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Abstract: Magnetic pulse welding is a solid-state joining technology, based on the use of
electromagnetic forces to deform and to weld workpieces. Since no external heat sources are used
during the magnetic pulse welding process, it offers important advantages for the joining of dissimilar
material combinations. Although magnetic pulse welding has emerged as a novel technique to join
metallic tubes, the dimensional consistency of the joint assembly due to the strong impact of the flyer
tube onto the target tube and the resulting plastic deformation is a major concern. Often, an internal
support inside the target tube is considered as a solution to improve the stiffness of the joint assembly.
A detailed investigation of magnetic pulse welding of Cu-DHP flyer tubes and 11SMnPb30 steel target
tubes is performed, with and without an internal support inside the target tubes, and using a range of
experimental conditions. The influence of the key process conditions on the evolution of the joint
between the tubes with progress in time has been determined using experimental investigations and
numerical modelling. As the process is extremely fast, real-time monitoring of the process conditions
and evolution of important responses such as impact velocity and angle, and collision velocity,
which determine the formation of a metallic bond, is impossible. Therefore, an integrated approach
using a computational model using a finite-element method is developed to predict the progress
of the impact of the flyer onto the target, the resulting flyer impact velocity and angle, the collision
velocity between the flyer and the target, and the evolution of the welded joint, which are usually
impossible to measure using experimental observations.

Keywords: magnetic pulse welding; dissimilar material combinations; impact velocity; impact angle;
collision velocity

1. Introduction

Magnetic pulse welding (MPW) is a solid-state impact welding technology able to create
joints between two overlapping parts by a progressive collision, which is generated by an intense
electromagnetic (EM) impulse [1]. Figure 1 shows a schematic layout for the MPW of overlapping tubes.
A capacitor bank is charged by a power supply to store the required amount of energy, which is released
instantaneously into a coil by using a high-current switch. The resulting discharge current of high
magnitude and high frequency induces an intense transient EM field inside the coil, which induces
eddy current in the outer tube [2]. The induced eddy current causes a differential EM field on both
sides of the outer tube, resulting in an EM pressure that, in turn, causes the outer tube to impact onto
the internal tube with high velocity [3]. As a result of the collision between the outer and the inner
tubes at a certain angle, the tubes experience intense localized plastic deformation and a jet is generated
along the surfaces of the materials before they make contact, which is able to remove the surface
impurities and promote consolidation between the clean mating surfaces under EM pressure [2,3].
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The consolidation between the two parts occurs without any bulk melting [4], although local melting
at scattered locations along the joint interface is reported for MPW of AA6060 flyer tubes and copper
target rods [5], AA1050 flyer and target sheets [6] and AA6060 flyer tubes and AlSi10Mg target rods [7].
For the overlapping assembly, the outer part is referred to as the flyer and the inner part is referred to
as the target. Since the bulk melting of materials is avoided, MPW is increasingly considered for the
joining of dissimilar materials [8].
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Figure 1. Schematic layout of magnetic pulse welding (MPW) set-up for joining of tubes.

The joining of tubular parts with MPW involves the use of a thick circular coil, with the assembly
of the overlapping flyer and target tubes placed inside the coil [9]. The coil imposes a radial EM
impulse pressure on the flyer tube for a very short duration, that forces the flyer to impact onto the
target tube in a progressive manner, resulting in jetting of surface impurities from the original interface,
a controlled plastic deformation and bonding between two tubes [10]. The welded interface in MPW
is characteristically similar to that in explosion welding, which is created as a result of a traverse
of collision points, followed by plastic deformation at a high strain rate and jetting out of surface
impurities, and consolidation between clean metallic layers along the interface between the impacting
flyer and target [5]. The phenomena of jetting due to the high velocity impact between the flyer and
target and the consequent shearing of very thin layers from the metallic surfaces, the composition of
the metal jets and the possible effect of jetting on the profile of the welded interface are examined by
several researchers for MPW of similar and dissimilar materials [11–13].

Often, an internal support is employed to enhance the stiffness and avoid excessive plastic
deformation and fracture of the tube assembly as a result of the high velocity impact of the flyer
tube onto the target tube [14]. Especially, tubes with a small wall thickness need to be supported,
because they can hardly resist radial forces. A study comparing the weld performance in terms of
the contour deformation, microstructure and tensile strength of tubular joints, achieved with and
without internal support, was found in [15]. An aluminium AA6060-O flyer tube (outer diameter:
76 mm × 2.5 mm) was joined onto a steel 34 (St34 mod) target tube (outer diameter: 76 mm × 2.5 mm).
Other sources report the use of an internal support placed inside the target tube for MPW of AA5052
flyer tubes of wall thickness of 1 mm and SS304 target tubes of wall thickness of 1 mm [16], and for
MPW of AA6060 flyer tubes of wall thickness of 1.5 mm and Cu-ETP target tubes of wall thickness of
1 mm [17]. Although these studies showed the need for an internal support during MPW of tubular
parts, detailed quantitative analyses of MPW with and without an internal support are not provided.

The plastic deformation of the flyer and target tube during MPW is influenced by the nature and
magnitude of the applied discharge current, the original joint configuration, the mechanical properties
of the tube materials, the wall thickness of the tubes and the initial standoff distance between them,
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and the impact velocity of the flyer. For example, typical AA6061 flyer tubes (diameter: 40 mm × 2 mm)
experienced a radial plastic deformation in the range of 1 to 2 mm during the joining with AISI1045
target rods [18]. The impact velocity of the flyer when impacting with the target rods was measured
and was in the range of 245 to 305 m/s [18]. MPW of AA3003 flyer tubes (diameter: 20 mm × 1 mm)
and steel target tubes (diameter: 15.2 mm × 1.7 mm) resulted in an inward plastic deformation of
1.5 mm of the joint assembly [8]. Likewise, MPW of AA6060 flyer tubes (diameter: 20 mm × 1 mm)
and steel target tubes (diameter: 14.4 mm × 2.7 mm) led to an inward plastic deformation of 1.4 mm of
the joint assembly [19]. An inward plastic deformation of 4.2 mm of the joint assembly was reported
by Guigliemetti et al. [20] during MPW of aluminium tubes with a wall thickness of 2 mm. For MPW
of Cu-DHP flyer tubes (diameter: 22.22 mm × 0.89 mm) and 11SMnPb30 steel target tubes (diameter:
16.44 mm × 2 mm), Shotri et al. [10] reported an inward deformation of approximately 5.8 mm of
the joint assembly [10]. The aforementioned studies showed that the MPW of tubes would lead to
an inward plastic deformation of the joining partners, and to a distortion of the final joint geometry,
which may often be unacceptable and unwarranted for the intended final purpose.

A solution to restrict the inward plastic deformation of tubes during MPW when the flyer impacts
on the target is to use a solid mandrel inside the target tube to enhance the stiffness of the original
joint assembly. Shotri et al. [21] reported the use of a steel insert for MPW of AA2017 flyer tubes
(diameter: 20 mm × 1 mm) and SS304 target tubes (diameter: 20 mm × 2 mm). Cui et al. [22] used an
AA6061 supporting insert for the joining of AA5052 flyer tubes (diameter: 30 mm × 1 mm) and carbon
fibre composite target tubes (diameter: 28 mm × 1.5 mm). Faes et al. [23] reported a decrease of the
inward plastic deformation of the final joint assembly from 2.9 to 1 mm in MPW of Cu-DHP flyer tubes
with 11SMnPb30 steel target tubes using polyurethane internal supports. The use of polyurethane
internal support was also reported for MPW of AA6061 flyer tubes with a diameter of 40 mm and
Cu-ETP target tubes, in order to minimize the maximum plastic deformation of the joint assembly [17].
Although these studies have showed that the use of an additional insert inside the target tube can
avoid excessive plastic deformation, a detailed analysis of MPW of tubes with and without such inserts
is rarely conducted.

In the present work, an effort is made to investigate the relative influence of the discharge energy,
the initial standoff distance, and the use of an internal support for MPW of thin-walled Cu-DHP flyer
and 11SMnPb30 steel target tubes using a bitter plate coil with a field shaper. The welded joints were
produced at two different discharge energies (14 and 16 kJ), using variable standoff distances between
the flyer and the target tubes, and with and without a polyurethane internal support inside the target
tube. The nature of the progressive plastic deformation and evolution of the joint profile was examined
in detail experimentally and using a numerical process model.

2. Materials and Methods

Figure 2 shows schematically the MPW coil, which is connected in series to an electrical discharge
circuit. A five turn AA6082 bitter plate coil with a CuCrZr field shaper was used. The bitter plate
coil consists of five hollow circular plates, which are made of AA6082 and held together by a set of
insulated steel bolts in staggered positions. The circular coil plates with a diameter (mo) of 280 mm
and a thickness (mb) equal to 12 mm have i/o (in/out) terminals at 10◦, through radial cut-out sections.
An insert of Cu-ETP with a thickness of 3 mm is located between the start and end of the radial sections
and connects the adjacent plates (Figure 2), for a uniform circumferential flow of the discharge current.
Table 1 presents the details of the discharge energy circuit and its characteristics.
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Table 1. Details of discharge circuit elements and energy characteristics.

Discharge circuit Capacitance (µF) Resistance (mΩ) Inductance (µH)
C = 160 R = 14.3 L = 0.55

Generator capacity E = 50 kJ, U = 25 kV

Characteristics of the discharge energy

Pulse frequency f = 1/
(
2π
√

LC
)
= 17 kHz; ω = 2πf = 106.76 × 103 rad/s

Damping coefficient τ = (2L)/R = 7.69 × 105 s
Discharge current I = Ime(−t/τ) sinωt, where Im = U

√
C/Le(−t/4)/τ

A high frequency damped sinusoidal current flows through the coil when the high current switch
(Sg) is activated and creates a transient EM field that induces a secondary eddy current in the inner
coaxial CuCrZr field shaper. The field shaper has a tapered geometry that allows a concentrated inward
flow of the surface current towards its internal face, using a radial slit across its thickness. The inner
and the outer width of the field shaper are 80 and 15 mm, respectively, and its tapered angle θ is 30◦.
A constant initial radial gap (a) of 1.14 mm is maintained between the field shaper internal surface and
the flyer tube. The process conditions, and the dimensions of the coil, field shaper and tubes assembly
are presented in Table A1 (Appendix A).

A Rogowski coil was used to measure the magnitude and nature of the discharge current [10] for
the applied energy of 14 and 16 kJ. A photon Doppler velocimetry (PDV) setup was used to measure
the velocity of the flyer tube during the course of its acceleration, impact on the target and complete
deceleration. The collimator probe of the PDV set-up has an outer diameter of 2.5 mm and is integrated
into the field shaper, as shown in Figure 2. The actual arrangement of the coil and the field shaper
is illustrated in Figure 3. Several bore holes and pockets were made in the field shaper in order to
allow the collimator probe of the PDV set-up to access the outer surface of the flyer tube. This setup
allows radial velocity measurements at the centre of the field shaper. This corresponds with a velocity
measurement location at 0.5 mm from the tube extremity. The measured velocity of the flyer tube
when it impacts onto the target tube is used for the comparison with the computed impact velocity of
the flyer tube.
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Figure 3. Actual arrangement of multi-turn bitter coil and field shaper with the collimator probe
(yellow) of the photon Doppler velocimetry (PDV) setup coming out of the field shaper.

The tube assembly is comprised of a flyer tube made of the Cu-DHP alloy with a diameter (dg)
equal to 22.22 mm and a wall thickness (eg) equal to 0.89 mm, and a target tube made of 11SMnPb30
steel with a wall thickness (eh) equal to 1 mm. The overlap between the flyer and the target tubes
was equal to 25 mm, creating a free length of the flyer tube of 15 mm. The initial standoff distance (s)
between the flyer and the target tubes was varied from 1 to 2 mm, by employing target tubes with
different external diameters (dh) ranging from 18.44 to 16.44 mm.

For the purpose of minimizing the deformation of the parent part, a 50 mm-long tube made of
polyurethane with an inserted solid steel bolt was used as an internal support for the target tube
(Figure 4). The polyurethane had a hardness of 92 Shore A. The tubular internal supports were
pre-stressed via the inserted bolt, a washer and nuts. After the MPW process, the inserts could be
removed manually by releasing the bolt and could be re-used. Tables 2 and 3 show the material
properties of the coil, field shaper, flyer and target tubes, the internal polyurethane tube and the steel
bolt support, respectively. These materials properties are used further in computational modelling of
the MPW process in the present work.
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Table 2. Material properties of coil, field shaper and tubes (flyer-target) [10].

Property Symbol Coil
AA6082

Field Shaper
CuCrZr

Flyer
Cu-DHP

Target
11SMnPb30

Relative permeability µ 1 0.99 0.99 B-H curve *
Electrical conductivity (S/m) σ 26.32 × 106 58 × 106 46.9 × 106 5.75 × 106

Density (kg/m3) ρ 2700 8933 8900 7800
Specific heat (J/kg/K) cp 900 385 386 472
Shear modulus (GPa) G 26.3 45 47.8 129

Poisson ratio ν 0.33 0.38 0.38 0.29

* B-H curve for 11SMnPb30 steel is presented as Figure A1 in Appendix C.

Table 3. Material properties of the polyurethane [24] and steel bolt [10].

Property Symbol Internal Support
Polyurethane AISI 1006 Bolt

Density (kg/m3) ρ 1150 7896
Shear modulus (GPa) G 0.7 81.8

Poisson ratio ν 0.4 0.29

Figure 5 shows a sample welded tubular assembly, together with a typical cross-section of
the joined zone. The final cross-section of each welded sample was examined along the original
flyer-target overlap length, to measure the joint length and the overall deformation of the assembly.
The longitudinal cross-section of each welded joint was examined using optical microscopy to obtain a
macroscopic view of the entire flyer-target contact and using scanning electron microscopy (SEM) to
investigate the microscopic nature of the contact interface at multiple locations. The welded length
is judged based on the intimate contact along the flyer-target interface as viewed under the optical
microscope. Subsequently, the microscopic nature of the interface was examined at a few locations
along the welded interface using SEM. For a sample weld prepared with an internal polyurethane
support, the macroscopic view of the longitudinal cross-section of the entire tubular joint and the
SEM backscattered images at two random locations along the welded interface are shown together
in Figure 6. Similar SEM backscattered images at six to ten locations along the welded length are
examined for each welded sample to observe the interface nature. In most cases, a slightly wavy nature
of the interface has been observed along the welded length, which is anticipated from the macroscopic
view, based on a close scrutiny using optical microscopy.
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3. Theoretical Formulation

The EM field, H, around the coil and tube assembly in the MPW process, is obtained by solving
the Maxwell’s governing equation of the magnetic diffusion as [25,26]:

1
µσ
∇

2H =
∂H
∂t

(1)

where, σ and µ represent the electrical conductivity and magnetic permeability. The resultant EM force,
F, over the flyer tube can be estimated as:

F = J×B (2)

where J = ∇×H = ∇× (B/µ), B and J refer to the magnetic flux density vector and the eddy current
density vector, respectively.

The dynamic impact analysis requires the application of a transient EM pressure on the flyer tube.
The transient EM pressure, p, on the flyer tube is therefore estimated using the EM force, F, as,

p =

δ∫
0

Fdt =

δ∫
0

− µ0µrH
∂H
∂r

dt =
1
2
µ0µr

(
H2

s −H2
p

)
(3)

where µ0 and µr refer to the relative magnetic permeability in the air and in the flyer tube. Hs and Hp

represent the magnetic field over the surface and at a depth δ, referred to as the skin depth of the flyer
tube [21]. The field intensity at a depth δ, where δ = 1/

√
µπfσ, is very small and hence neglected in

the present analysis.
Figure 2 shows schematically the solution domain, which is considered for the EM field analysis

with the density, relative permeability and electrical conductivity of air equal to 1.1614 kg/m3, 1 and
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zero, respectively. The solution domain is extended to 800 mm at all sides of the coil-tube assembly.
The EM field remains continuous within the solution domain and is represented as [27]:

ân · (B1 −B2) = 0, ân × (H1 −H2) = Js (4)

where ân is the unit vector normal to the surface, Js is the surface current density vector, B1 and B2 are
the magnetic flux density vectors at the coil cross-sections. H1 represents the magnetic field intensity
at the coil inner surface, interacting with the field shaper. H2 is the magnetic field intensity at the coil
outer surface. At the domain boundary, BC2 [Figure 2], the EM field intensity becomes negligible and
is represented as [27]:

ân · (H1 −H2) = 0 (5)

The numerical model for the EM field and the mechanical analysis is undertaken using the
finite-element software ANSYS (ver. 14.5). For the EM field analysis, a total of 174,000 three-dimensional
tetrahedral elements were used to discretize the solution domain (Figure 2), with the current density
vector as nodal input along the coil boundary and the EM field vector as the nodal degree of freedom.
The estimated EM pressure distribution is employed as boundary condition for the dynamic impact
analysis using a MATLAB-based code. The dynamic impact analysis includes the overlapping tubes
assembly, which was discretized with 125,000 solid hexahedral elements that can consider non-linear
constitutive models, which are presented in Appendix B. The computed results of the EM field and
dynamic impact analyses, along with the experimentally measured results, are illustrated in the
subsequent section.

4. Results and Discussions

Figure 7a,b represents the measured and estimated currents for two typical values of the discharge
energy of 14 and 16 kJ, which were utilized in the present work to prepare the welded samples.
The peak current for a discharge energy of 14 kJ was approximately equal to 197 kA at the time instant
of 13 µs. Likewise, the peak current for the discharge energy of 16 kJ was measured to be around
202 kA at the same time instant of 13 µs. The frequency of the discharge current was observed to be
approximately 17 kHz. The corresponding maximum values of the EM force were calculated to be
around 47.2 and 51.2 kN for a discharge energy of 14 and 16 kJ, respectively.

Figure 7. Experimentally measured and analytically estimated nature of the discharge current,
and numerically computed EM force for an applied energy of (a) 14 kJ and (b) 16 kJ.

Figure 8 shows the computed results of the EM field and pressure for an applied discharge energy
of 14 kJ at the time instant of 13 µs. The EM field vectors are distributed around the coil-field shaper
and the flyer-target tubular assembly, as shown in Figure 8a. The EM fields are concentrated around
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the flyer tube portion in the proximity of the field shaper internal surface, due to its shaped geometry.
The maximum values of the EM field and the eddy current density over the flyer tube surface were
calculated as 39.8 T and 5.8 × 1010 A/m2 at the time instant of 13 µs.

Figure 8. Numerically computed distribution of the maximum (a) EM field over the field shaper-tube
assembly, and (b) EM pressure over the flyer tube for an applied energy of 14 kJ.

Figure 8b shows the calculated EM pressure over the flyer tube at the time instant of 13 µs.
The estimated EM pressure remains circumferentially uniform, with the maximum value equal to
647 MPa, which corresponds with the maximum EM force of 47.2 kN for the discharge energy of 14 kJ.
The EM pressure on the flyer tube is maximal at its free end and decreases along its length beneath
the field shaper, resulting in an inward bending and oblique impact of the flyer on the target tube.
As the portion of the flyer bends and moves away from the field shaper, the EM field and pressure
distribution change. This results in a progressive oblique impact of the flyer onto the target tube along
their overlapping length. While Figure 8b shows the computed EM pressure distribution over the flyer
tube at the time instant of 13 µs, similar EM pressure distributions are extracted for multiple discrete
time-steps and used as input for the dynamic impact analysis of the tube assembly. The results of this
are presented in the text below.

Figure 9 shows the computed results of the progressive impact and deformation of the tube
assembly and, the flyer-target contact length at multiple consecutive time instants for an applied
discharge energy of 14 kJ. The colour bars under each figure represent the total plastic deformation
in mm, which is the resultant of the computed plastic deformations in the x-, y- and z- directions.
The calculated flyer-target contact length is determined by examining the deformed portion of the
flyer, which has impacted and remained in contact with the target tube under the influence of the EM
pressure. The actual contact is deemed to have established for the length of the continuous segment,
along which the vertical distance between the flyer and the target (i.e., the internal surface of the flyer
and the outer surface of the target) tubes is equal to zero. This calculated flyer-target contact length is
subsequently compared with the experimentally measured welded length.
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energy of 14 kJ and with no internal support inside the target tube. (Initial conditions: wall thicknesses 
of flyer = 0.89 mm and of target = 1 mm; standoff distance between flyer and target = 1 mm; 

Figure 9. Computed results of the progressive impact and plastic deformation of the tube assembly
at the time instants of (a) 7 µs, (b) 9 µs, (c) 11 µs, (d) 17 µs, (e) 21 µs and (f) 26 µs for a discharge
energy of 14 kJ and with no internal support inside the target tube. (Initial conditions: wall thicknesses
of flyer = 0.89 mm and of target = 1 mm; standoff distance between flyer and target = 1 mm;
overlapping length between field shaper and flyer, Lw = 8 mm and free length of the flyer tube,
Lo = 15 mm).

Figure 9a shows that there is very little deformation of the flyer tube after 7 µs for a peak EM
field and pressure of 33.2 T and 441 MPa. At 9 µs, the typical inward bending of the flyer can be
observed, resulting in the calculated flyer-target contact length of around 1 mm for a peak EM field
and pressure of 36.1 T and 520 MPa (Figure 9b). The increase of the EM field and pressure is attributed
to the increase of the peak current at the time instants of 7 and 9 µs. The inward bending of the
flyer continues and the calculated flyer-target contact length increases further to 8 mm at the time
instant of 11 µs (Figure 9c). However, as the flyer moves away from the coil (field shaper), the peak
EM field and pressure are reduced to 35.6 T and 505 MPa. With further progress in time, at 17 µs,
the calculated flyer-target contact length increases to 11 mm. The inward deformation of the joint
assembly also increases to 2.5 mm, while the peak EM field and pressure are reduced to 32.6 T and
430 MPa, respectively (Figure 9d).

After 21 µs, the flyer-target assembly showed an increased inward deformation of 3.1 mm,
while the calculated flyer-target contact length remains the same as that at 17 µs, which is attributed to a
significantly reduced peak EM field intensity and pressure of 23.3 T and 216 MPa, respectively (Figure 9e).
As the time increases further, the target tube also experiences more deformation, resulting in further
inward distortion of the overall tubular assembly, as shown in Figure 9f. A greater inward deformation
of the tubular assembly especially at longer time durations can be attributed to the thinning of the
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tube walls and the consequent loss of stiffness of the tubular assembly. The computed results of the
deformed tubular assembly depict a maximum thinning of both the flyer and the target tube walls by
approximately 0.2 mm at the end of the flyer-target overlapping length.

The excessive inward plastic deformation of the tube assembly as shown in Figure 9f indicates
that MPW of tubes can lead to a significant distortion of the tube assembly. Lueg-Althoff et al. [17]
reported a similar range of plastic deformation for MPW of AA6060 flyer and AISI 1045 target tubes,
with the wall thickness of the target tube equal to 1 mm. These authors suggested the use of an internal
support to constrain the inward deformation of the joint assembly, while a further examination of the
influence of the internal support to improve the joint profile and quality was not undertaken.

Figure 10 shows the computed results of the progressive impact and deformation of the tube
assembly at multiple consecutive time instants when using a polyurethane internal support placed
inside the target tube. Figure 10a confirms a calculated contact length of 1 mm between the flyer and
the target tube at 9 µs. The peak EM field and pressure at 9 µs were calculated as 36.5 T and 529 MPa,
respectively. After 11 µs, the calculated flyer-target contact length increases to 8.5 mm (Figure 10b) for a
higher peak EM field and pressure of 37.9 T and 571 MPa, respectively. It is noteworthy in Figure 10a,b
that only the flyer experiences plastic deformation and that the target tube has suffered no inward
distortion. The calculated contact length between the flyer and the target tube increases further to
10.5 mm after 15 µs (Figure 10c). The computed values of the peak EM field and pressure at 15 µs
showed a drop to 33.6 T and 451 MPa, respectively.J. Manuf. Mater. Process. 2020, 4, x FOR PEER REVIEW 11 of 19 

 

 
Figure 10. Computed results of the progressive impact and plastic deformation of the tube assembly 
at the time instants of (a) 9 µs, (b) 11 µs, (c) 15 µs, (d) 17 µs, (e) 21 µs and (f) 26 µs for an applied 
discharge energy of 14 kJ and with a polyurethane internal support for the target tube. (Initial 
conditions: wall thicknesses of the flyer = 0.89 mm and of the target = 1 mm; standoff distance between 
the flyer and the target = 1 mm; overlapping width between the field shaper and the flyer, Lw = 8 mm 
and free length of the flyer tube, Lo = 15 mm). 

Figures 11 and 12 show the longitudinal cross-section of the entire welded length and the 
corresponding computationally obtained flyer-target deformed profile for different process 
conditions. The welded length, which is judged based on the intimate contact using optical 
microscopy, is shown by a thin red line in the experimentally observed macroscopic sections. The 
microscopic view of the welded interface is also probed using SEM backscattered images at six to ten 
random locations along the welded length for each tubular joint, as explained earlier (Figure 6). 

Figure 11 shows the experimentally observed and the corresponding computationally obtained 
joint cross-sections for a discharge energy of 14 and 16 kJ, and with the use of a polyurethane internal 
support placed inside the target tube. Figure 11a,b shows that the length of the experimentally 
observed welded interface and the corresponding calculated flyer-target contact length are 
approximately 8.3 and 11.5 mm, respectively, for a standoff distance of 1 mm and a discharge energy 
of 14 kJ. It is noteworthy that the calculated flyer-target contact length is obtained from the deformed 
interface of tubular assembly as a part of the mechanical analysis. The formation of the actual weld 
needs to consider the jetting of the impurities from the flyer-target interface, and localized plastic 
deformation creating mechanical interlock and atomic diffusion between the abutting surfaces of the 
flyer and the target, which are beyond the scope of the dynamic mechanical analysis adopted in the 
present work. As a result, the calculated flyer-target contact length remains always a little higher than 
the corresponding length of the experimentally observed welded interface. 

As the standoff distance increases to 2 mm, both the length of the experimentally observed 
welded interface and the calculated flyer-target contact length decreases to 7.3 and 10 mm, 
respectively (Figure 11c,d). The decreasing tendency of the contact length with an increase of the 
standoff distance is also observed at the higher discharge energy of 16 kJ. For example, when the 

Figure 10. Computed results of the progressive impact and plastic deformation of the tube assembly
at the time instants of (a) 9 µs, (b) 11 µs, (c) 15 µs, (d) 17 µs, (e) 21 µs and (f) 26 µs for an applied
discharge energy of 14 kJ and with a polyurethane internal support for the target tube. (Initial conditions:
wall thicknesses of the flyer = 0.89 mm and of the target = 1 mm; standoff distance between the flyer
and the target = 1 mm; overlapping width between the field shaper and the flyer, Lw = 8 mm and free
length of the flyer tube, Lo = 15 mm).
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After 17 µs, the computed flyer-target contact length shows a small increase to approximately
11.5 mm (Figure 10d), and the calculated values of the peak EM field and pressure show a further drop
to 32.2 T and 415 MPa, respectively. The calculated contact length between the flyer and the target
shows no further increase in the subsequent time instants of 21 µs (Figure 10e) and 26 µs (Figure 10f).
This is consistent with the continuing decrease of the peak EM field (~22 T) and pressure (~209 MPa)
at 21 µs, as a result of the inward bending of the flyer away from the field shaper. The computed
results show that the inward deformation of the tubular assembly starts late, at 15 µs (Figure 10c),
and the net deformation remains very small until the end (Figure 10f), which demonstrates the role
of the polyurethane internal support to enhance the stiffness of the target tube and to minimize the
deformation of the tube assembly. With the internal polyurethane support inside the target tube,
the computed results of the deformed tubular assembly depict a maximum thinning of the flyer tube
wall by around 0.17 mm and little or no thinning of the target tube wall.

Figures 11 and 12 show the longitudinal cross-section of the entire welded length and the
corresponding computationally obtained flyer-target deformed profile for different process conditions.
The welded length, which is judged based on the intimate contact using optical microscopy, is shown
by a thin red line in the experimentally observed macroscopic sections. The microscopic view of the
welded interface is also probed using SEM backscattered images at six to ten random locations along
the welded length for each tubular joint, as explained earlier (Figure 6).
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target tube also plays a significant role for restricting the deformation of the tubes. 

Figure 12a,b shows the experimentally observed and calculated flyer-target joint cross-sections 
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interface and the calculated flyer-target contact length are approximately 7.3 and 11.5 mm, 
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support is used (Figure 12b,d). 

Figure 11. Experimentally observed and computationally evaluated flyer-target joint cross-sections
for a discharge energy of 14 kJ (a–d) and 16 kJ (e–h), with a polyurethane internal support inside
the target tube. (Initial conditions: flyer-target standoff distance = 1 mm (a,b,e,f) and 2 mm (c,d,g,h);
flyer tube: diameter = 22.22 mm, wall thicknesses = 0.89 mm; target tube: wall thicknesses = 1 mm;
diameter = 18.44 mm (standoff distance = 1 mm), 16.44 mm (standoff distance = 2 mm)).
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Figure 12. Experimentally observed and computationally estimated flyer-target joint cross-sections
with a polyurethane internal support (a,b), and without any internal support (c–f) for the target
tube. (Initial conditions: discharge energy: 16 kJ (a,b,e,f), 14 kJ (c,d); flyer: diameter = 22.22 mm,
wall thicknesses = 0.89 mm; and target: diameter = 18.44 mm, wall thicknesses = 1 mm (a–d), 2 mm
(e,f); standoff distance = 1 mm).

Figure 11 shows the experimentally observed and the corresponding computationally obtained
joint cross-sections for a discharge energy of 14 and 16 kJ, and with the use of a polyurethane internal
support placed inside the target tube. Figure 11a,b shows that the length of the experimentally observed
welded interface and the corresponding calculated flyer-target contact length are approximately 8.3
and 11.5 mm, respectively, for a standoff distance of 1 mm and a discharge energy of 14 kJ. It is
noteworthy that the calculated flyer-target contact length is obtained from the deformed interface
of tubular assembly as a part of the mechanical analysis. The formation of the actual weld needs to
consider the jetting of the impurities from the flyer-target interface, and localized plastic deformation
creating mechanical interlock and atomic diffusion between the abutting surfaces of the flyer and
the target, which are beyond the scope of the dynamic mechanical analysis adopted in the present
work. As a result, the calculated flyer-target contact length remains always a little higher than the
corresponding length of the experimentally observed welded interface.

As the standoff distance increases to 2 mm, both the length of the experimentally observed
welded interface and the calculated flyer-target contact length decreases to 7.3 and 10 mm,
respectively (Figure 11c,d). The decreasing tendency of the contact length with an increase of the
standoff distance is also observed at the higher discharge energy of 16 kJ. For example, when the
standoff distance increases from 1 to 2 mm at a discharge energy of 16 kJ, the length of the experimentally
observed welded interface reduces from 7.3 to 6.3 mm (Figure 11e,g), and the corresponding calculated
flyer-target contact lengths are around 11.5 and 10.5 mm, respectively (Figure 11f,h).

For an increasing standoff distance, the flyer tends to impact onto the target at a higher velocity
and therefore the tubular assembly; in particular, the target tube suffers more plastic deformation,
which impairs the progressive growth of the calculated flyer-target contact length. A comparison of
Figure 11b,d clearly demonstrates the increasing deformation of the tubes when the standoff distance
is increased from 1 to 2 mm at a discharge energy of 14 kJ. A similar effect of the standoff distance is
also observed at the discharge energy of 16 kJ (Figure 11f,h). Overall, Figure 11 shows that an increase
of the standoff distance can lead to excessive plastic deformation of the tubes and adversely affects the
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joint formation. The presence of an internal support inside the target and the wall thickness of the
target tube also plays a significant role for restricting the deformation of the tubes.

Figure 12a,b shows the experimentally observed and calculated flyer-target joint cross-sections
with an internal polyurethane internal support. The length of the experimentally observed welded
interface and the calculated flyer-target contact length are approximately 7.3 and 11.5 mm, respectively,
for a standoff distance of 1 mm and a discharge energy of 16 kJ. The wall thickness of the target tube is
1 mm. In contrast, both the length of the experimentally observed welded interface and the calculated
flyer-target contact length are reduced to approximately 5.9 and 11 mm, respectively (see Figure 12c,d),
when no internal support is used inside the target tube. The reduction of the weld length is attributed
to the greater plastic deformation of the tubes when no internal support is used (Figure 12b,d).

For a target tube with a wall thickness of 2 mm and without any internal support, and a discharge
energy of 16 kJ, the length of the experimentally observed welded interface and the calculated
flyer-target contact length are approximately equal to 6.3 and 11 mm, respectively (Figure 12e,f).
A comparison of Figure 12a,b,e,f shows that the internal support has helped to produce a greater
welded length even with a target tube of smaller wall thickness of 1 mm (Figure 12a,b) in comparison
to that with a target tube of higher wall thickness of 2 mm (Figure 12a,b). However, a comparison
of Figure 12d,f shows that the tubular assembly without any internal support suffered a greater
inward deformation of 5.5 mm, with a target tube of 1 mm wall thickness in comparison to an inward
deformation of 3.8 mm with a target tube of 2 mm wall thickness, which can be attributed to higher
stiffness posed by the thicker target tube.

The underlying phenomena of the MPW process can be examined further by following the
progress of the formation of the welded interface in accordance with the flyer impact velocity and
angle, and the collision velocity between the flyer and the target. As the process is extremely fast,
the real-time monitoring of the welded interface, impact velocity and angle, and the collision velocity
are impossible. A computational process model is therefore a practical alternative to estimate these
values. Figure 13 presents the variation of the calculated flyer-target contact length, the flyer impact
velocity and angle, and the collision velocity for a discharge energy of 14 kJ and two different standoff

distances. Figure 13a shows that the computed impact velocity of the flyer ranges from 3.0 × 105 to
1.4 × 105 mm/s for a standoff distance of 1 mm. The corresponding experimentally measured value of
the impact velocity of the flyer is around 3.1 × 105 mm/s and shown in Figure 13a. When the standoff

distance is increased from 1 to 2 mm, higher values of the flyer impact velocity are obtained in the range
from 4.5 × 105 to 1.5 × 105 mm/s, with the corresponding measured value equal to 4.1 × 105 mm/s,
as shown in Figure 13b. Figure 13a,b also shows that the growth of the calculated flyer-target contact
length tends to slow down with an increase in time as the flyer impact velocity reduces.

When the flyer continues to impact onto the target in an oblique manner, knowledge of the
progressive variation of the flyer impact angle is very valuable. The collision velocity is a determining
factor for the occurrence of a jet which removes the surface impurities to promote the bonding between
the flyer and the target. Hence, an estimation of the variation of the collision velocity and the angle is
of importance. The nature of the collision velocity and its impact on the weld formation have been
studied well for explosive welding, which is similar to MPW and involves the impact between flyer
and target metallic parts at a certain angle. Yuan et al. [28] reported the maximum collision velocity to
be around 4.9 × 103 m/s during explosive welding of 4 mm thick AA6061 flyer sheets to magnesium
alloy target plates. Bataev et al. [29] observed that the typical collision velocity of approximately
3.8 × 103 m/s produced good joints during the explosive welding of 1 mm-thick AISI1006 flyer and
target sheets, while a much higher collision velocity of around 9.6 × 103 m/s resulted in welds with
humps and excessive plastic deformation.
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Figure 13. Computed values of the flyer-target contact length, the flyer impact velocity and angle and the
collision velocity as a function of time, for an applied discharge energy of 14 kJ with a polyurethane internal
support of the target tube. (Initial conditions: flyer: diameter = 22.22 mm, wall thicknesses = 0.89 mm;
and target: diameter = 18.44 mm, wall thicknesses = 1 mm; standoff distance between the flyer and the
target = 1 mm (a,c) and 2 mm (b,d)).

Figure 13c,d shows the computed results of the impact angle and collision velocity for two
different standoff distances (1 and 2 mm) as the calculated flyer-target contact length increases with
time. The flyer impact angle is calculated based on the deformed profile of the flyer at a certain time
instant. The collision velocity is computed as Vi/sinα, where Vi is the flyer impact velocity and α is
the impact angle at the end of the contact between the flyer and target [21]. For a standoff distance
of 1 mm, the collision velocity and the flyer impact angle are situated in the range from 4.3 × 106 to
0.5 × 106 mm/s, and from 4 to 16◦, respectively (Figure 13c). For an increase of the standoff distance to
2 mm, the flyer impact angles are higher, in the range from 8 to 27◦, and consequently, the collision
velocity values are reduced and are in the range from 3.3 × 106 to 0.3 × 106 mm/s (Figure 13d).
This clearly shows that it is recommended to use a smaller initial standoff distance between the flyer
and the target for the given tube dimensions and other process conditions.

For a higher discharge energy of 16 kJ, a standoff distance of 1 mm, and considering a polyurethane
internal support inside the target tube, similar calculations were performed to obtain the typical
ranges of the flyer impact velocity and angle, and the collision velocity. This resulted in 3.2 × 105 to
1.3 × 105 mm/s, 4 to 16◦ and, 4.5 × 106 to 0.5 × 106 mm/s, respectively. For an increase of the standoff

distance to 2 mm, the calculated flyer impact velocity and angle, and the collision velocity are found to
be in the range of 4.6 × 105 to 2.0 × 105 mm/s, 8 to 24◦ and, 3.3 × 106 to 0.4 × 106 mm/s, respectively.
A comparison of these quantitative estimations with those presented in Figure 13a–d shows that the
calculated ranges of the flyer impact velocity and angle, and the collision velocity remains almost the
same for an increase of the discharge energy from 14 to 16 kJ for both standoff distances of 1 and 2 mm.
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However, the increase of the calculated ranges of the flyer impact velocity and angle, and the collision
velocity for an increased initial standoff distance remained consistent for both values of the discharge
energy 14 to 16 kJ. A further set of modelling calculations for a target tube wall thickness of 1 and 2 mm
and considering the same process conditions but without a polyurethane internal support inside the
target tube also provided a similar range of computed values for the flyer impact velocity and angle,
and collision velocity. In other words, the polyurethane internal support inside the target has shown
little effect on the computed values of EM field and force, and on the resulting range of the flyer impact
velocity and angle, and the collision velocity. However, the presence of the polyurethane internal
support restricted the inward deformation of the tubular assembly and preserved its dimensional
consistency in all cases.

5. Conclusions

A detailed investigation of MPW of Cu-DHP flyer and 11SMnPb30 steel target tubes with and
without internal supports inside the target tube is performed, using a range of experimental conditions
determined by the discharge energy, the standoff distance, and the wall thickness of the target tubes.
The experimental observations and the computed results show that the standoff distance between
the flyer and target tubes significantly influences the progressive evolution of the impact of the flyer
onto the target and the resulting growth of the weld joint between the tubes. Although a target tube
with a little larger wall thickness can resist the internal deformation during impact better, the presence
of an internal support is a useful tool to preserve the original dimensions of the tubular assembly.
Overall, the concurrent theoretical and experimental results presented in this paper provide a useful
quantitative understanding of the collision behaviour between the flyer and target tubes during MPW
of tubular parts, using a typical bitter plate coil. The influence of the key processing conditions on the
evolution of the welded joint between the tubes with progress in time has been determined.

Based on the experimental observations and numerical modelling of MPW of Cu-DhP flyer
and 11SMnPb30 steel target tubes using a multi-turn coil assembly, the following conclusions can
be formulated.

• The initial standoff distance between the flyer and the target tube plays a crucial role and has a
significant influence on the progressive impact of the flyer onto the target, the collision behaviour
between the tubes and the evolution of the welded interface.

• The flyer tube tends to experience significant plastic deformation as it impacts onto the target.
It is necessary to use an internal support for MPW of thin-walled target tubes to avoid inward
plastic deformation of the tube assembly.

• For MPW of Cu-DhP flyer and 11SMnPb30 steel target tubes with a wall thickness of 1 to 2 mm,
the experimentally observed weld length ranged from 6.9 to 8.5 mm. The inward distortion of
the tubular assembly could be minimized significantly by using a polyurethane internal support
inside the target tube.

• The computational process model is able to predict the progress of the impact of the flyer onto the
target, the resulting flyer impact velocity and angle, and the collision velocity between the flyer
and target during the MPW process, which are usually impossible to measure using experimental
observations. Furthermore, the computed progress of the flyer-target contact length provided
a measure of the actual growth of the weld length, comparable to the reality, which cannot be
measured in real-time during the MPW process. The process simulation model can therefore be
considered as a valuable practical tool towards the design of the MPW process.

Author Contributions: Conceptualization, A.D. and K.F.; methodology, A.D.; software, R.S. and A.D.; validation,
K.F.; investigation, R.S. and K.F.; resources, K.F. and A.D.; writing—original draft preparation, R.S.; writing—review
and editing, R.S. and K.F.; visualization, R.S.; supervision, A.D.; project administration, K.F.; funding acquisition,
K.F. All authors have read and agreed to the published version of the manuscript.



J. Manuf. Mater. Process. 2020, 4, 118 17 of 19

Funding: The present studies are funded within the project “Elektromagnetisch puls lassen van gelijksoortige en
ongelijksoortige materialen—Laasbaarheid en mecanische eigenschappen” for prenormative research under the
grant no. CCN/NBN/PN19A02 of the FOD Economie Belgium.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Table A1. Process conditions and dimensions of coil and tubes assembly.

Legend Description Unit Value/Range

E Discharge energy kJ 14, 16
a Radial gap mm 1.14
s Standoff distance mm 1, 2

Lw Overlapping length between field shaper and flyer mm 8
L0 Free length of flyer tube mm 15
dg Flyer tube diameter mm 22.22
eg Wall thickness of flyer tube mm 0.89
dh Target tube diameter mm 16.44 to 18.44
eh Target tube wall thickness mm 1, 2
θ Field shaper taper angle degree 30

mb Coil plate width mm 12
mc Coil plate concentrated section width mm 8
mo Plate coil diameter mm 280
qo Field shaper outer diameter mm 97.5
qi Field shaper inner diameter mm 24.5
ql Field shaper outer width mm 80
qw Field shaper inner width mm 15

Appendix B

The dynamic mechanical behaviour of the Cu-DHP flyer, the 11SMnPb30 steel target and the S235
steel bolt (used inside the polyurethane tube for internal support) is described by the following relation,

σf =
[
A + B(εp)

n]1 + C ln


.
ε

p

.
ε0


[1− ( T− Tr

Tm − Tr

)m]
(A1)

where σf, T, Tr, Tm, εp,
.
ε

p
and

.
ε0 refer to the flow stress, the temperature variable, the reference

temperature, the melting temperature, the equivalent plastic strain, the equivalent plastic strain rate,
and the reference strain rate at Tr, respectively. The values of the materials constants A, B, C, n and
m are given in Table A2. The dynamic mechanical behaviour of polyurethane is described using the
Cowper–Symonds plasticity model, as follows,

σf =
[
A + B(εp)

n]1 +


.
ε

p

.
ε0


1/q (A2)

The values of the materials constants A, B, n, q and
.
ε0 for polyurethane are given in Table A2.
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Table A2. Material constants for different materials in Equations (A1) and (A2).

Variables Definition Cu-DHP 11SMnPb30 AISI1006 Polyurethane

A Initial flow stress (MPa) 90 350.30 350 11.05
B Hardening constant (MPa) 292 325.8 275 80
C Strain rate sensitivity 0.025 0.04 0.36 -
N Hardening exponent 0.31 0.90 0.022 0.7
.
ε0 Reference strain rate (s1) 1.0 1.0 1.0 971
M Thermal softening exponent 1.0 0.30 1 -
Tm Melting temperature (K) 1355 1673 1811
Q Strain rate exponent - - - 0.98

Polyurethane [30], Cu-DHP [10], 11SMnPb30 [10], AISI1006 [10].

Appendix C

Figure A1. B-H curve used to assign magnetic permeability of 11SMnPb30 steel.
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