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Abstract: The successful and efficient production of parts with specific features by Wire + Arc Addi-
tive Manufacturing (WAAM) strongly depends on the selection of proper and typically interrelated
deposition parameters. This task might be particularly challenging in the making of thin walls, which
might be highly impacted by processing conditions and heat accumulation. In this context, this
study aims at expanding the work envelope and optimizing the parametric conditions in WAAM
with relative density and surface aspects of the preforms as quality constraints. The experimental
approach was based on the deposition of thin Al5Mg walls by the CMT process on its standard
welding setup and with an active cooling technique to enhance the deposition robustness. Internal
voids were estimated by Archimedes’ method. The surface quality of the walls was assessed through
the visual aspect and the surface waviness by cross-section analysis. All the conditions presented
relative density higher than 98%. The upgrade of the standard welding hardware to WAAM purposes
through the addition of a supplementary shielding gas nozzle to the torch and the intensity of the
heat sinking from the part significantly expanded the process work envelope, with its applicability
being successfully demonstrated with multi-objective optimization. To sum up, a decision-making
procedure is presented towards achieving intended preform quality.

Keywords: WAAM; directed energy deposition; CMT; Aluminum; operational map; work envelope;
parameter selection; optimization

1. Introduction

Wire + Arc Additive Manufacturing (WAAM) is a Directed Energy Deposition (DED)
technique that uses an electric arc as a heat source and metallic wire as a feedstock. Because
WAAM is based on welding equipment and consumables, one can say that WAAM is
currently the most cost-accessible metal additive manufacturing process. Due to the
nature of arc-based deposition processes—high deposition rate and large molten pool—
WAAM has been proven as suitable to produce medium to large components with medium
complexity. However, the successful and efficient production of parts with specific features
by WAAM strongly depends on a cautious process planning, which includes an integrated
selection of several and typically interrelated process parameter, such as build setup
conditions, deposition parameters, consumables, path planning, thermal management, and
post-processing [1].

To meet all these requirements, the end-users must use a systematic method for
parameter selection (technically termed parametrization). Differently from well-established
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AM processes for polymers, whose transition from 3D model data to a machine code might
be considered automatic, metal additive manufacturing processes still require a labor-
intensive process for parameter investigation and selection, as reported by Dahat et al. [2],
Gierth et al. [3], and Yehorov et al. [4] for WAAM.

Although numerical models are becoming increasingly accurate across a wide spec-
trum, especially in terms of thermomechanical-related features, their use for parametriza-
tion tasks still requires expensive hardware and specialized labor and are often slow. As
an alternative solution, experimental approaches in conjunction with statistical tools have
been widely used to formulate empirical models to predict bead geometry for a given
parametric setup and vice-versa. Parametric charts are another experimental-based ap-
proach to parameter selection that has been developed for WAAM [2], although are still
more widespread in joining processes such as in Gas Metal Arc Welding (GMAW) metal
transfer maps [5]. Table 1 outlines recent investigations on charts for parameter selection
and approaches for their expansion and robustness improvement in WAAM processes.

Table 1. Collection of contributions on parametric charts and approaches for their expansion and
robustness improvement in WAAM.

Reference Process Material Contribution

Martina et al. [6] Plasma
Ti6Al4V

Designed an operational map from experimental
trials by using statistical tools for WAAM.

Ríos et al. [7] Plasma
Ti6Al4V

Proposed an analytical process model for
predicting layer height and wall width, which
includes inter-pass temperature and
material properties.

Ali et al. [8] GMA
Hot work tool steel

Assessed the effect of process parameters on
bead geometry and highlighted the difference
between adjusted and measured wire feed speed
for the CMT process.

Marinelli et al. [9] GTA
Unalloyed tungsten

Expanded the work envelope in terms of travel
speed by changing the shielding gas
composition.

Michel et al. [10] Plasma
Ti6Al4V

Developed a path planning solution by
incorporating the modularity of design into the
path planning task.

Henckell et al. [11] GMA
Low-alloyed steel

Expanded the work envelope by a systematic
variation of the CTWD value.

Scotti et al. [12] GMA
Al5Mg

Improved the process robustness via an active
cooling technique and by systematically varying
the electrode polarity ratio.

Ding et al. [13] GMA
Al5Si

Developed a process planning to achieve better
shape accuracy and material efficiency in
structures with sharp corners.

However, these empirical parametrization approaches for WAAM may be quite lim-
ited due to low robustness. Moreover, they may offer low flexibility if only standard
hardware, typically derived from welding counterparts, are employed. Additionally, the
challenge of finding optimized setups becomes more complex when quality constraints
typical of the additive manufacturing route are brought onto the table. Thus, the present
study deals with the deposition parameter selection task and aims at expanding the work
envelope in WAAM of thin walls and applying it for optimizing the parametric conditions,
specifically with relative density and surface aspects of the preforms as quality constraints.
An Al5Mg alloy is used as a case study due to its appeal for lightweight structures.
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2. Methodology

The strategy to reach the proposed aims is based on the following steps:

(a) Establishment of an operational map (hardware capabilities/limitations);
(b) Design of a work envelope: A region within the operational map that meets some

acceptance criteria;
(c) Expansion of the work envelope through an upgrade of the welding hardware to

WAAM purposes and improvement of process robustness;
(d) Application of multi-objective numerical optimization based on the work envelope data;
(e) Ordering of a decision-making procedure towards achieving intended preform

quality features.

2.1. Experimental Procedures

WAAM of thin-walled structures might be particularly challenging because they are
highly impacted by processing conditions and heat accumulation (poor heat sinking by
conduction). Therefore, all the depositions were carried out using the Near-immersion
Active Cooling (NIAC) thermal management technique to improve the process robustness,
i.e., to keep a similar and stable condition all over the deposition time. According to
this technique concept, the preform is deposited inside a work tank that is filled with
water, whose level rises as the metal layers are deposited, with the distance separating the
deposition and water levels being the main parameter for heat sinking control. Similar
results in terms of preform geometry can be achieved without any special thermal manage-
ment technique, but at the expense of a production time imperatively longer due to the
cooling periods needed to keep correspondingly low interpass temperature levels (as it
would be accomplished with a rather more specific thermal management technique) [14].
Moreover, due to its ability to prevent heat accumulation, and therefore its drawbacks,
the NIAC technique has been proved to be capable of coupling increased manufacturing
productivity with improved mechanical and geometric qualities [15]. The experimental rig
and deposition details are presented in Figure 1.
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Figure 1. Experimental rig developed by da Silva [14] and cross-sectional schematic representation of
the deposition region: (1) NIAC work tank, (2) NIAC water level control, (3) AM CMT torch, (4) AM
motion system on the gantry, (5) NIAC pressurized water tank, (6) NIAC hydraulic and pneumatic
control, and (7) AM CNC control.

The deposition runs, generally conditioned as summarized in Table 2, were carried
out on vertical substrates clamped to the work tank to mimic wall-like preforms in terms
of heat flux and stiffness since the onset of deposition. To mitigate the effects of hydrogen
external sources, the substrates were lightly sanded just before each deposition run and the
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wire surface was continuously cleaned by a felt clamped to it right before the drive rolls, as
shown in Figure 2.

Table 2. Deposition conditions for the parameter selection procedure.

Arc deposition equipment Fronius CMT—TransPuls Synergic 500
Deposition material AWS ER 5356-Ø 1.0 mm Wire
Substrate Al5052 (220 × 38.1 × 6.4 mm) plate
CTWD 1 12 mm
Shielding gas Commercial argon (15 L/min)
Cooling liquid Tap water at around 20 ◦C
Work tank volume 50 L
Preform geometry Single wall with 12 layers and length of 200 mm
Building strategy Single-pass multi-layers bidirectional deposition
Dwell time 10 s/layer
Thermal management Near-immersion Active Cooling—NIAC

1 CTWD stands for “contact tube to work distance”.
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Figure 2. Cleaner pad (felt) clamped to the wire to mitigate the effect of external impurities and its
assembly detail.

2.2. Measurements

The following responses were measured:

• Deposition parameters: Voltage, current, and wire feed speed;
• Relative density;
• Total Wall Width—TWW [6];
• Effective Wall Width—EWW [6];
• Surface Waviness—SW [6];
• Layer Height—LH [6].

The actual deposition parameters were measured with an in-house DAQ system. The
voltage probes were attached to the contact tube and substrate support to eliminate the
inductive effect of the power source cables. The current was measured by a hall-effect
transducer. The wire feed speed (WFS) measurements were performed by an optical
encoder system clamped to the wire right after the drive rolls. The average instantaneous
power method [16] was employed to calculate the arc energy per unit length of deposit as
given by Equation (1).

Arc energy =
Pinst
TS

=
1
n ∑n

k=1 Uk ∗ Ik

TS
(1)

where:

• Arc energy: Arc energy per unit length of deposit (J/mm);
• Pinst: Average instantaneous arc power (W);
• TS: Travel speed (mm/s);
• U: Deposition voltage (V);
• I: Deposition current (A).
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The presence of internal voids (mainly porosity) was assessed through relative density
determination via Archimedes’ method, with the wire density estimated by the same
method and used as reference. Considering the definitions from Martina et al. [6] and
illustrated in Figure 3, the TWW, EWW, and SW dimensions were measured from cross-
section macrographs by using an image analysis algorithm and Equation (2). It is worth
mentioning that, although there are other standardized parameters to characterize surface
texture, e.g., ANSI/ASME B46.1, the definitions from Martina et al. [6] were chosen to
enable a straightforward comparison with the current WAAM literature, which rather
employs such a notation.

SW =
TWW − EWW

2
(2)
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During the building process, the heights of the preforms from the substrate at the 4th
(PHL4) and 12th (PHL12) layers were measured with a Vernier caliper at the 50, 100, and
150 mm horizontal lengths. These average data were used to estimate the average LH as
below (Equation (3)). The first 4 layers were disregarded to ensure that the process had
already reached a steady-state regime.

LH =
PHL12avg − PHL4avg

8
(3)

2.3. Operational Map and Work Envelope

Initially, it is important to distinguish an operational map from a work envelope. In
the present study, the operational map is a wider view exposing the hardware capabil-
ity/limitations. More specifically, the work envelope is an area inside the operational map,
wherein parametric conditions result in preforms that meet some acceptance criteria.

2.3.1. Definition of the Operational Map Boundaries: Hardware Capabilities

For a given WFS, the TS was increased and decreased from an average value (10 mm/s)
in steps of 1.67 mm/s until reaching the wall quality limits, which were visually assessed
in terms of humping formation and molten pool collapse. The layer-edge to water distance
(LEWD) value of the NIAC thermal management technique was set at 20 mm, the measured
interpass temperature (via IR pyrometry at the mid-length of each layer as per da Silva [17])
was kept below 50 ◦C, and the CTWD parameter was adjusted for each layer during the
dwell times. This TS screening approach was inspired by Yehorov et al. [4], but while they
increased the TS during the ongoing deposition, in this work, the TS was changed layer
after layer. Similar approaches were used by Dahat et al. [2] and Plangger et al. [18] to raise
operational maps for high-strength low-alloy steels, both using the CMT process.

The WFS and TS upper limits revealed are due to the hardware limitations, while their
lower limits are due to the lack of fusion tendency, poor wettability between layers, and
low production. For relatively low WFS and high TS values, the layer tends to become
undulated (with humping). In contrast, for high WFS and low TS values, the molten pool
grows and tends to collapse due to its large volume, corroborating Yehorov et al.’s [4]
findings. The operational map boundaries were hence delimited by Equations (4) and (5)
as follows.

3.0 ≤ TS
(mm

s

)
≤ 25 (4)



J. Manuf. Mater. Process. 2021, 5, 40 6 of 21

4.0 ≤ WFS
( m

min

)
≤ 10.5 (5)

2.3.2. Starting Point for the Development of the Work Envelope

As a starting point for the development of the work envelope, a geometric relationship
between the deposition parameters and the basic layer geometry was applied. This simpli-
fied modelling considers the layer cross-section as being a semi-circle, where its diameter
(D) and radius (R) respectively represent the TWW and LH, as illustrated in Figure 4.
Ríos et al. [7] showed that the layer geometry indeed tends to fit a semi-cylindrical geome-
try due to surface tension effects.
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deposition parameters.

By considering a feasible wall width range as between 4 and 7 mm, which is in
concordance with the literature [19,20], the WFS, TS, and LH values were predicted through
a geometrical correlation presented in Equation (6).

π ∗ TWW2

8
=

WFS
TS

∗Wirearea (6)

where:

• TWW: Total wall width (mm);
• WFS: Wire feed speed (mm/s);
• TS: Travel speed (mm/s);
• WFS/TS: Wire deposition per unit length of deposit (-);
• Wirearea: Wire cross-section area (mm2).

Figure 5 shows the work envelope as predicted, which was built considering variations
of the TWW value in steps of 1 mm. It can be noticed that the WFS and TS values estimated
all fall into a processable area of the operational map (Equations (4) and (5)). In this
parametric chart, the WFS and TS parameters can be selected for a target TWW (y-axis).
Moreover, through the WFS/TS ratio (secondary x-axis), values for the WFS and TS could
be selected to achieve more production. However, some divergences are expected in the
practical scenario due to the plasma jet pressure over the molten pool as well as caused by
the interaction of the Earth’s gravity and molten pool volume and surface tension, which
were not taken into account in this simplified prediction model.

2.3.3. The Work Envelope: Matrix of Experiments

Table 3 shows the matrix of experiments used in the experimental approach of the
work envelope. This parametric combination was based on the proposed analytical model
(Figure 4) and corresponds to the same data used to build the work envelope predicted
in Figure 5. As reasonable repeatability is an intrinsic characteristic in WAAM due to
multilayer depositions in each condition (12 layers), providing the process is stable, as it is
the case with CMT and CNC systems, replicates were not performed. Nevertheless, three
cross-sections were sampled from each wall (run) for evaluation.
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Table 3. Matrix of experiments to build the work envelop.

Run Predicted TWW
(mm)

Predicted LH
(mm)

WFS
(m/min)

TS
(mm/min)

WFS/TS
(-) 1

1 7.0 3.5 5.0 3.4 24.5

2 6.0 3.0 5.0 4.6 18.0

3 5.0 2.5 5.0 6.7 12.5

4 4.0 2.0 5.0 10.4 8.0

5 7.0 3.5 6.5 4.4 24.5

6 6.0 3.0 6.5 6.0 18.0

7 5.0 2.5 6.5 8.7 12.5

8 4.0 2.0 6.5 13.6 8.0

9 7.0 3.5 8.0 5.5 24.5

10 6.0 3.0 8.0 7.4 18.0

11 5.0 2.5 8.0 10.7 12.5

12 4.0 2.0 8.0 16.7 8.0

13 7.0 3.5 9.5 6.5 24.5

14 6.0 3.0 9.5 8.8 18.0

15 5.0 2.5 9.5 12.7 12.5

16 4.0 2.0 9.5 19.8 8.0
1 The WTS/TS ratio is dimensionless and to calculate it the WFS and TS values must be in the same units.

2.3.4. The Work Envelope: Acceptance Criteria

As aforementioned, the work envelope is an area inside of the operational map and
where the preforms reach one or more acceptance criteria. As no specific standards for
WAAM of Al were found, pertinent acceptance criteria were established based on welding
standards (i.e., AWS D1.2 Structural Welding Code—Aluminum) and related literature, as
presented in Table 4.
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Table 4. Acceptance criteria for the work envelope.

Features Method of Inspection Acceptance Criteria

Surface aspect Visual
The surface of the layer shall be smooth, shiny, and
sufficiently free from coarse undulations, grooves,

overlaps, abrupt ridges, and valleys.

Surface
waviness Cross-section analyses The surface waviness shall be lower than

0.5 mm [21].

Relative
density Archimedes’ method The preform relative density shall be higher than

97% [22].

3. Results
3.1. Deposition Parameters Analyses

Two especially important factors to describe the thermal and geometric features in
WAAM, as in arc welding, are the arc energy per unit length of deposit (hereinafter referred
to as arc energy) and the wire deposition per unit length of deposit (hereinafter referred to
as WFS/TS). For non-consumable electrode WAAM processes, like the PA and the GTA
ones, these factors are independent, i.e., they can be selected separately. However, this is
not the case for a consumable electrode WAAM process, such as the GMA one. In the CMT
case (a variant of the GMA process), where the arc length is maintained as very short, the
arc energy may be proportional to the WFS/TS ratio for a given WFS range. Aiming at the
validation of such an assumption, the arc energy was plotted against WFS/TS values, as
shown in Figure 6. As seen, the relationship between the arc energy and WFS/TS can be
quite fitted to a linear behavior, so that, within the range of the WFS used, the arc energy is
directly proportional to the WFS/TS ratio. In practice, this supports the statement that the
higher the WFS/TS ratio, the higher the arc energy per unit length of deposit.
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3.2. Work Envelope

The preforms deposited with the WFS of 8.0 and 9.5 m/min did not reach the accep-
tance criteria of the surface aspect. For these conditions, the preform surface was always
rough and matte due to excessive oxidation, as an example shown in Figure 7. This behav-
ior could be related to a poor shielding action from the gas system employed. Factually, the
nozzle that was used is designed for welding, where the shielding gas flux hits the plate in
a large area (equivalent to the gas nozzle) and tends to spread out evenly. However, for
WAAM of thin walls, usually narrower than the gas nozzle itself, most of the shielding
gas flux tends to pass straight down and laterally along the wall sides, losing part of its
shielding capability.
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In terms of relative density (taken as porosity measure), all preforms reached an
acceptable level, as shown in Figure 8. This outcome corroborates previous results [12,15].
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An atlas of the typical cross-sections of the preforms is presented in Figure 9, where
the WFS values determine the lines while the WFS/TS ratio determines the columns. For
all the conditions, the TWW remained nearly constant along the preform height, which
suggests that there was no significant heat accumulation and that all deposition conditions
were kept constant throughout the layers.
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In general, the SW levels of these preforms were higher for lower WFS values, not
reaching the acceptance criteria when such a parameter was set at 5.0 m/min, as shown
in Figure 10. It is interesting to notice, also in Figure 10, that for all conditions, the SW
evolution tends to fit a positive parabolic pattern with minimum values around the WFS/TS
at 12.5 (arc energy per unit length of deposit: 90–100 J/mm). This behavior might be related
to the amount of remelting of the previous layer. Just like with welding penetration, there
may be competition between the effects caused by the WFS/TS ratio and the arc energy
per unit length of deposit, such as the following alternatives:

1. Due to a higher WFS/TS, i.e., a higher wire deposition per unit length of deposit, the
liquid volume of the molten pool interposed between the arc root and the previous layer
is large, so that the heat input coming from the arc needs to pass through this liquid
barrier first before reaching the solid previous layer and melt it more effectively; or

2. Due to a lower WFS/TS, i.e., a lower arc energy per unit length of deposit, there is
insufficient remelting of the previous layer.
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Figure 10. Surface waviness according to WFS and TS values (acceptance criteria: Below the red line):
(a) WFS: 5.0 m/min, (b) WFS: 6.5 m/min, (c) WFS: 8.0 m/min and (d) WFS: 9.5 m/min.

Up to this point, as indicated in Figure 11, the work envelope delineated from the
experimental approach applied is quite restricted, i.e., only 3 out of 16 runs met all the
acceptance criteria (Table 4). Furthermore, it is worth highlighting that the maintenance of
a similar WFS/TS in this parametric chart is no guarantee of sound preforms.
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3.2.1. Work Envelope Expansion

The main limitations perceived in the work envelope so far (initial results) are the
excessive oxidation of the layer top surface deposited with higher WFS values and the
excessive SW of the preform lateral surface deposited with lower WFS values. Aiming
at the expansion of the work envelope, a few actions were implemented to deal with
such setbacks.

To cope with the excessive oxidation, a supplementary shielding gas system was
devised, as shown in Figure 12. This Al-body device is filled with fine Ti chips, which
act as a gas diffuser as well as aid as an active filter for the shielding gas due to its high
binding affinity with oxygen. A Ni-alloy honeycomb was placed at the exit of the device to
laminarize the gas flow as it goes out the supplementary nozzle. Through simple smoke
tests, it was verified that a laminar gas flow is indeed achieved for a gas flow rate range
of 3–5 L/min. The effectiveness of the supplementary shielding gas device is highlighted
in Figure 13. As is clearly seen, the preforms deposited under this device were free of
excessive oxidation, smoother, and brighter. Therefore, one can say that the issue of
excessive oxidation of the layer top surface was troubleshot.
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Figure 13. Visual effectiveness of the supplementary shielding gas device.

As stated previously, the higher surface waviness for the preforms deposited with
the WFS at 5 m/min may be related to the low remelting of the previous layer. Aiming at
the validation of this statement, the deposition conditions used for such WFS level were
repeated with the LEWD parameter changed from 20 to 30 mm. The idea was to reduce
the NIAC’s heat sinking effect and hence allow a higher remelting of the previous layer. As
expected, no significant changes in the relative density were observed due to the LEWD
increase. In terms of geometry, as seen in Figure 14, the TWW levels remained quite similar,
but the preforms deposited with the higher LEWD value were more regular than those
accomplished with the LEWD at 20 mm.
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30 mm.

The effectiveness of reducing the NIAC’s heat sinking effect to improve the SW is
highlighted in Figure 15, where a significantly lower SW is generally seen for the preforms
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deposited with the LEWD parameter at 30 mm. It is believed that further improvement of
the condition with the highest arc energy (Run 11.1) could be achieved by using a LEWD
even larger than 30 mm.
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3.2.2. Expanded Work Envelope

After troubleshooting the excessive oxidation and high SW levels for low WFS condi-
tions, the experimental-based work envelop was updated, as shown in Figure 16. The work
envelope area that now meets the acceptance criteria was significantly expanded compared
with the initial results (Figure 11). Besides the WFS and TS effects, this updated parametric
chart now considers the change in the LEWD parameter and the use of the supplementary
shielding gas device for all the conditions.
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Figure 16. Experimentally based work envelope expanded after troubleshooting the excessive
oxidation and SW issues.

Concerning geometry, it can be said that the trends predicted by the analytical model
find experimental support so that it can be employed as a first approximation for parameter
selection. Compared with the predicted work envelope (Figure 5), the main difference in
the experimental results is the TWW increase when raising the WFS and TS even if the
WTS/TS ratio is kept constant. This behavior may be related to the intensification of the
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plasma jet pressure over the molten pool due to the WFS increase and, consequently, of the
electric current.

For WAAM, if the programed height increment between layers does not correspond
to the actual individual layer height, it could lead to CTWD variations and, consequently,
affect deposition. Given the importance of the LH outcome, Figure 17 compiles the results
for such a geometrical feature according to the expanded work envelope. As predicted by
the analytical model, there is a general trend of LH decrease as the TS is increased.
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3.3. Parameter Selection Route for WAAM with NIAC

The success and efficiency of a WAAM operation strongly depend on the accurate
selection of the deposition parameters. In this sense, the expanded work envelope chart
(Figure 16) can be a useful tool. However, when production cost and surface quality are
taken into account, the task for selecting parameters becomes more complex [4].

Surface quality is directly related to SW, so that the lower the SW, the better the surface
quality. For high-cost and/or difficult-to-machine materials, a minimal SW is desirable to
depend on less excess of material to be machined on post-processing (low material waste).
In contrast, for non-expensive and/or easy-to-machine materials, a moderate SW level
might be acceptable if the production is wanted to be high (application of high WFS and
TS levels). Considering the material general cost and machinability, a parameter selection
procedure for WAAM is proposed based on the following alternatives:

1. For non-expensive and/or easy-to-machine materials, a moderated SW is acceptable,
and then the parameters to improve the production can be selected directly from the
expanded work envelope (Figure 16); or

2. For high-cost and/or difficult-to-machine materials, a minimum SW is required, and
then empirical modeling and numerical optimization should be performed simultane-
ously to meet a target geometry with the lowest SW possible.
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3.3.1. Empirical Modeling of the Expanded Work Envelope

An empirical model was developed for the expanded work envelope (Figure 16), as
depicted in Figure 18, by using a statistics software according to the following steps:

(a) Multiple regressions were performed considering all the predictors;
(b) The significance of each predictor was evaluated through ANOVA (p-value);
(c) The model was systematically reduced by removing the terms with the highest p-

values one at a time until only the significant predictors remained;
(d) A critical analysis of the model was carried out considering the R2 value;
(e) The residual plots were evaluated;
(f) The response surfaces were plotted, and their equations extracted.
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As expected, the layer model presented in Figure 4 and Equation (6) differs from the
empirical formulation (Equations (7)–(9)) due to oversimplification in the first case.

f (TWW) = 3.337 + 0.815 ∗ WFS − 0.267 ∗ TS + 0.017 ∗ TS2 − 0.041 ∗ WFS ∗ TS (7)
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f (EWW) = 2.134 − 0.086 ∗ WFS2 + 1.861 ∗ WFS − 0.166 ∗ TS + 0.0005 ∗ LWED2 (8)

f (LH) = 5.865 − 0.280 ∗ WFS − 0.426 ∗ TS + 0.0355WFS ∗ TS (9)

3.3.2. Numerical Optimization and Experimental Validation

The empirical model was numerically optimized through the Differential Evolu-
tion [23] method in conjunction with a multi-objective function based on the individual
mean squared error [24]. This optimization aimed at estimating the WFS, TS, LEWD,
and LH values for a given target wall width with a minimum difference between TWW
and EWW, i.e., with the minimum SW or the best surface quality possible. This aim was
translated into the following composite objective function (Equation (10)) based on the
individual mean squared errors:

Minimize
[
(T − f (EWW))2 + ( f (TWW)− f (EWW))2

]
(10)

where:

• T: target wall width;
• f(TWW): total wall width function—Equation (7);
• f(EWW): effective wall width function—Equation (8).

Table 5 shows the WAAM parameters that were estimated for different target wall
widths (T) after the proposed optimization. As one can see, all estimated parameters fall
into the expanded work envelope (Figure 16). Moreover, a lower SW level is expected as
the WFS/TS ratios were in the 8–16 range.

Table 5. WAAM parameters estimated through numerical optimization for different target wall
width (T) values.

T (mm) 4.0 4.5 5.0 5.5 6.0 6.5
WFS (m/min) 6.9 7.7 8.7 8.5 9.4 9.4
TS (mm/min) 14.1 14.8 15.2 11.7 10.8 9.3

LH (mm) 1.4 1.5 1.7 2 2.2 2.3
LEWD (mm) 27 22 20 20 20 20

The experimental validation of the empirical modeling and optimization procedure
was performed by means of a deposition with the parametric combination found for a
target wall width (T) of 5 mm. As shown in Figure 19, the predicted parameters resulted in
a preform with an EWW value quite near the target and with an SW level quite low.
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Figure 19. Typical cross-section of the preform deposited for experimental validation of the empirical
modeling and optimization procedure and respective WAAM parameters (target wall width (T) of
5.0 mm).

3.3.3. Decision-Making Procedure towards Preform Quality

Figure 20 orders a general sequence of steps for achieving intended preform quality
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features in WAAM taking into account the strategy of work envelope (including expansion)
and parametric optimization as explored above.
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According to this flowchart of decision-making procedure towards preform quality in
WAAM, it all begins with a critical analysis of the 3D model of the part to be additively
manufactured considering design rules as, for instance, postulated by Lockett et al. [25].
If there is no work envelope for the material of choice, the feasibility of developing one
should be assessed considering factors such as the material weldability, commercial avail-
ability, and cost, etc. The target wall width is determined by the minimum section of the
component. It could be a stacked single pass deposition or a combination of multiple
passes, as discussed by Yehorov et al. [4]. The deposition parameters may be changed
along the building process, even though most of the WAAM equipment does not allow
such an approach. The required surface quality may be linked to the material cost and
its machinability. Depending on the case, the parameters can be selected directly from
the work envelope or through numerical optimization. However, regardless of the choice,
both should be experimentally validated before slicing the 3D model, which precedes the
generation of the deposition path and subsequent execution of the actual deposition of
material via WAAM.

4. Conclusions

The present study aimed at expanding the work envelope and optimizing the para-
metric conditions in WAAM with relative density and surface aspects of the preforms as
quality constraints. Based on the results, the following conclusions are drawn:

• The experimentally based work envelope was quite limited using only the standard
welding hardware. The main drawbacks were the excessive oxidation of the top
surface of the layers deposited with high WFS values and the excessive SW in the
lateral of the preforms deposited with low WFS values. All the preforms reached an
acceptable level of relative density;

• To deal with the excessive oxidation, a supplementary shielding gas system was
successfully devised. To reduce the SW, the Near-immersion Active Cooling thermal
management was reduced by increasing the LEWD parameter from 20 to 30 mm. After
these troubleshooting steps, the work envelope was significantly expanded. Therefore,
the increments to standard welding hardware allowed the expansibility of the WAAM
work envelop;

• For all the conditions assessed, the SW levels tended to fit a positive parabolic behavior
with minimum values with the WFS/TS ratio around 12.5 (arc energy per unit length
of deposit in 90–100 J/mm). However, it is worth mentioning that the maintenance of
a constant WFS/TS ratio does not guarantee sound preforms;

• In general terms, for non-expensive and/or easy-to-machine materials, a moderated
SW is acceptable, and hence the parameters for high production can be selected
directly from the expanded work envelope;

• Also, in general terms, for high-cost and/or difficult-to-machine materials, a minimum
SW is required, and hence the empirical modeling and the numerical optimization
should be performed to meet a target geometry with a minimum SW simultaneously.

To sum up, even though the methodology was based on the deposition of Al5Mg alloy
via the CMT process and despite the fact that the relative density and surface aspects of
the preforms were taken as quality constraints, other materials, processes, and/or quality
features might be explored by following the same strategy of work envelope (including
expansion) and parametric optimization as introduced here towards achieving the intended
preform quality in WAAM.
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Abbreviations
AM Additive manufacturing
CMT Cold metal transfer (controlled dip transfer GMAW process)
CTWD Contact tube to work distance (mm)
D Diameter (equivalent to TWW in the cross-sectional profile model)
DAQ Data acquisition system
DED Directed energy deposition
EWW Effective wall width (mm)
F(EWW) Effective wall width empirical function
F(TWW) Total wall width empirical function
GMA Gas metal arc (deposition process)
GMAW Gas metal arc welding (welding process)
GTA Gas tungsten arc (deposition process)
I Deposition current (A)
IR Infra-red (pyrometry)
LH Layer height (mm)
NIAC Near-immersion active cooling (thermal management technique)
PH Preform height (mm)
Pinst Average instantaneous power (W)
R Radius (equivalent to LH in the cross-sectional profile model)
SW Surface waviness (mm)
T Target wall width (mm)
TS Travel speed (mm/s)
TWW Total wall width (mm)
U Deposition voltage (V)
WAAM Wire + Arc Additive Manufacturing
WFS Wire feed speed (m/min)
WFS/TS Wire deposition per unit length of deposit (dimensionless)
Wirearea Wire cross-section area (mm2)
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