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Abstract: High average power (>50 W) nanosecond pulsed fiber lasers are now routinely available
owing to the demand for high throughput laser applications. However, in some applications,
scale-up in average power has a detrimental effect on process quality due to laser-induced thermal
accumulation in the workpiece. To understand the laser–material interactions in this power regime,
and how best to optimize process performance and quality, we investigated the influence of laser
parameters such as pulse duration, energy dose (i.e., total energy deposited per unit area), and pulse
repetition frequency (PRF) on engraving 316L stainless steel. Two different laser beam scanning
strategies, namely, sequential method (SM) and interlacing method (IM), were examined. For each set
of parameters, the material removal rate (MRR) and average surface roughness (Sa) were measured
using an Alicona 3D surface profilometer. A phenomenological model has been used to help identify
the best combination of laser parameters for engraving. Specifically, this study has found that (i) the
model serves as a quick way to streamline parameters for area engraving (ii) increasing the pulse
duration and energy dose at certain PRF results in a high MRR, albeit with an associated increase in Sa,
and (iii) the IM offers 84% reduction in surface roughness at a higher MRR compared to SM. Ultimately,
high quality at high throughput engraving is demonstrated using optimized process parameters.

Keywords: nanosecond laser pulses; pulsed fiber lasers; engraving; high average power; surface
roughness; material removal rate; interlacing method; sequential method

1. Introduction

The use of lasers for rapid prototyping of tools for injection molds, coin dies, stamps, and product
identification through engraving has been an established process for some time [1–3]. High flexibility,
lack of tool wear, ability to process a wide range of materials, high machining accuracy, and precision are
some undeniable advantages in comparison to other engraving processes [4,5]. Both ultrashort pulsed
(femtosecond and picosecond) and short-pulsed (nanosecond and microsecond) lasers can be used for
engraving metals. These two classes of lasers differ fundamentally in the mechanisms of laser–material
interaction and material removal during processing as extensively discussed elsewhere [6,7]. Generally,
ultrashort pulsed lasers are noted for high-quality applications and high cost of purchase, maintenance,
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and operation. Nanosecond lasers, on the other hand, are less costly and are well-established as process
tools, making them much more popular and reliable for industrial applications.

Industry increasingly demands high manufacturing throughput to minimize costs, and this has
propelled the commercial development of pulsed lasers with a higher average power. Master oscillator
power amplifier (MOPA)-based nanosecond pulsed fiber lasers have become popular due to their high
reliability and effective thermal management [8–10]. However, this scaling of power does not always
lead to a concomitant increase in process speed and surface quality due to laser-induced thermal
accumulation, the accumulation of structural defects, and particle shielding [11–14]. Over the years,
much research effort has been expanded to remediate the effects of thermal build-up in the workpiece
during high average power applications to make these lasers industrially acceptable. The research
approach is generally to conduct a parametric survey to understand laser–material interactions and
also investigate various laser processing strategies to mitigate the issues of thermal load [14–17].

So far, published research has been skewed towards ultrashort pulsed lasers, with relatively little
literature on the potential of higher average power nanosecond pulsed lasers. This can be attributed to
the general view that using nanosecond pulsed lasers with an average power greater than 50 W leads
to an uncontrollable process [11]. Consequently, there is a current gap in the literature on the physical
effects of higher average power nanosecond lasers on the material removal rate (MRR) and surface
roughness (Sa). Again, although the use of the single-line machining experiments for investigating
parametric influence during laser interactions is well established [11,18], the “scaling up” of findings
from single lines to the more industrially relevant area engraving has not been reported. This scale-up
introduces a further key parameter set, namely, the laser beam scanning strategy, including interlacing,
which has been reported as an effective process route for the machining of borosilicate glass [19],
and more complex scanning patterns, such as halftone printing angles, that have been shown to provide
a good surface polishing effect [20].

This article extends the idea of IM for the engraving of 316 L grade stainless steel using a 100
W nanosecond pulsed fiber laser. The study starts by using single-line machining to study the effect
of pulse duration, pulse repetition frequency, and energy dose on the volume of groove and burr
formation during engraving. Based on the results from the single line machining, a phenomenological
model is proposed to streamline process parameters for area engraving. A correlation is established
between the results from the single-line machining and area engraving. The paper concludes by
demonstrating that with optimized process parameters, high throughput at high-quality engraving
is achievable.

2. Methodology

2.1. Material

316 L grade stainless steel plates with dimensions of 80 mm × 50 mm × 1.5 mm were used.
The initial value of average surface roughness (Sa) was measured to be 640 nm using a 3D surface
profilometer (Alicona IFM G4) across a field view of 1.43 mm × 1.08 mm. Before engraving, the samples
were cleaned with acetone to remove any surface contamination.

2.2. Laser Set-Up

The laser used was an SPI pulsed fiber laser EP-Z G4 with measured average power (Pav) of
108 W, a wavelength of 1062 nm, maximum pulse energy of 1.1 mJ, pulse repetition frequency (PRF)
up to 1 MHz, a near-Gaussian spatial profile with beam quality (M2) ≤ 1.6, and pulse duration (τ) in
the range 17 to 500 ns termed as waveforms (WFM). Each WFM has a unique PRF (called PRF0) at
which the maximum pulse energy (Ep) and Pav are obtained. The measured temporal profile of these
waveforms is characterized by a fast rise time peak and a tail portion as shown in Figure 1. The peak
offers high peak power which overcomes surface reflectivity and facilitates laser absorption.
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Figure 1. (a) Measured temporal profiles of some selected waveforms shortlisted for the experimental 
work. WFM 23 (17 ns), WFM 14 (60 ns), WFM 5 (150 ns), WFM 0 (280 ns), WFM 28 (380 ns), and WFM 
31 (500 ns). (b) Temporal profile as a function of pulse repetition frequency (PRF) for WFM 0. 

For the laser machining set-up, an optical fiber delivers the laser beam to a collimator, a Raylase® 
galvanometer scan head (RLA-1504 [Y] D2), and then a 160 mm focal length fused silica f-theta lens 
that focused the laser beam onto the workpiece. The laser and the galvoscanner are synchronized 
using a SCAPS® hardware controller and SAMLight 2D® software. The diameter of the collimated 
beam is 8 mm, providing a focused spot diameter (2ωo) of 38 μm (calculated at 1/e2 of its peak 
intensity) on the workpiece. 

2.3. Experimental Protocol 

The experimental approach is summarized in Figure 2, in which a single line machining 
experiment is used to down-select a suitable range of laser parameters for testing a square-shaped 
area engraving. The temporal profiles of selected pulse durations (waveforms) are shown in Figure 
1a. 

 
Figure 2. Flowchart of the experimental protocol. 

2.3.1. Single Line Machining 

Parallel grooves of length 10 mm were machined into the metal workpiece surface, as illustrated 
in Figure 3a, using the laser process parameters listed in Table 1. The line energy dose (𝐸𝐷௅ ) is 
calculated using the formula 𝐸𝐷௅ = (1𝑚𝑚/𝛥𝑆) × 𝐸௣, (1)

where 𝐸௣ is the pulse energy and 𝛥𝑆 is the pulse to pulse distance in the scan direction (see Figure 
4). 
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Figure 1. (a) Measured temporal profiles of some selected waveforms shortlisted for the experimental
work. WFM 23 (17 ns), WFM 14 (60 ns), WFM 5 (150 ns), WFM 0 (280 ns), WFM 28 (380 ns), and WFM
31 (500 ns). (b) Temporal profile as a function of pulse repetition frequency (PRF) for WFM 0.

For the laser machining set-up, an optical fiber delivers the laser beam to a collimator, a Raylase®

galvanometer scan head (RLA-1504 [Y] D2), and then a 160 mm focal length fused silica f-theta lens
that focused the laser beam onto the workpiece. The laser and the galvoscanner are synchronized using
a SCAPS® hardware controller and SAMLight 2D® software. The diameter of the collimated beam is
8 mm, providing a focused spot diameter (2ωo) of 38 µm (calculated at 1/e2 of its peak intensity) on
the workpiece.

2.3. Experimental Protocol

The experimental approach is summarized in Figure 2, in which a single line machining experiment
is used to down-select a suitable range of laser parameters for testing a square-shaped area engraving.
The temporal profiles of selected pulse durations (waveforms) are shown in Figure 1a.
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Figure 2. Flowchart of the experimental protocol.

2.3.1. Single Line Machining

Parallel grooves of length 10 mm were machined into the metal workpiece surface, as illustrated in
Figure 3a, using the laser process parameters listed in Table 1. The line energy dose (EDL) is calculated
using the formula

EDL = (1mm/∆S) × Ep, (1)

where Ep is the pulse energy and ∆S is the pulse to pulse distance in the scan direction (see Figure 4).
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Table 1. List of parameters for single-line machining study. The pulse to pulse distance (∆S) and the
pulse overlap factor (Po), which is the fraction of the laser spot diameter that overlaps with the previous
pulse on the surface of the material, at given energy doses (EDL) for different pulse durations (τ) are
provided. All pulse repetition frequencies (PRF) indicated correspond to the PRF0 condition.

Scan
Speed
(mm/s)

EDL
(J/mm)

τ, PRF0, Ep

17 ns 1000 kHz
0.11 mJ

60 ns 340 kHz
0.32 mJ

150 ns 175 kHz
0.62 mJ

280 ns 100 kHz
1.1 mJ

380 ns 100 kHz
1.1 mJ

500 ns 100 kHz
1.1 mJ

379 0.28 ∆S = 0.4 µm
Po = 99%

∆S = 1.1 µm
Po = 97%

∆S = 2.2 µm
Po = 94%

∆S = 3.8 µm
Po = 90%

∆S = 3.8 µm
Po = 90%

∆S = 3.8 µm
Po = 90%

759 0.14 ∆S = 0.8 µm
Po = 98%

∆S = 2.2 µm
Po = 94%

∆S = 4.3 µm
Po = 89%

∆S = 7.6 µm
Po = 80%

∆S = 7.6 µm
Po = 80%

∆S = 7.6 µm
Po = 80%

1140 0.09 ∆S = 1.1 µm
Po = 97%

∆S = 3.4 µm
Po = 91%

∆S = 6.5 µm
Po = 82%

∆S = 11.4 µm
Po = 70%

∆S = 11.4 µm
Po = 70%

∆S = 11.4 µm
Po = 70%

1520 0.07 ∆S = 1.5 µm
Po = 96%

∆S = 4.5 µm
Po = 88%

∆S = 8.7 µm
Po = 77%

∆S = 15.2 µm
Po = 60%

∆S = 15.2 µm
Po = 60%

∆S = 15.2 µm
Po = 60%

1900 0.06 ∆S = 1.9 µm
Po = 95%

∆S = 5.6 µm
Po = 85%

∆S = 10.9 µm
Po = 71%

∆S = 19 µm
Po = 50%

∆S = 19 µm
Po = 50%

∆S = 19 µm
Po = 50%

2280 0.05 ∆S = 2.3 µm
Po = 94%

∆S = 6.7 µm
Po = 82%

∆S = 13.0 µm
Po = 66%

∆S = 22.8 µm
Po = 40%

∆S = 22.8 µm
Po = 40%

∆S = 22.8 µm
Po = 40%

3000 0.04 ∆S = 3.0 µm
Po = 92%

∆S = 8.8 µm
Po = 77%

∆S = 17.1 µm
Po = 55%

∆S = 30 µm
Po = 21%

∆S = 30 µm
Po = 21%

∆S = 30 µm
Po = 21%

3420 0.03 ∆S = 3.4 µm
Po = 91%

∆S = 10.1 µm
Po = 74%

∆S = 19.5 µm
Po = 49%

∆S = 34.2 µm
Po = 10%

∆S = 34.2 µm
Po = 10%

∆S = 34.2 µm
Po = 10%
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interlacing method (IM). (b) IM with one line skip (∆IL = 2 𝛥𝐻), (c) IM with 2 line skips (∆IL = 3 𝛥𝐻), 
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Figure 4. Schematic representation of (a) bidirectional sequential method (SM) and (b–f) bidirectional
interlacing method (IM). (b) IM with one line skip (∆IL = 2 ∆H), (c) IM with 2 line skips (∆IL = 3 ∆H),
(d) IM with 3 line skips (∆IL = 4 ∆H), (e) IM with 4 line skips (∆IL = 4 ∆H), and (f) IM with 5 line
skips (∆IL = 5 ∆H). In all these scanning modes, the total process time is identical. For image clarity,
the hatch distance was chosen at half the laser spot diameter in this illustration.

For this study, the effect of EDL and τ on the volume of groove and burr formation was investigated.
Using the parameters listed in Table 2, the influence of changing PRF at a constant EDL was examined.
Each parameter combination was replicated three times and the mean value presented.

Table 2. List of parameters for investigating the influence of PRF on single-line machining at a scan
speed of 1140 mm/s (EDL = 0.09 J/mm).

PRF (kHz) Ep (mJ) Po (%) at 0.09 J/mm

100 1.08 70
150 0.72 80
200 0.54 85
250 0.43 88
300 0.36 90
350 0.31 91
400 0.25 93

2.3.2. Area Machining Experiment

Following the single-line machining study, square-shaped area machining was investigated,
in each case based on the machining of a 5 × 5 mm2 flat-bottomed area using a parallel hatch distance
(∆H) of 13.3 µm, which was chosen out of several hatch distances to give the highest MRR and better
Sa. The corresponding area energy dose (EDA) from the down-selected parameters was calculated
as follows.

EDA = (1mm/∆H) × EDL, (2)

An initial study was conducted to investigate the influence of laser beam scanning strategies on
MRR and Sa using SM and IM, as shown schematically in Figure 4. In these experiments, the interlacing
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distance (∆IL) was varied at 13.3 µm, 26.6 µm, 39.9 µm, 53.2 µm, 66.5 µm. and 79.8 µm to identify an
optimized value for further studies. More details of this method of machining are presented in our
previous work [19].

To prevent a possible Moiré effect, the laser scanning angle was changed after each full machining
pass, to give four different angles (0◦, 45◦, 18.43◦, and 71.58◦), popularly known as “halftone angles”.
Gora et al. studied the effect of scanning patterns during laser polishing [21]. They found that a better
surface finish was achievable by using the halftone angles. The total number of passes during the area
engraving test was 20. Finally, in a similar way as the single-line machine experiment, the influence of
τ and PRF at constant EDA was investigated.

2.4. Sample Postprocessing and Analysis

The processed samples were cleaned with deionized water in an ultrasonic bath at 25 ◦C for
10 min to remove loose particles. To avoid possible end effects, only the central section of the grooves
at a sampling length (L) of 2.7 mm was measured. A 3D-profile of each groove was obtained using
the Alicona surface profilometer. Using a MATLAB™ script, the profile of each machined line was
processed (see Figure 3b) and separated into the groove (material removed) (see Figure 3c) and the
burr (redeposited material) (see Figure 3d). During the groove analysis, the sample was levelled so
that the data above and below the levelled surface were used to calculate the area of burr and groove
respectively using Equation (3). The volume of groove and burr are calculated using Equation (4).

A =
x

x,y
z(x, y).dx.dy, (3)

V = A× L, (4)

After the 3D profiling, each groove was sectioned in the middle, cold mounted, polished, and then
examined using a Leica optical microscope (DM6000M) at × 20 magnification (see Figure 5b). For the
area machining experiment, a 3D profile was obtained for each parameter combination and, from this,
the depth was determined and subsequently used to calculate an overall MRR value (the product of
the depth and area of engraving per unit processing time). The arithmetic average of absolute surface
roughness (Sa) was obtained using a cut-off wavelength of 284 µm.
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Figure 5. (a) 3D profiles of various classes of groove produced during the single-line machining and
the (b) corresponding cross-sectional profiles.
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3. Results and Discussion

3.1. Single Line Machining Experiment

3.1.1. Groove Analysis

In general, four classes of grooves were observed as shown in Figure 5. Class I is representative
of closed-up grooves which result from a combination of high EDL (0.28 J/mm) and high Po (99%).
Class II is representative of shallow grooves resulting from lower EDL and τ, in this case, 0.05 J/mm at
17 ns. In Class III, there is a pronounced burr formation at the edges of the groove, which suggests
an inefficient removal of molten material. In extreme conditions, this can result in a Class I groove.
The nature of this type of groove obstructs proper surface profiling (see Class III Figure 5a).

Class IV represents a stable groove with a well-defined groove and burr which represents a
condition suitable for analysis. Based on the above classifications, the 17 ns pulses with an EDL of
0.28 J/mm and any EDL below 0.05 J/mm were eliminated from the parametric analysis in the section
below. The general classification of grooves as elaborated above corroborates results presented by
(Leone et al., 2018). Their study investigated parametric influence during laser marking application of
Inconel 718 using a 30 W Q-switched Yb: YAG fiber laser.

3.1.2. Influence of Change in EDL and τ on Groove and Burr Formation

As expected, an increase in EDL increases both the volume of the groove and that of the burr,
as shown in Figure 6. When a keyhole is produced as a result of high EDL, the depth increases such that
subsequent ejection due to the recoil pressure is compromised. This leads to an ineffective ejection and
excessive burr formation, as shown in the highlighted region in Figure 6c, in some cases collapsing back
into the machined region (see the results for τ = 60 ns at EDL = 0.28 J/mm). The evidence presented
does not suggest that material removal is solely through melt ejection, in fact, some material is removed
through vaporization; however, the method used cannot quantify this effect.
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Figure 6. (a) Extracted volume of groove and (b) extracted volume of burr produced as a function of
line energy dose (EDL) for different pulse durations at PRF0. (c) Cross section of grooves produced at
60 ns and 500 ns pulse durations for different energy doses. The parameter combinations highlighted
in red have been excluded from further experiments as the quality of machining is poor.
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As shown in Figure 6a, longer τ produces larger grooves, as is particularly evident at 380 ns
and 500 ns for the highest EDL. This is likely due to more laser interaction time and deeper thermal
penetration at longer τ. This is influenced by the extended intensity distribution profile as presented
in Figure 1, which helps retain heat before successive pulses. The similar volume of the groove at
60 ns, 150 ns, and 280 ns τ at lower EDL is attributable to the high pulse overlap as detailed in Table 1.
From Figure 6b,c, although longer τ typically leads to a higher burr volume, a shorter τ with high
pulse overlap inhibits rapid heat dissipation resulting in heat accumulation, which increases the burr
volume. From the above observations, it seems likely that a longer τ will give a high MRR with higher
Sa at higher EDL during area engraving due to the high melt and burr formation. Shorter τ, such as
60 ns and 150 ns, with high EDL may as well result in higher MRR, but this might be at the expense of
surface quality.

3.1.3. Effect of Change in PRF and τ on the Volume of Groove and Burr Formation

Given the requirement for high MRR, τs of 280 ns, 380 ns, and 500 ns were selected for further
investigation, to evaluate the impact of PRF. Here, the EDL was kept constant at 0.09 J/mm as this
provided a good combination of high MRR and machining quality. Results in Figure 7 indicate that an
increase in PRF increases the volume of both groove and burr. However, a critical point is reached
where the groove collapses.
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Figure 7. (a) Volume of groove; (b) volume of the burr as a function of PRF at a constant EDL of
0.09 J/mm; and (c) cross-sectional view for the influence of change in PRFs at 280 ns, 380 ns, and 500 ns.

This happens at a PRF above 250 kHz at 500 ns, 300 kHz at 380 ns, and 350 kHz at 280 ns (see
arrowed points on Figure 7a). An increase in τ increases the volume of groove and burr formation for
similar reasons to those earlier discussed. The increased volume of groove and burr at higher EDL or
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higher PRFs is assumed to result from the thermal accumulation and the consequent larger melt zone.
However, the reduction in Ep and the change in temporal profile (Figure 1b) at high PRF decreases
the pulse intensity and this lowers the vapor pressure needed for effective removal, as seen in the
highlighted areas of Figure 7c. The critical PRF (PRF beyond which groove is unstable) is dependent on
τ due to the differences in laser interaction time. The higher laser-material interaction time for longer
τ means more melt, however, due to the reduction in Ep at high PRF (less energetic pulse), the melt
collapses (see Figure 7c—500 ns at 300 kHz) and therefore lowers the critical PRF.

In general, it can be hypothesized that higher PRF and higher EDL would cause high MRR,
but the increase in the volume of burr could imply a higher Sa during area engraving. Finally,
it can be suggested that the closing of shallow grooves at high PRFs could provide a polishing effect.
Based on the results above, a phenomenological model is proposed such that the full parametric range
indicated in Tables 1 and 2 were down-selected by excluding pulse duration 17 ns, EDL > 0.09 J/mm,
EDL < 0.04 J/mm, and PRF of 400 kHz. The corresponding EDA values from these down-selected
parameters were used to investigate the transferability of results from the single-line machining to a
square-shaped area engraving.

3.2. Area Machining Experiment

3.2.1. Effect of Different Laser Beam Scanning Strategies

In Figure 8, the SM Figure 8b is compared with different IMs (Figure 8c–g) for a mid-range EDA of
4.2 J/mm2 (EDL = 0.06 J/mm and ∆H = 13.3 µm) processed at 280 ns. A blackened surface and higher
burr formation at the edges were observed with SM (see Figure 8a).

∆IL = 13.3 µm ∆IL = 26.6 µm ∆IL = 39.9 µm

∆IL = 79.8 µm∆IL = 66.5 µm∆IL = 53.3 µm

µ µ
SEQUENTIAL INTERLACING

500 µm

500 µm

500 µm500 µm

500 µm 500 µm

Figure 8. (a) Photograph comparing sequential method (SM) to interlacing method (IM). (b) Surface
morphology for SM. (c–g) Surface morphology at different interlacing distances (∆IL), produced at a
scan speed of 1900 mm/s, 280 ns and EDA= 4.2 J/mm2.
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The Sa is reduced by a factor of 3 and the MRR is increased by 20% with IM (see Figure 8c–f).
Figure 9 presents the cross-sectional differences between IM and SM at EDA = 5.3 J/mm2. At higher
EDA, IM significantly reduces the Sa by 84% at a slightly higher MRR. The time delay between adjacent
scan for IM helps reduce undue heat accumulation in the workpiece.J. Manuf. Mater. Process. 2020, 4, x FOR PEER REVIEW 10 of 16 
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Figure 9. Cross-sectional profile highlighting the difference between (a) SM at material removal rate
(MRR) = 14 mm3/min, Sa = 32 µm and (b) IM at MRR = 15 mm3/min, Sa = 5 µm processed at 5.3 J/mm2

at 280 ns.

This implies a uniform thermal gradient around the processed area which could cause a more
efficient cooling. With SM, the heat is built up to produce more melt. The ineffective removal of this
melt ends up compromising MRR and Sa. Figure 9 also illustrates the presence of undercut at the
corners for both SM and IM, which is due to the lack of synchronization between the laser and the
scanner system. This feature compromises the engraving quality; however, with appropriate scan
delays this effect can be rectified.

For glass, the authors of [19,22] suggest that the IM increases laser coupling efficiency as a result of
the smaller angle of incidence of the laser beam. This results from the perpendicular beam interaction
to the surface in the case of IM as opposed to the SM, where the beam is incident on the wall of
the previously machined groove. This could as well contribute to the differences observed for both
scanning strategies. Although a change in interlacing distance increases MRR, at ∆IL = 79.8 µm
(see Figure 8g) the surface quality is deteriorated and characterized by massive structures (solidified
melt redeposition) resulting from ineffective melt ejection. Obviously, IM offers a better surface quality
in comparison to SM, hence all results presented below in the next sections were conducted using IM
at an optimized ∆IL of 39.9 µm (see Figure 8d) due to its high MRR and low Sa.

3.2.2. Influence of Change in EDA and τ on the MRR and Sa

As shown in Figure 10, an increase in EDA and τ leads to a general increase in both MRR and Sa,
as suggested in Section 3.1.2. From Figure 10b, there is a critical EDA at 5.3 J/mm2 for 60 ns, 150 ns,
and 500 ns (see the dashed line) where the Sa starts to reduce for further increase in EDA, which is
most likely attributable to the “closing-up” effect observed in the single-line machining experiments,
rather than any inherent machining quality improvement. The shorter τ gives lower MRR coupled with
high Sa values mainly due to the high pulse overlaps employed in this study (see Table 1). An increase
in scan speed could offset the issues of high overlap, but this would mean a lower MRR which is not
consistent with the overall requirement for high throughput engraving. This highlights the trade-off

between high-throughput and high-quality engraving, and, therefore, to maintain a balance, the area
highlighted in green in Figure 10 with MRR in the range of 5 to 16 mm3/min and corresponding Sa of
2.6–13 µm is an area of focus for high-quality engraving.
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Figure 10. (a) MRR and (b) Sa as a function of area energy dose (EDA) for different pulse durations.
The highlighted region in panel (a) excludes 60 ns (>2.7 J/mm2), and the dashed line represents a critical
EDA beyond which the surface is blackened and surface quality deteriorates significantly.

Clearly, to achieve Sa below 2.6µm at high MRR, it is recommended to use a sequential combination
of deep engraving with longer pulse durations (>280 ns) and periodic cleaning with shorter pulses
(<280 ns) at lower EDA (<2.7 J/mm2). The increase in MRR as a function of τ agrees with previous work
on the use of 20 W nanosecond pulsed fiber laser engraving of stainless steel by Manninen et al [23].

3.2.3. Influence of Change in PRF and τ on the MRR and Sa

Considering EDA at 4.2 J/mm2 for longer τ (>150 ns), the influence of PRF was investigated.
As demonstrated in Figure 11a, increasing PRF results in an initial increase in MRR up to a critical
PRF value (200 kHz for 380 ns and 280 ns) after which the MRR starts to decline. As discussed earlier,
thermal accumulation plays a key role in the increase in MRR at an increased PRF, but, as the MRR
increases, so does the surface roughness, as seen in Figure 11b.
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Figure 11. (a) MRR and (b) Sa as a function of PRF and τ at a constant EDA of 4.2 J/mm2.

As more melt is formed, the impact from subsequent pulses ejects melt across the surface, and rapid
solidification of this splashed melt results in high Sa values. Beyond the critical PRF, the Sa drops due
to a reduction in pulse energy at higher PRFs. Interestingly, 500 ns show a general reduction in MRR
and Sa as PRF increases. This phenomenon was partially observed during the single-line machining
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experiment where the groove close-up effect occurred earlier for 500 ns which could be as a result of
the longer laser interaction time and lower laser intensity at higher PRFs.

Figures 12 and 13 show scanning electron microscope (SEM) micrographs of the surfaces processed
at 4.2 J/mm2 with 280 ns and 500 ns pulse durations, respectively, distinguishing between the surface
morphology for 280 ns and 500 ns at various PRFs. Typical surface features are highlighted, created by
the intensity of the laser pulse and the mechanisms of melt flow and surface tension. Wu et al.
conducted a similar experiment to investigate the impact of a change in PRF on surface morphology
using a picosecond laser for machining Cr12MoV cold work mold steel [5]. The study highlighted the
impact of heat accumulation at higher PRFs and also reported an improved surface quality at higher
PRFs which agrees with the results presented here. The paper, however, did not provide the typical
MRR achieved at such high PRFs.
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For the 280 ns sequence (see Figure 12), the good surface quality at low PRF (100 kHz) is due
to efficient ejection, whereas the middle frequencies show evidence of unstable and partial ejection.
At the highest PRF, the Sa begins to improve again, but this is associated with a less energetic melt
resulting from a reduction in pulse energy, as further evidenced by the associated reduction in MRR
(see Figure 12f). The coalescence of melt which represents a smoothing effect is more pronounced for
500 ns (see Figure 13f) and therefore would serve as a better parameter for laser polishing. Vadali et al.
reported a similar result where longer τ were deemed capable of attenuating longer wavelengths
and hence results in better Sa [24]. This was presented in a study they conducted to investigate the
influence of τ on the laser polishing of Ti6Al4V.

Even though the single-line machining approach did not take into consideration multiple passes,
it predicts the parametric influence on MRR and Sa during area engraving. It, therefore, serves as a
quick model to shortlist parameters for a multi-pass area engraving.

4. High-Quality Engraving

As suggested in Section 3.2.2, an engraving strategy has been adapted using three different
parametric combinations: (i) deep engraving with longer τ at high EDA, (ii) periodic cleaning passes
using shorter τ at low EDA, and (iii) final polishing using longer τ at higher PRF. Figure 14 depicts two
engraved structures: (a) a square of constant depth with MRR of 13 mm3/min providing Sa ~1.4 µm
and (b) an inverted stepped pyramidal structure using similar engraving parameters in (a) while
compensating for the change in depth at each stage during the engraving.J. Manuf. Mater. Process. 2020, 4, x FOR PEER REVIEW 14 of 16 
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Sa using: Engraving pass at 4.2 J/mm2, 380 ns, 175 kHz; Cleaning pass at 150 ns, 350 kHz, 3.5 J/mm2 and
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5. Conclusions

A systematic experimental approach has been used to investigate 100 W nanosecond pulsed fiber
laser engraving of 316L grade stainless steel. The study sought to optimize process parameters for
high-quality area engraving using a simple single-line machining technique while investigating the
influence of laser beam scanning strategies. A significant finding to emerge from this study is that an
IM laser beam scanning strategy reduces undue heat accumulation and serves as a better option to the
traditional SM. We report that IM not only provide a lower Sa, but also increases MRR. Again, a change
in the interlacing distance increases MRR at considerably lower Sa; however, beyond a critical value,
the Sa deteriorates. The study also established that a combination of longer τ, higher EDA, and PRF
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slightly above the PRF0 produces a high MRR at high Sa. However, at higher PRF, there is a change in
the engraving mechanism which initiates a polishing effect. For low Sa and MRR, a shorter τ at low
EDA is required.

Overall, we have shown that high-quality engraving is possible for high power engraving only
when IM is coupled with careful parametric combinations. A further study would be a thermal
analysis and surface elemental compositional change for both SM and IM. It will also be interesting to
investigate the impact of IM on other metals to explore its full potential and finally, consolidate the
findings to produce high-quality engraving.
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and agreed to the published version of the manuscript.
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