A7)

When σ1 and σ2 are partially differentiated with σ1, the following the equations are obtained from
Equations (A6) and (A7) because each component is independent.

∂σ1

∂σ1
= 1 = σeq

∂R1(θ, u)
∂σ1

+
∂φ

∂σ1
R1(θ, u) (A8)

∂σ2

∂σ1
= 0 = σeq

∂R2(θ, u)
∂σ1

+
∂φ

∂σ1
R2(θ, u) (A9)

Using partial derivatives of the curve parameter u:

σeq
∂R1(θ, u)

∂u
∂u
∂σ1

+
∂φ

∂σ1
R1(θ, u) = 1 (A10)

σeq
∂R2(θ, u)

∂u
∂u
∂σ1

+
∂φ

∂σ1
R2(θ, u) = 0 (A11)

When Equations (A10) and (A11) are solved for ∂φ/∂σ1 and ∂φ/∂σ2, following equations are obtained:

∂φ

∂σ1
=

∂R2(θ, u)
∂u

R1(θ, u)
∂R2(θ, u)

∂u
−R2(θ, u)

∂R1(θ, u)
∂u

(A12)

∂φ

∂σ2
=

−
∂R1(θ, u)

∂u

R1(θ, u)
∂R2(θ, u)

∂u
−R2(θ, u)

∂R1(θ, u)
∂u

(A13)
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Subsequently, when σ1 and σ2 are differentiated with θ:

dσ1

dθ
= 0 = σeq

dR1(θ, u)
dθ

+
dφ
dθ

R1(θ, u) (A14)

dσ2

dθ
= 0 = σeq

dR2(θ, u)
dθ

+
dφ
dθ

R2(θ, u) (A15)

where

dRi(θ, u) =
∂Ri(θ, u)
∂θ

dθ+
∂Ri(θ, u)

∂u
du (A16)

Because ∂φ/∂θ and dφ/dθ are the same, ∂φ/∂θ are represented from Equations (A14) and (A15):

∂φ

∂θ
= σeq

∂R1(θ, u)
∂u

∂R2(θ, u)
∂θ

−
∂R1(θ, u)

∂θ

∂R2(θ, u)
∂u

R1(θ, u)
∂R2(θ, u)

∂u
−R2(θ, u)

∂R1(θ, u)
∂u

(A17)

If we set X = (σ1, σ2,θ), σ =
{
σxx, σyy, σxy

}T
, the direction of the plastic-strain increment, ∂φ/∂σ

is given by:
∂φ

∂σ
=

(
∂X
∂σ

)T ∂φ

∂X
(A18)

where ∂φ/∂X is

∂φ

∂X
=



∂σ1

∂σxx

∂σ1

∂σyy

∂σ1

∂σxy
∂σ2

∂σxx

∂σ2

∂σyy

∂σ2

∂σxy
∂θ
∂σxx

∂θ
∂σyy

∂θ
∂σxy


(A19)

For each component of the Equation (A19), each value is determined from Equations (A3)–(A5).
Finally, the plastic multiplier dλ is determined. The consistency condition during plastic

deformation is written as follows, where ε is the effective plastic strain:

∂φ

∂σ
·dσ+

∂φ

∂ε
·dε = 0 (A20)

∂φ/∂ε is equivalent to ∂σeq/∂ε which corresponds to the slope of a hardening rule. The stress
increment is given by:

dσ = C
(
dε− dλ

∂φ

∂σ

)
(A21)

where C be the elastic tensor, dε =
{
dεxx, dεyy, dεxy

}T
is the total strain increment.

The effective plastic-strain increment is given by:

dε =
(

2
3

dλ
∂φ

∂σ
·dλ

∂φ

∂σ

) 1
2

(A22)

dλ is obtained as follows:

dλ =

∂φ

∂σ
Cdε

∂φ

∂σ
C
∂φ

∂σ
−
∂φ

∂ε

(
2
3
∂φ

∂σ

∂φ

∂σ

) 1
2

(A23)



J. Manuf. Mater. Process. 2020, 4, 43 20 of 20

Thus, the plastic-strain increment, dε = dλ(∂φ/∂σ), is explicitly obtained.
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